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Foreword

The following compendium contains the curriculum for the course AST 4210, Radiation I
as taught at the Institute for Theoretical Astrophysics at the University of Oslo for the
fall semester 2006. The compendium is in a preliminary form, figures and the selection of
problems in particular are still incomplete. Suggestions for improvement of the text and
reports of misprints are most welcomed.

The course aims at providing quantitative training in basic physics concepts constituting
the foundation for any advanced study of astrophysical phenomena. The course starts with a
brief review of Maxwell equations and electromagnetic waves, then proceeds to a discussion of
electromagnetic radiation emitted by accelerated charged particles. Next, an introduction to
quantum mechanics at an intermediate level is given to lay the foundation for an understand-
ing of atomic and molecular spectra. An introduction to basic statistical concepts, statistical
physics and thermodynamics including the Saha equation is included, mostly for reference
purposes. Finally, the course will also include an introduction to the topic of radiation trans-
port.

For reference purposes the compendium also contains an elementary introduction to ce-
lestial mechanics, introduction to fluid mechanics including magnetohydrodynamics (MHD)
and dimensional analysis, in addition to an appendix outlining useful vector calculus results.

The different topics covered, are discussed as topics of physics. The selection of topics,
examples and problems have been made on the basis of their astrophysical relevance. The
more detailed discussion of astrophysical phenomena is deferred to subsequent and more
specialized courses in astrophysics.

The course is best suited for students who have completed at least one year training in
mathematics and in physics. She is expected to have working knowledge of linear algebra,
including the eigenvalue problem, calculus including differential equations and the Gauss and
Stoke integral theorems. Likewise he is expected to be acquainted with basic properties of
Maxwell’s equations, Newtonian mechanics and also to have passed a first courses in quantum
mechanics and statistical physics.

Oslo, Fall 2006 Jan Trulsen
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Chapter 1

Celestial Mechanics

1.1 The Gravitational N -Body Problem

Let us consider a self-gravitating and non-relativistic system consisting of N point masses
mi, i = 1, · · · ,N with position and velocity vectors ri and ṙi. The position and velocity
vectors are given relative to a suitable inertial system. They are all functions of time t. The
mass mj exerts a force on mass mi given by

F ij = −Gmimj
ri − rj

|ri − rj |3
.

G is the universal gravitational constant, G = 6.668 · 10−11 m3/kg s2.

The equation of motion of mass mi will include the sum of the individual forces from the
other masses

r̈i =
1

mi

N∑

j=1,j 6=i

F ij = −
N∑

j=1,j 6=i

Gmj
ri − rj

|ri − rj |3
. (1.1)

The summations run over all values of j except j = i.

For a complete solution of theN -body problem we will need 6N constants of motion. Only
ten such constants are known, 6 with respect to the center-of-mass motion and 4 relating to
the total momentum and energy of the system. The former constants of motion are easily
found by remarking that

N∑

i=1

mir̈i = 0.

We here made use of (1.1) and the fact that pairs of force terms mutually cancel. This result
may be integrated twice with respect to time to give

N∑

i=1

miri =
N∑

i=1

mi(R0 + V 0t). (1.2)

The center-of-mass R =
∑
miri/

∑
mi thus moves along a straight line at constant velocity.

If the origin of the inertial system is made to coincide with the center-of-mass of the system,
the right hand side of (1.2) vanishes.

1



2 CHAPTER 1. CELESTIAL MECHANICS

The total angular momentum of the N -body system is given by

L =
N∑

i=1

ri ×miṙi. (1.3)

It is easily shown that the time derivative of L vanishes and therefore that L is a constant of
motion in the absence of external forces.

The tenth and last constant of motion is derived by noting that the total force on mass
mi may be derived as the negative gradient with respect to ri of the scalar potential

V =
1

2

N∑

i=1

N∑

j=1,j 6=i

G
mimj

|ri − ri |
, (1.4)

that is,

F i = −∇iV ≡ −
∂V

∂ri
.

With the total kinetic energy of the N -body system defined as K =
∑ 1

2miṙ
2
i we find

d

dt
K =

N∑

i=1

miṙi · r̈i = −
N∑

i=1

ṙi · ∇iV =
d

dt
V.

This result is trivially integrated and shows that the total energy of the system,

W = K + V,

is indeed a constant of motion.

Quiz 1.1 : Show by time derivation and direct substitution of (1.1) that L is a constant
of motion.

1.2 The Two-Body Problem

A system consisting of two point masses represents the simplest but still an important spe-
cial case of the general gravitational N -body problem. It has the useful property of being
analytically solvable, if not in terms of elementary functions. For the analysis it is convenient
to let the origin of the inertial system coincide with the center-of-mass of the system, that is,
assume that

m1r1 +m2r2 = 0.

In terms of the difference vector r ≡ r1 − r2 we may now express

r1 =
m2

m1 +m2
r (1.5)

r2 = − m1

m1 +m2
r. (1.6)

The equations of motion (1.1) reduce to

r̈ = −γ r

r3
(1.7)
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where γ = Gm and m = m1 + m2 is the total mass of the system. The total angular
momentum and energy of the two-body system can be expressed as

L = m1r1 × ṙ1 +m2r2 × ṙ2 = µr × ṙ (1.8)

W =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 −

Gm1m2

|r1 − r2 |
= µ

(
1

2
ṙ2 − γ

r

)
, (1.9)

where
µ ≡ m1m2/(m1 +m2) (1.10)

is the reduced mass of the two-body problem.
From (1.7) - (1.9) it is seen that the two-body problem has been reduced to an equivalent

one-body problem of a body with mass µ in the central gravitational field due to the total
mass m fixed at the origin.

We will refer to the energy and angular momentum per unit reduced mass as the normal-
ized energy and angular momentum

W =
1

2
ṙ2 − γ

r
(1.11)

L = r × ṙ. (1.12)

W and L are both constants of motion. Additional constants of motion can be identified by
considering the expression

r̈ ×L = −γ r

r3
× (r × ṙ) = γ

(
ṙ

r

r · ṙ
r3

r

)
= γ

d

dt

(r

r

)
.

This result may be integrated in time and leads to

P = ṙ ×L− γ r

r
(1.13)

where the pericentrum vector P is a constant vector.
Only five of the constants of motion W, L and P are independent. In fact, from (1.13)

we see that the angular momentum and pericentrum vectors are orthogonal, L · P = 0. In
addition, the energy is related to the lengths of the angular momentum and the pericentrum
vectors,

P2 =
(
(ṙ2 − γ

r
)r − r · ṙṙ

)2

= 2

(
1

2
ṙ2 − γ

r

)(
r2ṙ2 − (r · ṙ)2

)
+ γ2 = 2WL2 + γ2. (1.14)

These constants of motion uniquely determine the orbit for the equivalent one-body prob-
lem. Since r and ṙ both remain perpendicular to L, the motion will take place in a plane
perpendicular to L and passing through the origin. Scalar multiplication of (1.13) with r

leads to
P · r + γ r = L2, (1.15)

This result can also be written in the form

r =
P
γ

(L2

P − r cosψ

)
(1.16)
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where ψ, the angle between P and r, is referred to as the true anomaly. Equation (1.16) is
the general equation for a conical section with focus at the origin, eccentricity

e ≡ P

γ
, (1.17)

and directrix distance d ≡ L2/P (see quiz 1.2). For any point of a conical section the ratio
of the distance r to the focus and the distance d − r cosψ to the directrix, a straight line at
distance d from the focus, is a constant equal to the eccentricity e. The geometry is illustrated
in figure 1.1. For eccentricities e < 1 the conical section is an ellipse, for e = 1 a parabola, and
for e > 1 a hyperbola. The direction of the pericentrum vector P determines the orientation
of the orbit in the orbital plane, pointing toward the pericentrum, the point in the orbit lying
closest to the focus. This is the reason for the name of the P vector.

Figure 1.1: Definition of conical sections

It is convenient to express the normalized energy W in terms of a parameter a according
to

W = − γ

2a
, (1.18)

or equivalently

a =
r

2− rṙ2/γ
. (1.19)

According to (1.14) and (1.16) the length of the normalized angular momentum vector is then
given by

L2 = γ a(1− e2) (1.20)

and the pericentrum distance

rP =
L2

γ(1 + e)
= a(1− e). (1.21)

For elliptic orbits e < 1 and W < 0 and therefore a > 0. The apocentrum, the point in
the orbit at the greatest distance from the focus, is found in the direction opposite to the
pericentrum at the distance

rA = a(1 + e).
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This means that

a =
1

2
(rP + rA)

and therefore that a is equal to the semi-major axis of the ellipse. For hyperbolic orbits e > 1
and W > 0 and thus a < 0. | a | now represents the distance from the pericentrum to the
point where the two asymptotes of the hyperbola meet. The parabolic orbit represents the
limiting case where the total energy vanishes and the two bodies are energetically just barely
able to break away from each other. In this case it is better to make use of the pericentrum
distance rP as a parameter to describe the orbit instead of the infinite a.

The five independent constants of motion associated withW ( or a), L and P are sufficient
for the complete determination of the form, size and orientation of the orbit. One additional
relation is, however, necessary in order to specify the position of the body in the orbit as a
function of time t. For this part it is convenient to consider the three types of orbits separately.

Quiz 1.2 : Show that the equation (1.16) with e = P/γ and d = L2/P can be written
in the form

(1− e2)x2 + 2de2x+ y2 = d2e2.

Thus verify that (1.16) represents an ellipse, a parabola or a hyperbola depending on
whether e is less than, equal to or larger than unity.

Quiz 1.3 : Express the directrix distance d in terms of a and e.

Quiz 1.4 : Show that the semi-minor axis of the ellipse is given by b = a
√

1− e2.

Quiz 1.5 : Express the orbital speed | ṙ | in terms of r and a.

1.2.1 Elliptical orbits

For elliptical orbits it is convenient to introduce the eccentric anomaly E defined by

r ≡ a(1− e cosE), (1.22)

and therefore also ṙ = ae sinE Ė. E = 0 and E = π correspond to pericentrum and apocen-
trum, respectively. Substitution of (1.22) into the expression for L2 leads to

γa(1− e2) = L2 = r2ṙ2 − (r · ṙ)2 = r2
(
γ

(
2

r
− 1

a

)
− a2e2 sin2E Ė2

)
.

