
The fundamental wave modes of
magneto-hydro-dynamics

The fundamental wavemodes in Magneto Hydro Dynamics (MHD) can be found
by linearizing the continuity equation, the momentum equation, the induction
equation and the equation of state :
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Linearize all equations, that is assume that all parameters can be written
as a constant term with subscribt 0 and a small varying term with subscript 1
(example : ρ = ρ0 + ρ1 ).
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Since all time and space derivatives of the constant (subscript 0) variables are
zero, and we can transform this into a co-moving system, that is we move with
the velocity u0, then u0 = 0 we get :
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We have here used that eq: 12 is equal to zero, so we can move around the
terms by multip[lying and dividing with them. We have furthermore used that
since the numbers with subscript 1 is very small, then when two numbers, both
with subscripts 1 are multiplied it is even smaller, so we can ignore those.

Now we assume that the variations are of a wave nature, inserting :

ρ1 = ρA exp (i (k · r− ωt)) (13)
p1 = pA exp (i (k · r− ωt)) (14)
B1 = BA exp (i (k · r− ωt)) (15)

and then using Eqs 9, 11 and 12 we get :
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Assuming that B0 is parallel with the z-axis and that k is perpendicular

with y and we use VA =
√

B2
0

µ0ρ0
and that VS =

√
γp0
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then we can find three
independent roots of this set of equations with corresponding eigenvectors.

The first and simplest one is the Alfvèn wave which has ω = k VA cos θ where
θ is the angle between x and k. It furthermore has k · u1 = 0 and u1 ·B0 = 0
which means that there is no pertubation in density and and no pertubation in
magnetic pressure, i.e. it is a purely magnetic disturbance moving with a speed
of VA cos θ.

The second and third type is the so called fast and slow magnetosonic waves.
Their speed is given by :
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and they are both able to move across the magnetic field. They are magne-
tosonic in the sense that it in some sense is a superposition of a sound wave and
an Alfvèn wave. They both have thermodynamic pressure and magnetic tension
working as a restoring force, and the diffenerence is that the two restoring forces
are in phase for a fast magnetosonic wave, while it is in antiphase for a slow
magnetosonic wave.
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For examples of the three wave types see for instance:

http://solar.physics.montana.edu/magara/Research/Topics/MHD_waves/
mhdw.html
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