This result may be rewritten as

(1− e cosE) Ė =

√
γ

a3
,

or in integrated form
E − e sinE = M ≡ n(t− T ). (1.23)

This result is known as the elliptic Kepler equation. Here M is the mean anomaly,

n =

√
γ

a3
(1.24)
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Figure 1.2: Geometric interpretation of E

is the mean motion, and T the pericentrum passage, the time when the body is passing the
pericentrum point. T is the sixth and remaining constant of motion. The orbital period is
given by P = 2π/n.

A geometric interpretation of the eccentric anomaly E is found by introducing the eccentric
circle with radius a as illustrated in figure 1.2. The ellipse is derived from the circle by
shrinking the y-coordinate by the constant factor

√
1− e2. Identifying the eccentric anomaly

E by the angle 6 FCQ we find from the figure

r2 = (PF )2 = (CD − CF )2 + (
√

1− e2DQ)2

= (a cosE − ae)2 + (1− e2) a2 sin2E = a2(1− e cosE)2,

in accordance with (1.22).
The Kepler equation (1.23) cannot be solved for E in terms of elementary function. Con-

venient numerical methods are, however, available. The iteration procedure

E(k) = M + e sinE(k−1) for k = 1, 2, · · · (1.25)

and with E(0) = M converges toward the correct solution E with increasing k for e < 1.

Quiz 1.6 : From (1.16) and (1.22) show that the true anomaly ψ can be expressed in
terms of the eccentric anomaly E by

cosψ =
cosE − e

1− e cosE
and sinψ =

√
1− e2 sinE

1− e cosE
. (1.26)

Quiz 1.7 : Show that the position and velocity vectors of the equivalent one-body prob-
lem for elliptic orbits are given by

r = a
(
P̂(cosE − e) +

√
1− e2 Q̂ sinE

)
(1.27)

ṙ =

√
γ

a

−P̂ sinE +
√

1− e2 Q̂ cosE

1− e cosE
(1.28)
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with Q̂ = L̂× P̂ .

1.2.2 Hyperbolic orbits

For hyperbolic orbits the eccentricity e exceeds unity. The position of the body in the orbit
can be determined by a procedure similar to the one already discussed for the elliptic orbit.
This time a variable F defined by the equation

r = a(1− e coshF ) (1.29)

is introduced. A derivation similar to the one for elliptic orbits leads to

e sinhF − F = M ≡ n(t− T ). (1.30)

The mean anomaly M is given in terms of time t, the pericentrum passage T , and the mean
motion

n =

√
γ

|a |3 , (1.31)

as for elliptic orbits.

The hyperbolic Kepler equation (1.30) can be solved by the numerical iteration procedure

F (k) = arcsinh
1

e
(M + F (k−1)) for k = 1, 2, · · · (1.32)

with F (0) = M . F (k) converges toward the correct solution F with increasing k for all e > 1.

Quiz 1.8 : For hyperbolic orbits show that the true anomaly ψ can be expressed as

cosψ =
e− coshF

e coshF − 1
and sinψ =

√
e2 − 1 sinhF

e coshF − 1
. (1.33)

Quiz 1.9 : Show that the position and velocity vectors for hyperbolic orbits can be
expressed as

r =|a |
(
P̂(e− coshF ) +

√
e2 − 1 Q̂ sinhF

)
(1.34)

ṙ =

√
γ

|a |
−P̂ sinhF +

√
e2 − 1 Q̂ coshF

e coshF − 1
(1.35)

with Q̂ = L̂× P̂ .

1.2.3 Parabolic orbits

With e = 1 the equation for the conical section (1.16) reduces to

r =
2rP

1 + cosψ
=

rP

cos2 ψ
2

. (1.36)
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If this expression is substituted into the the expression for the angular momentum in polar
coordinates,

r2
dψ

dt
= L,

the result is

cos−4 ψ

2
d
ψ

2
=

√
γ

2r3P
dt,

or in integrated form
1

3
tan3 ψ

2
+ tan

ψ

2
= Q ≡

√
γ

2r3P
(t− T ). (1.37)

This is the Baker equation. T is again the time of pericentrum passage. The Baker equation
(1.37) may be solved directly for the true anomaly ψ,

tan
ψ

2
= 3
√
ψ − 1

3
√
ψ

(1.38)

with

ψ =
3

2
Q+

√
9

4
Q2 + 1. (1.39)

Quiz 1.10 : Show that the position and velocity vectors for parabolic orbits are given
by

r = rP

(
P̂(1− tan2 ψ

2
) + 2Q̂ tan

ψ

2

)
(1.40)

ṙ =

√
2γ

rP

−P̂ tan ψ
2 + Q̂

1 + tan2 ψ
2

(1.41)

with Q̂ = L̂× P̂ .

1.2.4 Orbital elements Ω, ω and i

The orientation of the orbital plane is uniquely determined by the angular momentum vector
L. Traditionally, the orientation of the orbit is also given in terms of the three angles i, Ω
and ω with respect to some reference plane through the focus and some reference direction
in this reference plane. The geometry is illustrated in figure 1.3. In the figure the normal
vector of the reference plane is chosen as ẑ, the reference direction in this plane as x̂. The
positive z-axis points toward the “north”. The line of intersection between the orbital and
reference planes defines the nodal line with direction n̂ ‖ ẑ×L. The nodal line points toward
the point in space where the orbit passes from the southern to the northern hemisphere. In
the figure the part of the orbit lying in the northern hemisphere is drawn with a solid line,
the part lying in the southern hemisphere is indicated with a dotted line. The inclination i
represents the angle between the orbital and the reference planes. The right ascension Ω is
the angle between the reference direction x̂ and the nodal line n̂, Finally, the pericentrum
argument ω is the angle between the nodal line n̂ and the pericentrum vector P . Thus, i and
Ω determine the orbital plane, whereas ω defines the orientation of the orbit in the orbital
plane.



1.2. THE TWO-BODY PROBLEM 9

The unit vectors L̂, P̂ and Q̂ = L̂× P̂ may be expressed in terms of i, Ω and ω as

L̂ = ( sinΩ sin i ,− cosΩ sin i , cos i ), (1.42)

P̂ = ( cos Ω cosω − sinΩ sinω cos i ,

sinΩ cosω + cos Ω sinω cos i , sinω sin i ) (1.43)

and

Q̂ = ( − cos Ω sinω − sin Ω cosω cos i ,

− sin Ω sinω + cos Ω cosω cos i , cosω sin i ). (1.44)

Figure 1.3: The orbit in space

For given orbital elements a, e, Ω, ω, i and T and time t the position and velocity r and
ṙ may be found. Inversely, the orbital elements a, e, Ω, ω, i and T may be determined from
the knowledge of r and ṙ at a given time t. Thus, the semi-major axis is found from (1.19).

From (1.16) we have

e cosψ =
L2

γr
− 1. (1.45)

If this relation is differentiated with respect to time and use is made of the polar representation
L = r2ψ̇, we find

e sinψ =
L
γ
ṙ =

L
γr

r · ṙ (1.46)

The latter two relations together determine e and ψ.
Ω and i are found from the expressions for the components of L̂ as given in (1.42), while

ω can be determined by noting that

r · n̂ = r cos(ω + ψ) (1.47)

and
r · ẑ = r sin(ω + ψ) sin i (1.48)

Finally, the pericentrum passage T is determined from (1.23), (1.30) or (1.37) depending on
the type of orbit, in the two former cases by first expressing E or F in terms of ψ (compare
(1.26) or (1.33)).
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1.3 Three-body problem

The classical two-body problem is as we have just seen generally solvable. For the three-body
problem this is no longer the case. Of exact solutions we only know of Lagrange’s solutions
from 1772. He found five relative positions of the three bodies for which they would continue
to move in similar conical sections if prepared properly initially.

1.3.1 Lagrange’s solution

Let the position vectors of the three bodies with masses m1, m2 and m3 be r1, r2 and r3

relative to the center-of-mass of the system. In terms of the relative vectors rij = ri− rj the
equations of motion (1.1) may be written

r̈21 = −Gm2
r21

r321
+Gm3

r13

r313
+Gm3

r32

r332
−Gm1

r21

r21

= −G(m1 +m2 +m3)
r21

r321
+Gm3

(
r21

r321
+

r32

r332
+

r13

r313

)
. (1.49)

The remaining equations of motions are easily derived by cyclic changes of indices.

The last term of all of these equations of motions vanishes if r21 = r32 = r13 since
r21+r32+r13 = 0. The equations of motion for the relative position vectors are then identical.
The relative position vectors will then describe similar orbits if relative velocity vectors are
properly chosen initially. Properly chosen means that the three velocity vectors are co-planar
with the three position vectors and that the three pairs of position and velocity vectors are
transformed into one another by a rotation of 2π/3 radian around an axis perpendicular to
this plane. The solutions described are referred to as the equilateral solutions of the three-
body problem. As there are two possible solutions to placing three mass points in the corners
of an equilateral triangle, there are two such solutions.

The remaining Lagrange’s solutions are the three co-linear solutions for which

r32 = λr21

and the constant λ is chosen such that this relationship is maintained during the motion. As
r13 = −r21 − r32 = −(1 + λ)r21 we find from (1.49)

r̈21 = −G
(
m1 +m2 +m3 −m3(1 +

1

λ2
− 1

(1 + λ)2
)

)
r21

r321

and similarly

r̈32 = −G
(
m1 +m2 +m3 −m1(1 +

1

λ2
− 1

(1 + λ)2
)λ2

)
r32

r332
.

For the co-linearity condition to be maintained it is necessary that the orbital periods of the
two elliptical orbits described by these equations are identical. This means that we must
require

(
m1 +m2 −m3(

1

λ2
− 1

(1 + λ)2
)

)
λ3 = m2 +m2 −m1

(
λ2 − λ2

(1 + λ)2

)
.
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After some algebra this result may be transformed into the form

(m1 +m2)λ
5 + (3m1 + 2m2)λ

4 + (3m1 +m2)λ
3

− (m2 + 3m3)λ
2 − (2m2 + 3m3)λ− (m2 +m3) = 0, (1.50)

a result often refereed to as Lagrange’s equation of 5th degree.
Descartes’ sign rule tells that the number of zeroes with positive real part of real polyno-

mials is at most equal to the number of sign changes of the coefficients in the polynomial. For
our polynomial the number of such sign changes is equal to one, in addition one may easily
convince oneself of the existence of at least one positive real zero. We therefore conclude that
equation (1.50) has exactly one such solution. This solution corresponds to one solution of
Lagrange’s co-linear problem with mass m3 located outside m1 and m2. Since three masses
in a line may be arranged in three different ways, we conclude that there exists three co-linear
solutions.

1.3.2 The restricted three-body problem

Apart from Lagrange’s five classical solutions not much progress has been made regarding the
solution of the general three-body problem. Some progress has been made for the so-called
restricted three-body problem in which one of the three bodies has a negligible mass compared
to the other two, for instance m = m3 � m1,m2. We shall here only consider the simple case
in which the masses m1 and m2 move in circular orbits around their common center-of-mass.
The equation of motion for the smallest body is

r̈ = −γ1
r − r1

|r − r1 |
− γ2

r − r2

|r − r2 |
= ∇Ug, (1.51)

where the potential is

Ug =
γ1

|r − r1 |
+

γ2

|r − r2 |
. (1.52)

The masses m1 and m2 orbit the center-of-mass with constant angular velocity ω.
In a rotating coordinate system locked to the two larger masses r1 and r2 are constant

vectors. In terms of the velocity ∂r/∂t of the smaller body in this coordinate system the
equation of motion may be written

d

dt

(
∂r

∂t
+ ω × r

)
=
∂2r

∂t2
+ 2ω × ∂r

∂t
+ ω × (ω × r) = ∇Ug. (1.53)

Scalar multiplication with ∂r/∂t leads to

∂r

∂t
· ∂

2r

∂t2
−
(

ω × ∂r

∂t

)
· (ω × r) =

∂r

∂t
· ∇Ug.

But this expression may be integrated to give

C =
1

2

(
∂r

∂t

)2

− Ug − Us (1.54)

where C is a constant of motion and

Us =
1

2
(ω × r)2 (1.55)
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is the centrifugal potential. The result (1.54) is known as the Jacobi integral.
The remaining five constants of motion necessary for a complete solution of the restricted

three-body problem are not known. The Jacobi integral may, however, be used to put limits
to the region of space that will be available to the smaller body for given initial conditions.
This is possible because (∂r/∂t)2 ≥ 0. The smaller body may not cross zero velocity surfaces
corresponding to the given initial condition.

Lagrange’s exact solutions of the three-body problem corresponding to the conditions of
the restricted problem – m3 negligible and m1 and m2 moving in circular orbits – are re-found
as solutions of (1.53) corresponding to ∂r/∂t = 0. The solutions represent fixed points in the
plane rotating with m1 and m2. The points are called libration points and are traditionally
denoted L1, L2,...,L5. The former three are the co-linear solutions, L1 lying between m1 and
m2, L2 lying outside the smaller mass m2, L3 outside larger mass m1. The latter two are the
equilateral solutions, L4 lagging and L5 leading the smaller mass m2 in its motion.

1.3.3 Stability of the libration points

The five libration points represent equilibrium solutions of the three-body problem. To see
if these solutions have practical physical interest it is necessary to investigate their stability
properties, that is to investigate the behavior of the system if perturbed slightly off the exact
equilibrium solution.

Figure 1.4: The Jacobi potential

To investigate this problem we have plotted a contour plot of a section through the orbital
plane of the potential U of Jacobi’s integral (1.54) in figure 1.4. The figure has been drawn
for a mass ratio m2/m1 = .3. The positions of the two larger masses together with the
locations of the five libration points have been indicated. The two equilateral points L4 and
L5 correspond to minimum values of U . If perturbed slightly the third body will not be able
to stray far away from the equilibrium point. These solutions are therefore stable. For the
three co-linear points the situation is different. These points only represents extremal values
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or saddle points of U . If perturbed from these equilibrium points, the third body will continue
to “fall” further away as its velocity in the rotation coordinate system continues to increase.
The co-linear solutions are therefore all unstable.

In the neighbor of the equilateral points of the Sun-Jupiter system a whole group of
asteroids are found, the Trojan group. The group has got its name because the largest of these
asteroids were named after the heroes of the Trojan War: Achilles, Partoclus, Hector, Nestor,
... Several hundreds members of the Trojan group are known, several having amplitudes of
20◦ in length in their oscillational motion around their libration point.

That the co-linear libration points have been shown to be unstable does not mean that
they are without any practical interest. The Solar and Heliospheric Observatory (SOHO)
spacecraft was successfully actively maintained near the L1 libration point of the Sun-Earth
system for several years.

1.4 Perturbation theory

As seen in section 1.3 the three-body problem has not been generally solved. This therefore
also applies to the general N -body problem. Still, finding practical approximate solutions
for the orbit evolution is possible. What is of importance in this respect is that we are often
faced with a situation where the mass of the primary body involved dominates the masses of
secondary bodies. This applies to the mass ratios for planet-sun and satellite-planet systems.
This implies that secondary bodies often follow approximately elliptical orbits around their
primary body, only weakly perturbed by the presence of other bodies. The deviations from
elliptical orbits can be described in terms of perturbation theory to which we now turn.

Let body with index number 1 be a primary body. In terms of the relative vectors
r′
i = ri − r1 the equations of motion (1.1) take the form

r̈′
i = −G

N∑

j=1,j 6=i

mj
ri − rj

|ri − rj |3
+G

N∑

j=2

mj
r1 − rj

|r1 − rj |3

for i = 2, · · · ,N . When dropping primes, this result may be rewritten in the slightly different
form

r̈i + γi
ri

|ri |3
= si (1.56)

for i = 2, · · · ,N with γi = G(m1 +mi) and

si = G
N∑

j=2,j 6=i

mj

(
rj − ri

|rj − ri |3
− rj

|rj |3
)

= G
N∑

j=2,j 6=i

mj
∂

∂rj

(
1

|ri − rj |
− ri · rj
|rj |3

)
. (1.57)

This system is of the desired form. If the perturbations si all vanish, we are left with N − 1
Kepler problems. If the perturbation terms are all small compared with the second term
on the left hand side of (1.56), the motion will take place in approximate Keplerian orbits.
The deviation from exact Keplerian orbits may in this case be calculated from the suitable
perturbation theory.
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Our criteria will be satisfied if the mass of body with index number 1 is much larger
than the other masses and close approaches are avoided. We shall see that we shall end up
with equations of motions of the same type when we later will investigate the importance
of relativistic corrections, the finite size of the bodies involved or radiation pressures. The
development of a perturbation theory for this type of equations is thus of general interest.

In section 1.2 we learned how the unperturbed problem could be solved. We did this
by constructing a sufficient number of constants of motion, (1.12), (1.13), (1.19) and (1.23).
These are all expressions of the form

C = F (r, ṙ, t) (1.58)

where C are constants. For the present case there will be one set of such relations for each
secondary body.

If si 6= 0 then the corresponding C is no longer constant, instead we find, suppressing
indices,

Ċ =
∂F

∂t
+ ṙ · ∂F

∂r
+ r̈ · ∂F

∂ṙ

=
∂F

∂t
+ ṙ · ∂F

∂r
− γ r

r3
· ∂F
∂ṙ

+ s · ∂F
∂ṙ

. (1.59)

The first three terms on the right hand side of (1.59) mutually cancel and the result is therefore

Ċ = s · ∂F
∂ṙ

. (1.60)

By substituting the proper expressions for the different functions F we then find

ȧ =
2a2

γ
ṙ · s (1.61)

L̇ = r × s (1.62)

Ṗ = s× (r × ṙ) + ṙ × (r × s) (1.63)

From (1.62) and (1.63) the rate of change of the orbital elements e, i, Ω and ω can be found.
Thus, the time derivative of L2 = γa(1− e2) leads to

γȧ(1− e2)− 2γaeė = 2L · L̇ = −2(r ×L) · s

and therefore

ė =
1

γae

[
(r ×L) · s + a2(1− e2)ṙ · s

]
. (1.64)

The corresponding rate of change of i and Ω can be found by making use of (1.42) to note
that

˙̂
L · ẑ = − sin i i̇ (1.65)

and
˙̂
L · n̂ = sin i Ω̇ (1.66)

with the nodal vector

n̂ = (cos Ω, sin Ω, 0) =
(ẑ × L̂)

sin i
. (1.67)
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If we now make use of

˙̂
L =

1

L(L̇− L̇L̂) =
1

L
(
r × s + (r × L̂) · s L̂

)
,

the results are

Ω̇ =
1

L sin2 i
(r × s) · (ẑ × L̂) =

r · ẑ
L2 sin2 i

L · s (1.68)

and

i̇ = − s

L sin i
· r × (L̂ L̂ · ẑ − ẑ)

= − s

L · r × (n̂× L̂) =
r · n̂
L2

L · s. (1.69)

To find the rate of change of ω we may make use for the fact that

˙̂
P · Q̂ = Ω̇ cos i+ ω̇

and
˙̂
P =

1

γe
(Ṗ − γėP̂)

to show that

ω̇ =
1

γe
(s× (r × ṙ) + ṙ × (r × s)) · Q̂− Ω̇ cos i. (1.70)

1.5 The Virial Theorem

The double derivative of the moment of inertia I =
∑
mjr

2
j of the N -body system is given

by

1

2

d2I

dt2
=

N∑

j=1

mj ṙ
2
j +

N∑

j=1

mjrj · r̈j . (1.71)

This identity is known as the virial theorem. The first term on the right hand side of (1.71)
is twice the kinetic energy K of the system. The last term can be evaluated by the equation
of motion (1.1)

N∑

j=1

mjrj r̈j =

N∑

i,j

′

rj · F ji =
1

2

N∑

i,j

′

(rj − ri) · F ji

=
1

2

N∑

i,j

′

G
mimj

|ri − rj |
= V.

We did here make use of the anti-symmetry property of F j,i with respect to permutations of
the indices i and j.

With this result the virial theorem for the self-gravitating, non-relativistic N -body system
may be written in the simple form

1

2

d2I

dt2
= 2K + V. (1.72)
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Chapter 2

Electromagnetic Waves

Any study of distant astronomical objects is totally dependent on the information that may
be gathered on these objects. Apart from sending spacecrafts to perform actual in situ mea-
surements, four different information channels are available to us. We may collect information
through the electromagnetic radiation reaching us from these distant objects. We may study
cosmic rays, material particles moving with velocities close to the speed of light and originat-
ing in different parts of the universe. We may study the flux of neutrinos and anti-neutrinos,
that is, mass-less particles moving with the speed of light and created by nuclear reactions in
the interior of stars. Finally, we may try to infer information from the presence of gravitational
waves.

Gravitational waves have been predicted since the time of birth of the theory of general
relativity. The time history of the Hulse-Taylor binary pulsar provides indirect evidence for
their existence, but we will have to wait well into this century before gravitational waves
possibly become an important information channel of astrophysical phenomena.

Neutrinos are produced through several nuclear reactions, for instance, the reaction

1H + 1H→ 2H + e+ + ν,

which plays a central role in the energy production in the interior of any star. The neutrino
flux is difficult to detect because these particles hardly interact with matter, in fact, the
neutrino flux passes through the solid Earth almost unobstructed. One successful detection
scheme has been to make use of the reaction

37Cl + ν → 37Ar + e−

in large chlorine-filled tanks located in deep underground pits, well shielded from the per-
turbing influence of cosmic rays. An outstanding problem in astrophysics today is that the
neutrino flux detected in this way is a factor 2 - 3 less than theoretically expected.

Cosmic rays have been observed over many years through the tracks left in photographic
emulsions placed behind leaden shields of varying thicknesses. Cosmic rays are produced by
several astrophysical processes. Supernovas remnants are one of the more important sources.
Cosmic ray observations provide important constraints for any understanding of processes
responsible for the acceleration of these high-energy particles.

The by far most important information channel on astronomical objects is, however, still
the electromagnetic radiation with frequencies ranging from radio-waves through the visible
part of the spectrum to energetic X-rays and γ-rays. It is therefore only natural that our

17
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discussion of fundamental topics in astrophysics starts with a short review of basic parts of
electromagnetic theory.

2.1 Electric and Magnetic Fields

Maxwell’s equations constitute the basis for any discussion of electromagnetic phenomena.
The reader is assumed to be acquainted with the physical content of these equations already.
We shall therefore only briefly review some of their properties. In the simplest version these
equations take the form

∇ ·E =
ρ

ε0
(2.1)

∇×E = −∂B

∂t
(2.2)

∇ ·B = 0 (2.3)

∇×B = µ0

(
j + ε0

∂E

∂t

)
. (2.4)

Here E is the electric field intensity and B the magnetic flux density. For convenience, E and
B will be referred to as the electric and magnetic fields in the following. The electric charge
and current densities ρ and j as well as the fields E and B are all functions of space r and
time t. The constants ε0 and µ0 are the permittivity and permeability of vacuum. In SI-units,
the latter coefficient is defined as µ0 = 4π · 10−7 H/m while ε0 = 1/(µ0c

2) where c is the
speed of light in vacuum, c = 2.997925 · 108 m/s. Basic properties of the divergence and curl
operators, div = ∇· and curl = ∇×, acting on the electric and magnetic fields are reviewed
in appendix A. The explicit forms of the divergence and curl operators depend on the choice
of coordinate system. For Cartesian, cylindrical and spherical coordinates, as well as for an
arbitrary orthonormal curvilinear coordinate system, these forms are listed in appendix A.

Maxwell’s equations in the form (2.1) - (2.4) are sometimes referred to as the vacuum
version of the Maxwell’s equations. This means that all sources of charge and current densities
are included in ρ and j. In material media, it is often convenient to restrict ρ and j to the free
charge and conduction current densities. Polarization charge and current densities and the
magnetization current density are then included through the permittivity and permeability
of the medium. We shall return to this aspect in a later chapter.

a)

d

Q

V

b)
C

I

d

E
n

l

B

A

A

A

Figure 2.1: Illustrating Gauss and Ampère’s laws
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The Maxwell equations express the fact that the charge and current densities ρ and j are
the sources for the electric and magnetic fields E and B. Gauss law for electric fields (2.1)
states that electric field lines originate in electric charges. This is seen by making use of the
definition (A.3) of the divergence operator as applied to the electric field E,

∇ ·E ≡ lim
V→0

1

V

∮

A
d2A ·E. (2.5)

where d2A is an outward pointing differential element of the closed surface A bounding the
infinitesimal volume V . The geometry is illustrated in figure 2.1a. According to (2.1), this
means that the total flux of the electric field,

∮
A d2A · E, out of any volume element V , is

equal to the total amount of electric charge Q =
∫
V ρ d3r inside that volume, except for the

factor of proportionality ε−1
0 , ∮

A
d2A ·E =

Q

ε0
.

The corresponding Gauss law for magnetic fields (2.3), expresses the fact that magnetic
charges do not exist. This means that the magnetic field has a solenoidal character: a magnetic
field line never ends, or equivalently, the net magnetic flux

∮
A d2A · B leaving any volume

element V bounded by the surface A vanishes,
∮

A
d2A ·B = 0.

For slowly time-varying phenomena the last term of the Maxwell law (2.4) may often be
neglected, |ε0∂E/∂t |�|j |. The simplified version of the Maxwell law,

∇×B = µ0j, (2.6)

is referred to as the Ampère law. The Ampère law may be given a simple geometric interpre-
tation by making use of the definition (A.4) of the curl operator as applied to the magnetic
field B. The component of the curl of the vector field B along a direction n̂ is given by

n̂ · ∇ ×B ≡ lim
A→0

1

A

∮

C
d` ·B. (2.7)

where the line integral on the right hand side is taken along the closed contour C bounding
the open surface A = A n̂. The positive direction of the contour C and the direction n̂ of
the surface A are related through the well-known right hand rule as indicated in figure 2.1b.
Thus, Ampère’s law states that the circulation

∮
C d` · B of the magnetic field around the

perimeter C of any open surface A, equals the total electric current I =
∫
A d2A · j passing

through that surface, except for the constant of proportionality µ0,∮

C
d` ·B = µ0I.

For slowly time-varying (low-frequency) phenomena, the Faraday law (2.2) represents the
main coupling between electric and magnetic fields. A time varying magnetic flux

∫
A d2A ·B

inside a given electric circuit C bounding an area A results in an induced electromotive force1
∮
C d` ·E, ∮

C
d` ·E = − d

dt

∫

A
d2A ·B.

1The traditional notation is rather unfortunate, the electromotive force is no force but an induced electric
voltage!
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This in turn may drive electric currents which couple back to the magnetic field. This class
of phenomena includes for instance the dynamics of stellar atmospheres, the generation of
stellar and large scale inter-stellar magnetic fields. We shall return to this class of phenomena
in later chapters.

In the high-frequency limit, the displacement current, the ε0∂E/∂t-term of the Maxwell
law (2.4), contributes importantly to the coupling between the electric and magnetic fields.
This term accounts for the existence of electromagnetic waves and therefore for how electric
and magnetic fields may decouple from their proper sources ρ and j and propagate away.
Before we turn to a review of basic properties of these waves, we shall need another important
property of electromagnetic fields.

Quiz 2.1 : Write the explicit form of Maxwell’s equations (2.1) - (2.4) in Cartesian and
spherical coordinates.

Quiz 2.2 : Make use of the Gauss and Stoke integral theorems, (A.27) and (A.28), to
recast Maxwell’s equations (2.1) - (2.4) into the equivalent integral form

∮

A
d2A ·E =

Q

ε0
(2.8)

∮

C
d` ·E = − d

dt

∫

A
d2A ·B (2.9)

∮

A
d2A ·B = 0 (2.10)

∮

C
d` ·B = µ0

(
I + ε0

d

dt

∫

A
d2A ·E

)
. (2.11)

Give the proper definitions of all quantities involved.

Quiz 2.3 : Show that the equation

∂ρ/∂t+∇ · j = 0 (2.12)

follows from Maxwell’s equations. What is the corresponding integral form of this
equation? Give a physical interpretation of the terms appearing in the equation.

Quiz 2.4 : Make use of the Maxwell equations in integral form to
a) show that the electric field from a point charge Q at the origin is given by

E(r) =
Q

4πε0 r2
r̂

b) show that the magnetic field from a current I flowing along the positive z-axis
is given by

B(r) =
µ0 I

4π ρ
φ̂

c) find the current I flowing in a plane circular circuit of radius a and resistance R
during the time interval T in which the magnetic field perpendicular to the plane of
the circuit increases from 0 to B. Determine the direction of the current.
Interprete the symbols used in these results!
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2.2 The Poynting Theorem

To create electric or magnetic fields, energy is required. This energy may be recovered when
the fields are destroyed. Therefore, the fields represent “potential” energy. The electromag-
netic fields are also able to transport this “potential” energy from one location to another.
Explicit expressions for the energy density and the energy flux associated with the electro-
magnetic fields are readily derived from Maxwell’s equations. Scalar multiplications of (2.2)
and (2.4) with B/µ0 and −E/µ0 and a subsequent addition of terms lead to the result

∇ · 1

µ0
(E ×B) = − ∂

∂t
(
ε0
2

E2 +
1

2µ0
B2)− j ·E. (2.13)

In deriving the left hand term we made use of the vector identity (A.25). Equation (2.13)
is known as the Poynting theorem and allows for the following interpretation. The last term
−j · E is recognized as the work performed by the current source j on the fields per unit
volume and time. With the geometric interpretation of the divergence operator in mind, the
left hand term must represent the outflow of energy per unit volume and time, and therefore
that the Poynting vector,

P =
1

µ0
(E ×B), (2.14)

expresses the energy flux carried by the fields. If the work done by the source j on the field E

does not balance the energy outflow, the energy density in the fields must change with time.
Thus, we interpret

u = uE + uB =
ε0
2

E2 +
1

2µ0
B2 (2.15)

as the sum of electric and magnetic field energy densities.

Quiz 2.5 : Show for any volume V with boundary surface A that

d

dt

∫

V
u d3r +

∮

A
P · d2A = −

∫

V
j ·E d3r (2.16)

where P and u are defined by (2.14) and (2.15). Interpret the physical meaning of
each term.

2.3 Electromagnetic Waves in Vacuum

The Maxwell equations may be written as a vector equation in, for instance, the electric field
alone. Taking the curl of (2.2) and substituting the expression for ∇×B from (2.4) leads to
the wave equation for the electric field in vacuum

∇2E − 1

c2
∂2

∂t2
E = 0. (2.17)

Physically allowable electric fields in vacuum must satisfy (2.17) together with the divergence
condition ∇ ·E = 0. For instance, any field of the form

E = x̂f(z ± ct)
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where f is an arbitrary, twice differentiable function will be allowed.
In the following we shall often be satisfied with a simpler class of solutions. Direct sub-

stitution will show that the electromagnetic fields

E(r, t) = E0 cos(k · r − ωt)
B(r, t) = B0 cos(k · r − ωt) (2.18)

constitute a solution of Maxwell’s equations (2.1) - (2.4) in a source-free region of space,
ρ = j = 0, provided the conditions

ω = kc (2.19)

and
k ×E0 = ωB0 and k ·E0 = 0 (2.20)

are satisfied. Here k and ω are the wave vector and angular frequency of the wave, and E0

and B0 are the amplitude vectors of the electric and magnetic fields. The dispersion relation
(2.19) shows that a definite relationship exists between the frequency of the wave and the wave
number k = |k |. The condition (2.20) means that the three vectors E, B and k constitute a
right-handed orthogonal set of vectors.

Figure 2.2: Field distribution in a plane wave

In figure 2.2 the distribution of electric and magnetic fields in the harmonic wave (2.18)
along the propagation direction k̂ at a fixed time t is given. The argument

φ = k · r − ωt (2.21)

in (2.18) is the phase of the wave. The wave is called a plane wave because the phase at any
given time t is constant in the planes k · r = constant. We may also find wave solutions with
constant phase surfaces in the form of cylinders or spheres. These waves are correspondingly
called cylindrical or spherical waves. To remain at a constant phase of the wave, an observer
must move in the direction of the wave vector k with the phase speed

vph = ω/k. (2.22)

With the dispersion relation (2.19), the phase speed is equal to the speed of light c in vacuum.
The energy density and energy flux in the wave, as given by (2.15) and (2.14), oscillate in

space and time. Physically more meaningful quantities are found by forming time averages f
of the relevant quantities f(t),

f ≡ 1

T

∫ T

0
f(t) dt,
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where T represents the period of the time varying quantity. For the time averaged energy
density of the plane wave (2.18) we find

u =

(
ε0
2

E2
0 +

1

2µ0
B2

0

)
cos2 φ =

ε0
4

E2
0 +

1

4µ0
B2

0 =
ε0
2

E2
0. (2.23)

In (2.23) we made use of the conditions (2.19) and (2.20). We note that the electric and
the magnetic fields in the wave contribute equally to the time averaged energy density in the
wave.

The time averaged energy flux in the wave is

P =
1

µ0
E0 ×B0cos2 φ =

ε0
2

E2
0c k̂ = uc k̂. (2.24)

This means that the electromagnetic wave transports its average energy density u with the
speed of light c in the direction of the wave vector k, that is, the phase velocity and the energy
propagation velocity in the wave are identical. This conclusion is valid for electromagnetic
waves in vacuum. For electromagnetic waves in material media these two velocities, the latter
represented by the group velocity

vgr =
∂ω(k)

∂k
, (2.25)

generally differ in both magnitude and direction.

Quiz 2.6 : Define wavelength λ, period T and frequency ν in terms of the wave number
k and the angular frequency ω. Rewrite the dispersion relation (2.19) in terms of λ
and ν.

Quiz 2.7 : Verify that

cos2(k · r − ωt) =
ω

2π

∫ 2π/ω

0
cos2(k · r − ωt) dt =

1

2

and therefore that (2.23) and (2.24) are correct.

Quiz 2.8 : Show that
E(r, t) = c θ̂ cos(kr − ωt)/r
B(r, t) = ϕ̂ cos(kr − ωt)/r (2.26)

is an asymptotic solution of (2.1) - (2.4) for large r, provided ρ = j = 0 and the
dispersion relation (2.19) is satisfied. Here θ̂ and ϕ̂ together with r̂ are unit vectors
in a spherical coordinate system. How would you classify this solution?

[Hint: Asymptotic means that the expressions (2.26) satisfy (2.1) - (2.4) to any given
degree of accuracy for large enough values of r.]

Quiz 2.9 : Two plane waves with identical amplitude vectors, but with different wave
numbers k = k0 ±∆k, |∆k |� k0, both propagate along k̂0. Make use of identities
for trigonometric functions to show that the resulting wave field consists of a rapidly
varying harmonic part with phase function φ0 = k0 · r−ω0t multiplied with a slowly
varying envelope

cos(∆k · r −∆ω t).
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Verify that the envelope moves with the group velocity

vgr =
∂ω(k)

∂k
|k=k0

.

2.3.1 Complex field notation

The electric and magnetic fields are both real quantities. Since the Maxwell equations are
linear equations in E and B with real coefficients it is often mathematically convenient to
introduce complex notation for these fields. In this notation the wave solution (2.18) is written

E(r, t) = E0 exp(ιk · r − ιωt)
B(r, t) = B0 exp(ιk · r − ιωt), (2.27)

where ι =
√
−1 is the imaginary unit and E0, B0, k and ω have to satisfy conditions (2.19)

and (2.20). Due to the de Moivre identity

exp(ιφ) = cosφ+ ι sinφ, (2.28)

the physically relevant fields are recovered by taking the real part of the corresponding com-
plex fields.

A convenient feature of the complex notation – and in fact one of the main reasons for its
introduction – is that taking derivatives with respect to r and t of the complex exponential
function is seen to be equivalent to simple algebraic operations,

∇ → ιk and
∂

∂t
→ −ιω (2.29)

that is, any ∇-operator may be replaced with the vector ιk, any time derivative ∂/∂t with
the scalar factor −ιω. We shall make repeated use of complex fields in the following.

The electric field amplitude vector E0 in the complex notation (2.27) represents not only
the (real) amplitude E0 of the wave but also the (complex) polarization vector ε̂ of the wave,

E0 = E0ε̂. (2.30)

The polarization vector ε̂ has unit length, ε̂ · ε̂∗ = 1. We shall return to a discussion of the
physical importance of the polarization vector in section 2.5.

Useful as the complex field notation may be, it still has its limitations. The complex fields
cannot be used directly when calculating non-linear field quantities. It is necessary to find
the real (physical) part of the fields before substitution into the non-linear expression. One
notable exception to this rule, however, exists. Time averaged quadratic field quantities may
be calculated as one half the real part of the product of the two complex fields with one of
the field factors complex conjugated. Thus, the time averaged energy density and energy flux
in the electromagnetic wave are calculated in terms of the complex fields E and B as

u =
1

2
Re

(
ε0
2

E ·E∗ +
1

2µ0
B ·B∗

)
=
ε0
4
|E0 |2 +

1

4µ0
|B0 |2=

ε0
2
|E0 |2 (2.31)

and

P =
1

2
Re

(
1

µ0
E ×B∗

)
=
ε0
2
|E0 |2 c k̂. (2.32)

These results are seen to agree with our previous results (2.23) and (2.24).
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Quiz 2.10 : Write the spherical wave solution (2.26) in complex notation.

Quiz 2.11 : Prove that

fphys(t)gphys(t) =
1

2
Re
(
fcmpl(t)g

∗
cmpl(t)

)

where fcmpl(t) ∼ exp(−ιωt) and fphys(t) = Re (fcmpl(t)) and similarly for g. What is

the corresponding value for fcmpl(t)gcmpl(t)?

2.4 The Electromagnetic Spectrum

Electromagnetic waves of astrophysical interest extend from radio waves through the infrared,
visible and ultraviolet spectral ranges to X-rays and hard γ-rays. The frequencies and wave-
lengths corresponding to these classifications are illustrated in figure 2.3.

Figure 2.3: The electromagnetic spectrum

The Earths ionosphere represents a limiting factor at low frequencies. Only waves with
frequencies exceeding a minimum value depending on the maximum value of the electron
density in the ionosphere and the angle of incidence are able to penetrate. This minimum
frequency is normally in the 5 - 10 MHz range. Thus, the so-called kilo-metric radiation,
λ ∼ 1 km, originating in the Jovian magnetosphere was first found when satellites made
observations outside the ionosphere possible. Similarly, atmospheric gases are responsible for
absorption bands at different frequencies. H2O-vapor and CO2 give rise to absorption bands
in the infrared range. The ozone-layer is an effective absorbing agent in the ultraviolet.

2.5 Wave Polarization

At a given position r, the electric field vector of (2.18) oscillates along the fixed E0-direction
as a function of time. The wave is therefore said to be linearly or plane polarized. In the
complex notation (2.27) this case corresponds to a real polarization vector, for instance, ε̂ = x̂

for k̂ = ẑ. This is, however, not the most general case. If the polarization vector is chosen as
ε̂ = (x̂± ιŷ)/

√
2 for k̂ = ẑ, it is easily seen that the tip of the (physical) electric field vector

at a given position will perform a circular motion as a function of time.
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In the more general plane wave solution the (physical) electric field can be written in the
form

E(r, t) = E0(p̂ cosβ cosφ+ q̂ sinβ sinφ) (2.33)

where β is a constant, where the constant unit vectors p̂ and q̂ satisfy the requirement

p̂× q̂ = k̂,

and where the phase function φ is given by (2.21). In this case the tip of the electric field
vector at any given position and as a function of time will trace an ellipse with semi-major
and semi-minor axis, a = E0 cosβ and b = E0 sinβ oriented along p̂ and q̂. The geometry is
illustrated in figure 2.4.

The ellipticity of the ellipse is given by tanβ. With tanβ = 0 the ellipse reduces to a
line and the linearly polarized wave is recovered. For | tanβ | = 1 the ellipse reduces to a
circle. The wave is then circularly polarized. For any other value of β the wave is elliptically
polarized. For β > 0 the tip of the electric field vector as a function of time traces the ellipse
(circle) in a clockwise direction looking along the wave vector k. The wave is then said to
be right-handed elliptically (circularly) polarized. With the opposite sign for β the wave is
left-handed polarized.2

Figure 2.4: Polarization ellipse

The polarization of an electromagnetic wave is often conveniently described in terms of
the Stoke parameters. With the z-axis along the wave vector k and for an arbitrarily chosen
set of orthogonal x- and y-axis, these parameters are defined by

I = 2 (E2
x(t) + E2

y(t))

Q = 2 (E2
x(t)− E2

y(t))

U = 4Ex(t)Ey(t)

V = 4Ex(t)Ey(t− π/2ω).

(2.34)

The over-bar in (2.34) again represents time average. In the last expression a time delay
corresponding to a phase shift of π/2 is introduced in the y-component before the averaging

2Be aware that in the literature left/right handed polarization is sometimes defined as looking along −k,
that is, looking toward the infalling radiation!
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is performed. With the electric field given in terms of (2.33), the Stoke parameters reduce to

I = E2
0

Q = E2
0 cos 2β cos 2ψ

U = E2
0 cos 2β sin 2ψ

V = E2
0 sin 2β

(2.35)

and therefore also
I2 = Q2 + U2 + V 2. (2.36)

The Stoke parameters all have the same physical dimension. For an electromagnetic wave
in vacuum, I is proportional to the energy density or the energy flux associated with the
wave. We notice that the ratio of the two axis of the polarization ellipse, the ellipticity tanβ,
may be determined from the ratio of V and I,

sin 2β =
V

I

while the orientation ψ of the polarization ellipse with respect to the chosen x- and y-axis
follows from

tan 2ψ =
U

Q
.

Quiz 2.12 : Verify that (2.27) with k̂ = ẑ and ε̂ = (x̂ ± ιŷ)/
√

2 represents circularly
polarized waves.

Quiz 2.13 : From the Stoke parameters, how do you determine if the arriving wave is
left- or right-handed polarized?

Quiz 2.14 : Find the corresponding magnetic field B that will make (2.33) part of a
solution of Maxwell’s equations (2.1) - (2.4) in vacuum. What relation must exist be-
tween ω and k? What is the amplitude of the electric field in the wave? Are you able
to classify this wave as plane, cylindrical or spherical? How would you characterize
the polarization of the wave? Discuss the following statement: “The superposition
of two plane polarized plane waves with identical wave vectors k generally results in
an elliptically polarized plane wave”.

Quiz 2.15 : With the z-axis along k and for a given choice of orthogonal x- and y-axis
(see figure 2.4) show that the Ex and Ey components of the electric field (2.33) can
be written in the form

Ex = E0x cos(φ+ δx)

Ey = E0y cos(φ+ δy).

Show that the amplitudes E0x and E0y and the relative phase shift δ = δy − δx
between the two components may be expressed uniquely in terms of β and the angle
ψ as

E2
0x = E2

0(cos2 β cos2 ψ + sin2 β sin2 ψ)

E2
0y = E2

0(cos2 β sin2 ψ + sin2 β cos2 ψ)

tan δ = − tan 2β/ sin 2ψ.
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What are the expressions for the Stoke parameters I, Q, U and V in terms of E0x,
E0y and δ?

2.6 Non-Monochromatic Waves

The solutions of Maxwell’s equations studied in the previous sections were all examples of
monochromatic waves. To produce a strictly monochromatic wave, rather stringent conditions
have to be met by the wave source. In particular, the source will have to maintain a strictly
harmonic character over (ideally) infinite times. The two best known examples of sources
approximately satisfying this condition are the non-modulated electronic oscillator and the
laser. In this section we will consider three different aspects related to the non-monochromatic
character of electromagnetic radiation: finite wave coherence, partial polarization and power
spectra.

2.6.1 Wave coherence

The monochromatic wave may be characterized as having infinite phase memory, the wave
phase φ varying strictly linearly with time. Naturally occurring electromagnetic radiation
have finite phase memory. After a certain coherence time τ , the wave tends to forget its
previous phase. As a simple example we may visualize the wave as consisting of a superposition
of finite time segments, each of duration τ during which the electric and magnetic fields
vary according to (2.18), but where the phase experiences an arbitrary jump between each
successive segment. This is illustrated in figure 2.5. The length of each segment is the
coherence length ` = cτ .

Figure 2.5: Wave with finite coherence time

Any harmonically oscillating time segment,

E(t) =





cos(ω0t) −τ2 ≤ t <
τ
2

0 otherwise,

(2.37)

may be represented as a superposition of harmonic oscillations of different frequencies and of
infinite extent.



2.6. NON-MONOCHROMATIC WAVES 29

In fact, Fourier transform theory tells that any square integrable function f(t), that is a
function satisfying

∫∞
∞ |f(t) |2 dt <∞, may be written in the form

f(t) =

∫ ∞

−∞
f̃(ω) exp(−ιωt) dω (2.38)

where the complex amplitude f̃(ω) is given by

f̃(ω) =
1

2π

∫ ∞

−∞
f(t) exp(ιωt) dt. (2.39)

The two relations (2.38) and (2.39) form a Fourier transform pair. Fourier transforms may
also be generalized to include non square integrable functions. A summary of some important
properties of the Fourier transform is given in table 2.1. For reference purposes we also note
that if f(t) is any periodic function, f(t + T ) = f(t), then it may be expanded in a Fourier
series, consisting of harmonically varying terms in the fundamental angular frequency 2π/T
and its harmonics. A summary of Fourier series is given in table 2.2.

After this intermezzo on mathematical methods let us return to our discussion on wave
coherence. Substituting the expression (2.37) for E(t) with

cosω0t =
1

2
(exp(ιω0t) + exp(−ιω0t))

into (2.39) and performing the integral we find

Ẽ(ω) =
τ

4π

(
sinc (ω + ω0)

τ

2
+ sinc (ω − ω0)

τ

2

)
(2.40)

where the sinc-function is defined as

sincx ≡ sinx

x
. (2.41)

Figure 2.6: Amplitude distribution for a finite harmonic segment

The result (2.40) is plotted in figure 2.6 for a case where ω0τ � 1, that is, when there
is negligible “cross-talk” between the two sinc-functions. The two wings of the plot have a
typical half-widths

∆ω =
2π

τ
. (2.42)
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Let f(t) be a square integrable function,
∫∞
∞ |f(t) |2 dt <∞.

The Fourier transform and its inverse are defined as

f̃(ω) = F [f(t)] ≡ 1

2π

∫ ∞

−∞
f(t) exp(ιωt) dt (2.43)

f(t) = F−1[f̃(ω)] =

∫ ∞

−∞
f̃(ω) exp(−ιωt) dω. (2.44)

If f(t) is real, then f̃(−ω) = f̃∗(ω).

The following relations hold

F [
d

dt
f(t)] = −ιωf̃(ω) (2.45)

F [f(at+ b)] =
1

|a | exp(−ιω
a
b)f̃
(ω
a

)
. (2.46)

Some generalized Fourier transform pairs are3

F [1] = δ(ω)
F [sign(t)] = −(ιπω)−1.

(2.47)

Parseval’s theorem: If f̃ = F [f ] and g̃ = F [g], then

∫ ∞

−∞
f(t)g(t) dt = 2π

∫ ∞

−∞
f̃(ω)g̃∗(ω) dω. (2.48)

The Dirac δ-function satisfies δ(ω) = 0 for ω 6= 0 while
R ∞

−∞
δ(ω) dω = 1.

Table 2.1: The Fourier transform

According to (2.38) the finite harmonic segment may be considered made up from a superpo-
sition of (infinite) harmonic oscillations with frequencies within an interval with half-width
∆ω varying inversely with the duration τ .

Formula (2.40) only takes into account the contribution to the complex amplitude Ẽ(ω)
from the time segment −τ/2 ≤ t < τ/2. Adjacent time segments will give similar contribu-
tions. In fact, if a constant phase δ is added to the argument of the cos-function in (2.37),
the two terms in (2.40) get additional complex conjugate phase factors exp(±ιδ) and such
that Ẽ(−ω) = Ẽ∗(ω) in accordance with table 2.1. The contribution from the different time
segments will contain the identical sinc functions multiplied with random phase factors of the
form exp(±ιδ). The frequency dependence of the amplitude function Ẽ(ω) will, therefore, be
identical for a single time segment and a sequence of such segments.

We may conclude that any wave with finite coherence time τ can be considered as a non-
monochromatic wave, with a characteristic frequency half-width ∆ω given by (2.42). For a
simple measurement of the coherence time τ of a given radiation field, a two-slit interference
experiment may be used (see quiz 2.17). Maximum intensity interference fringes are produced
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Let f(t) be a periodic function, f(t+ T ) = f(t).
The function f(t) may be expanded in the trigonometric series

f(t) =

∞∑

n=−∞

f̃n exp(−ι2πn
T

t) (2.49)

with

f̃n =
1

T

∫ T/2

−T/2
f(t) exp(ι

2πn

T
t) dt (2.50)

If f(t) is a real function, then f̃−n = f̃∗n.

For real periodic functions f(t) and g(t), both of period T , the
analog of Parseval’s theorem is

1

T

∫ T/2

−T/2
f(t)g(t) dt =

∞∑

n=−∞

f̃ng̃
∗
n

=

∫
dω

∞∑

n=0

δn Re(f̃ng̃
∗
n) δ(ω −

2πn

T
)

(2.51)

where δ0 = 1 and δn = 2 for n > 0.

Table 2.2: The Fourier series

on a distant screen at such locations where the phase of the wave components emerging
through the two splits differ by an integral number of 2π’s. A count of the number of visible
fringes is thus a direct measure of the time that the radiation field “remembers” its own
phase, that is, the coherence time τ of the radiation field.

Quiz 2.16 : What is the width ∆λ of the wavelength range corresponding to (2.42)?

Quiz 2.17 : Light from a distant source with finite coherence time τ falls perpendicularly
on a screen containing two parallel slits of width b and a distance d apart. The light
is subsequently focused by a lens on another screen. Derive the relation between the
number of visible interference fringes n, the coherence time τ , b and d.

Quiz 2.18 : For a Gaussian shaped pulse of width ∆t = τ , that is,

f(t) = exp

(
− t2

2τ2

)
,

show that the corresponding width of the amplitude spectrum f̃(ω) is given by ∆ω =
(∆t)−1.
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2.6.2 Partial polarization

Apart from the finite phase memory discussed above, the polarization of the wave may change
from one segment to the next. This phenomenon is conveniently described in terms of the
Stoke parameters (2.35). The time averaging in (2.35) will now have to be extended over many
coherence times over which the parameters β and ψ take different values for adjacent segments.
For simplicity we assume E0 to remain constant. We indicate this extended averaging by the
notation

I = E2
0

Q = E2
0〈 cos 2β cos 2ψ 〉

U = E2
0〈 cos 2β sin 2ψ 〉

V = E2
0〈 sin 2β 〉,

(2.52)

where 〈 · 〉 =
∫ Nτ
0 ·dt/Nτ for N large. Making use of the Schwartz inequality for integrals,

(∫ b

a
f(t)g(t) dt

)2

≤
∫ b

a
f2(t) dt

∫ b

a
g2(t) dt,

it will now be apparent that

U2 = E4
0〈 cos 2β sin 2ψ 〉2 ≤ E4

0〈 cos2 2β 〉〈 sin2 2ψ 〉,

and therefore that
I2 ≥ Q2 + U2 + V 2. (2.53)

The degree of polarization,

p ≡
√
Q2 + U2 + V 2

I
, (2.54)

describes the degree to which the wave remembers its own polarization. With p = 1 the wave
is completely polarized, with p = 0 the wave has random polarization. In the first case the
polarization is constant between successive segments. In the second case the wave chooses its
polarization in each segment completely at random.

Two waves with finite coherence times, propagating in the same direction with the “same”
frequency and with electric fields E(1) and E(2) are said to be incoherent if the time averaged
product of any two components of the two fields vanishes,

〈E(1)
x (t)E(2)

y (t) 〉 = 0, · · · .

The Stoke parameters for incoherent waves are additive. That is, if we define the Stoke
parameters for the two waves (I(1), Q(1), U (1), V (1)) and (I(2), Q(2), U (2), V (2)), then the cor-
responding parameters for the resultant wave is

(I,Q, U, V ) = (I(1), Q(1), U (1), V (1)) + (I(2), Q(2), U (2), V (2)). (2.55)

This means that any partially polarized wave, 0 < p < 1, may be considered as a superposition
of two incoherent waves, one completely polarized and one with random polarization,

I(1) =
√
Q2 + U2 + V 2, Q(1) = Q, U (1) = U, V (1) = V

and
I(2) = I − I(1), Q(2) = U (2) = V (2) = 0.



2.7. WAVE-PARTICLE DUALISM 33

The degree of polarization of the radiation arriving from the universe is important for the
interpretation of the physical conditions responsible for the emitted wave. Our knowledge
of stellar, interstellar and galactic magnetic fields and conditions in interstellar dust clouds
depends to a large extent on this type of information.

2.6.3 Power spectra

From the Parseval theorem (2.48) given in table 2.1, the average value of the product of two
real functions f(t) and g(t) over the time interval (−T/2, T/2) can be expressed as

f(t)g(t) =
1

T

∫ T/2

−T/2
f(t)g(t) dt =

2π

T

∫ ∞

−∞
f̃T (ω)g̃∗T (ω) dω

= Re
4π

T

∫ ∞

0
f̃T (ω)g̃∗T (ω) dω (2.56)

where f̃T and g̃T are the Fourier transforms of f and g over the time interval of length T .
The theorem (2.56) may be used to express the average value of the power density carried
by an electromagnetic wave, in terms of the Fourier transforms of the electric and magnetic
fields in the wave, ẼT (r, ω) and B̃T (r, ω). Thus, the average value of the Poynting vector
(2.14) in the direction n̂ at position r may be written

k̂ · P (r) =

∫ ∞

0
P(ω) dω, (2.57)

where the integrand

P(ω) = Re
4π

T

1

µ0
k̂ ·
(
ẼT (r, ω)× B̃

∗
T (r, ω)

)
(2.58)

is the spectral power density (the power spectrum) of the radiation field.
According to (2.57)-(2.58), each frequency component in the radiation field contribute to

the total power density. The contribution P(ω) dω to the power density from an infinitesimal
frequency interval (ω, ω + dω) only depends on the amplitudes of the electric and magnetic
fields in this frequency interval. We note that with the spectral power density in the form
(2.58) only ”positive” frequencies contribute to the total power density.

Quiz 2.19 : For a plane wave with an electric field given as a series of harmonic segments
as discussed in section 2.6.1, what is the corresponding spectral power density P?
For simplicity, choose a time interval for the Fourier transform of length T = Nτ
where N is an integer number. What is the corresponding result if the plane wave
was one harmonic segment of the same total length T?

2.7 Wave-Particle Dualism

Above, the classical description of electromagnetic waves has been given. The classical de-
scription has since its introduction been subject to extensive experimental verification. The
explanation of the photo-electric effect by Einstein (1905), however, indicated that in certain
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situations the classical wave description had to be supplemented by a “particle” description.
The photo-electric effect refers to the ability of electromagnetic radiation to knock electrons
loose for instance from a metal surface. The maximum kinetic energy of the emitted electrons
turns out to be independent of the intensity of the radiation but increases with increasing
frequency. In the classical description the amount of energy carried by the wave can be varied
continuously whereas the photo-electric effect required this energy to come in the form of
energy quanta determined by the frequency ν of the radiation,

E = hν, (2.59)

where h = 6.6256 · 10−34 Js is the Planck constant. The energy quantum may be considered
as a mass-less particle (photon) moving with the speed of light c in vacuum and carrying a
momentum

p =
hν

c
. (2.60)

The energy and momentum exchange in any interaction between electromagnetic waves and
matter will be constrained by these minimum quanta.

The wave-particle dualism for electromagnetic waves is only one example of the more
general wave-particle dualism principle in physics. In the next chapter we shall see that the
electron, when bounded in an atom, will behave as a wave phenomenon.
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Chapter 3

Electromagnetic Radiation

In the presence of material media, for example a neutral or an ionized gas, an electromagnetic
wave will be modified. Wave energy may be generated or lost in emission or absorption
processes, and the wave may suffer diffraction or refraction effects. Emission and absorption
processes are characterized as bound-bound, bound-free or free-free transitions according to if
the electrons involved in the process before and after the transition are in bound or free states.
A discussion of these basic processes involving bound states will require quantum mechanics
and will be the subject of the following chapters. In the present chapter we discuss free-free
transitions for which classical electromagnetic theory will suffice.

3.1 Electromagnetic Potentials

In chapter 2 some general properties of the Maxwell equations (2.1)-(2.4) were discussed.
As we can see directly from these equations, the sources of electric and magnetic fields are
electric current and charge densities (free current and charge densities, polarization current
and charge densities or magnetization current density). To find the fields generated from
an arbitrary distribution of currents and charges we therefore need to establish the general
solution of the inhomogeneous Maxwell equations. This will therefore be our first task. To
this end we first introduce the electromagnetic scalar and vector potentials Φ(r, t) and A(r, t).

Equation (2.3) is trivially satisfied if the magnetic field B is derived as the curl of a vector
potential A,

B = ∇×A (3.1)

Substituting this expression into (2.2) leads to ∇ × (E + ∂A/∂t) = 0. Thus also equation
(2.2) will be automatically satisfied if the electric field E is derived from a scalar potential Φ
as

E = −∇Φ− ∂A

∂t
. (3.2)

It remains to find solutions for Φ and A for arbitrary charge and current densities ρ and j

such that also (2.1) and (2.4) are satisfied. Substitution of (3.1) and (3.2) into these equations
leads to (

∇2 − 1

c2
∂2

∂t2

)
Φ +

∂

∂t

(
∇ ·A +

1

c2
∂Φ

∂t

)
= − 1

ε0
ρ (3.3)

(
∇2 − 1

c2
∂2

∂t2

)
A−∇

(
∇ ·A +

1

c2
∂Φ

∂t

)
= −µ0j. (3.4)

37
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In the first of these equation we have taken the liberty to add and subtract identical terms.
To produce a given set of electric and magnetic fields, the electromagnetic potentials Φ

and A may always be chosen such that

∇ ·A +
1

c2
∂Φ

∂t
= 0. (3.5)

In fact, for given electromagnetic fields E and B an infinite set of different potentials Φ and
A may be found. If Φ′ and A′ is one “proper” set of potentials, that is, potentials that leads
to the correct fields E and B, then

Φ = Φ′ − ∂f

∂t
, A = A′ +∇f,

where f is an arbitrary function of r and t, is another proper set of potentials. An f(r, t)
may always be found such that Φ and A satisfy (3.5). Electromagnetic potentials Φ and A

chosen such as to satisfy (3.5) are said to satisfy the Lorentz gauge. Under Lorentz gauge the
electromagnetic potentials satisfy the inhomogeneous wave equations

(
∇2 − 1

c2
∂2

∂t2

)
Φ = − 1

ε0
ρ (3.6)

(
∇2 − 1

c2
∂2

∂t2

)
A = −µ0j. (3.7)

A complete solution of (??)-(??) consists of a sum of a particular integral of the inho-
mogeneous equations and a general solution of the corresponding homogeneous equations. A
physically acceptable particular integral is

Φ(r, t) =
1

4πε0

∫
d3r′ ρ(r

′, t′)

|r − r′ | (3.8)

A(r, t) =
µ0

4π

∫
d3r′ j(r′, t′)

|r − r′ | , (3.9)

where the “retarded” time t′ is defined by

t′ = t− 1

c
|r − r′ | . (3.10)

The potentials (3.8) and (3.9), which are called the retarded potentials, satisfy the causality
principle, the potentials at the field point r at time t reflects the charge and current densities
at the source point r′ at an earlier time t′ determined such that information of these source
densities propagating at the speed of light may just reach the field point r at the given time
t. The geometry is illustrated in figure 3.1.

To prove that the retarded potentials, as given by (3.8) and (3.9), are proper solutions of
the Maxwell equations it must be demonstrated that both the Lorentz condition (3.5) and
the inhomogeneous wave equations (3.6) and (3.7) are satisfied. This is easily done through
simple substitution. For the Lorentz condition we thus find

∇ ·A +
1

c2
∂Φ

∂t
=
µ0

4π

∫
d3r′

{
−∇′ 1

|r − r′ | · j(r′, t′) +

(
∇t′ · ∂j

∂t′
+
∂ρ

∂t′

)
1

|r − r′ |

}

=
µ0

4π

∫
d3r′

{
−∇′ · j(r′, t′)

|r − r′ | +
(
∇′
t′ ·j(r′, t′) +∇′t′ · ∂j

∂t′
+∇t′ · ∂j

∂t′
+
∂ρ

∂t′

)
1

|r − r′ |

}
.
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Figure 3.1: Causally connected source and field points

The symbol ∇′
t′ here means derivation with respect to r′ while keeping t′ constant. The first

term on the right hand side vanishes due to the Gauss integral theorem for spatially limited
current densities. The third and fourth terms mutually cancel, while the sum of the second
and fifth terms vanishes due to the conservation theorem for charge and current densities
(2.12). Thus, the Lorentz condition (3.5) is indeed satisfied.

For the wave equation (3.6) we find

(
∇2 − 1

c2
∂2

∂t2

)
Φ =

1

4πε0

∫
d3r′

{
ρ∇2 1

|r − r′ | + 2∇ 1

|r − r′ | · ∇t
′ ∂ρ

∂t′

+

(
∇ · (∇t′ ∂ρ

∂t′
)− 1

c2
∂2ρ

∂t′2

)
1

|r − r′ |

}
.

Noting that

∇2 1

|r − r′ | = −4πδ(r − r′),

where δ(r) is the Dirac δ–function (see section A.8), the first term on the right hand side
provides for the desired right hand value. The remaining terms on the right hand side cancel
identically. This is seen by making use of the identity

∇ · (∇t′ ∂ρ
∂t′

) =
1

c

∂ρ

∂t′
∇ · r − r′

|r − r′ | +
1

c2
∂2ρ

∂t′2
.

and the results of section A.4. This result automatically implies that also each Cartesian
component of the vector wave equation (3.7) are satisfied. Thus, we have shown that the
retarded potentials (3.8) and (3.9), with the electromagnetic fields defined by (3.1) and (3.2),
is the proper solution of the Maxwell equations for arbitrary sources ρ and j.

Quiz 3.1 : Verify that a Lorenz gauge may always be found.

Quiz 3.2 : Verify by substitution that the vector potential A as given by (3.9) satisfies
the wave equation (3.7).

Quiz 3.3 : Convince yourself that (3.9)–(3.8) with t′ chosen as the “advanced” time
t′ = t+ | r − r′ | /c instead of (3.10) is also a formal solution of (3.6)–(3.7). Why
must this solution be discarded on physical grounds?
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3.2 Radiation from Point Charges

A point charge q moving along a trajectory r′ = Rq(t
′) with velocity cβ(t′) = Ṙq(t

′) represents
charge and current densities

ρ(r′, t′) = qδ(r′ −Rq(t
′)) (3.11)

j(r′, t′) = qcβ(t′)δ(r′ −Rq(t
′)). (3.12)

The corresponding electromagnetic potentials under Lorentz gauge are found by substituting
these source densities in (3.8) and (3.9) and performing the necessary volume integrals. The
integrals get non-vanishing contributions only from points r′ such that the argument of the
δ-function vanishes,

r′′(r′) ≡ r′ −Rq(t
′) = 0, (3.13)

where t′ is the retarded time as given by (3.10).

The volume integrals in (3.8) and (3.9) are now evaluated by making use of (A.59),

∫
f(r′)δ(r′′(r′)) d3r′ =

∫
f(r′)

J(r′)
δ(r′′) d3r′′ =

∑

i

f(r′
i)

J(r′
i)

∣∣∣∣∣
r′′(r′

i)=0

(3.14)

where J is the Jacobian (A.60) corresponding to the change of integration variables from r′

to r′′, and the sum on the right hand side of (3.14) indicates that contributions to the integral
result from each point r′ for which r′′ = 0. Because the speed of any charge is always less
than the speed of light, one and only one such solution of equation (3.10) exists for any given
r and t. Some algebra will show that in our case

J =
1

R
(R−R · β) (3.15)

where R ≡ r −Rq(t
′) and R = |R |. The result of the integration is the Lienard-Wiechert

potentials

Φ(r, t) =
q

4πε0

1

R−R · β

∣∣∣∣
t′=t− 1

c
R(t′)

(3.16)

A(r, t) =
q

4πε0c

β

R−R · β

∣∣∣∣
t′=t− 1

c
R(t′)

. (3.17)

The electric and magnetic fields generated by the point charge can now be found by
differentiating the electromagnetic potentials with respect to r and t according to (3.1) and
(3.2). To this end we need to remember that t′ is a function of both r and t through the
relation

t′ = t− 1

c
R(t′). (3.18)

Thus

∇ = ∇|t′ +∇t′ ∂
∂t′

and
∂

∂t
=
∂t′

∂t

∂

∂t′
(3.19)
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where ∇|t′ denotes that t′ is to be considered constant under the differentiation. The expres-
sions for ∇t′ and ∂t′/∂t are found with the help of (3.18),

(
1 +

1

c

∂R

∂t′

)
∂t′

∂t
= 1 (3.20)

(
1 +

1

c

∂R

∂t′

)
∇t′ + 1

c
∇|t′R = 0. (3.21)

Since
∂R

∂t′
=

R

R
· ∂R

∂t′
= −cβ · R

R

we find

∇ = ∇|t′ −
1

c

R

R− β ·R
∂

∂t′
and

∂

∂t
=

R

R− β ·R
∂

∂t′

and therefore

E(r, t) = −∇|t′Φ +
1

c

R

R− β ·R
∂Φ

∂t′
− R

R− β ·R
∂A

∂t′
(3.22)

B(r, t) = ∇|t′ ×A− 1

c

R

R− β ·R ×
∂A

∂t′
. (3.23)

The first term on the right hand side of (3.22) and (3.23) fall off as 1/R2 at large distances
from the point charge. The other terms give contributions that fall off as 1/R and will thus
dominate at large distances. These dominating parts of the electric and magnetic fields are
called the radiation fields. We see that the radiation fields satisfy the relation

B(r, t) =
1

c
n̂×E(r, t) (3.24)

where n̂ = R/R is taken at the retarded time. If we also note that

∂

∂t′
1

R− β ·R =
β̇ ·R

(R− β ·R)2
+O(

1

R2
),

we find the resulting radiation electric field resulting from the accelerated point charge as

E(r, t) =
q

4πε0c

(
β̇ ·R R

(R− β ·R)3
− R β̇

(R− β ·R)2
− β̇ ·R β

(R− β ·R)3

)

=
q

4πε0c

n̂× ((n̂− β)× β̇)

(1− n̂ · β)3R

∣∣∣∣∣
t′=t−R(t′)/c

. (3.25)

Quiz 3.4 : Show that the Jacobian associated with the coordinate change from r′ to r′′

as defined by (3.13) is given by (3.15).

Quiz 3.5 : Verify (3.24) and (3.25) starting from (3.22) and (3.23).



42 CHAPTER 3. ELECTROMAGNETIC RADIATION

3.3 Radiated Energy and Power Spectrum

The radiation fields are associated with an instantaneous energy flux given by the Poynting
vector

P (r, t) =
1

µ0
E(r, t)×B(r, t) = ε0cn̂E

2(r, t) (3.26)

The energy radiated through a fixed area element r2dΩ in direction r̂ per unit time t is given
by P (r, t) · r̂r2dΩ. If the origin is chosen at the particles instantaneous position at time t′,
then r̂ = n̂, R = r and the radiated energy per solid angle and unit time is

dP (t)

dΩ
= n̂ · PR2 =

q2

16π2ε0c

(n̂× ((n̂− β)× β̇))2

(1− n̂ · β)6

∣∣∣∣∣
t′

. (3.27)

To find the corresponding radiated energy per unit eigentime t′ of the particle, we must
multiply this expression with dt/dt′ = 1− n̂ · β, that is,

dP (t′)

dΩ
= (1− n̂ · β)

dP (t)

dΩ
=

q2

16π2ε0c

(n̂× ((n̂− β)× β̇))2

(1− n̂ · β)5

∣∣∣∣∣
t′

. (3.28)

For the special case of a non-relativistic charged particle, β � 1, the last result reduces to

dP (t′)

dΩ
=

q2

16π2ε0c

(
n̂× (n̂× β̇)

)2
∣∣∣∣
t′
. (3.29)

The total radiated energy per unit time from the accelerated point charge is found by
integrating (3.28) over all directions. In the non-relativistic limit the result is the familiar
Larmor formula

P (t′) =
q2

16π2ε0c
β̇

2
∫

sin2 θ dcos θ dφ =
q2β̇

2

6πε0c
. (3.30)

In the general case the corresponding result can be shown to be

P (t′) =
q2

6πε0c

β̇
2 − (β × β̇)2

(1− β2)3
. (3.31)

In many applications we are interested not only in the total energy radiated by the ac-
celerated charged particle per unit time, but also the corresponding power spectrum, that
is, the distribution of the radiated energy as a function of frequency. This can be found by
making use of the Parseval theorem (2.48), as outlined in table 2.1. When applied to (3.27)
the result is ∫ ∞

−∞

dP (t)

dΩ
dt = 2πε0c

∫ ∞

−∞

∣∣∣ ˜[ER](ω)
∣∣∣
2

dω =

∫ ∞

0
I(ω) dω (3.32)

where
˜[ER](ω) =

1

2π

∫ ∞

−∞
E(t)R(t′) exp(ιωt) dt. (3.33)

I(ω) = 4πε0c
∣∣∣ ˜[ER](ω)

∣∣∣
2

(3.34)
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Figure 3.2: The far field approximation

represents the energy radiated per unit solid angle and unit angular frequency interval. In
(3.34) we made use of the fact that since E(t) and R(t′) are real then ˜[ER](−ω) = ˜[ER]

∗
(ω).

We shall refer to I(ω) as the frequency spectrum of the radiation. Notice that we in our
notation suppressed the possible directional dependence of the frequency spectrum.

The expression for the frequency spectrum may be simplified by changing integration
variable from t to t′, dt = (1− n̂ · β) dt′, and making use of the far field approximation, that
is, we consider n̂ to be constant and approximate

R(t′) = |r −Rq(t
′) | ≈ r − n̂ ·Rq(t

′)

and therefore

t = t′ +
1

c
R(t′) ≈ r

c
+ t′ − 1

c
n̂ ·Rq(t

′).

The far field approximation, illustrated in figure 3.2, amounts to placing the coordinate origin
in the particle neighborhood and assuming the relevant orbit excursions to be small compared
to the distance to the observer.

When substituting these approximations into (3.34) the result is

I(ω) =
q2

16π3ε0c

∣∣∣∣∣

∫ ∞

−∞

n̂× ((n̂− β)× β̇)

(1− n̂ · β)2
exp ιω(t′ − 1

c
n̂ ·Rq(t

′)) dt′

∣∣∣∣∣

2

. (3.35)

An alternative expression results from an integration by parts, making use of the identity
(3.37),

I(ω) =
q2ω2

16π3ε0c

∣∣∣∣
∫ ∞

−∞
n̂× (n̂× β) exp ιω(t′ − 1

c
n̂ ·Rq(t

′)) dt′
∣∣∣∣
2

. (3.36)

The polarization of the emitted radiation is specified by the direction of the vector integrals
in (3.35) or (3.36). The intensity of radiation in a given polarization can thus be obtained
by taking the scalar product of the desired unit polarization vector with the vector integrals
before forming their absolute squares.

Quiz 3.6 : The result (3.29) is sometimes referred to as the dipole radiation approxima-
tion. Can you explain why?

Quiz 3.7 : Compare the quantities P(ω) of (2.57) and I(ω) of (3.32). What are their
similarities and differences?
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Quiz 3.8 : Verify the identity

n̂× ((n̂− β(t))× ˙β(t))

(1− n̂ · β(t))2
=

d

dt

(
n̂× (n̂× β(t))

1− n̂ · β(t)

)
. (3.37)

Quiz 3.9 : The equation of motion for a non-relativistic electron spiraling in a constant
magnetic field B0, mv̇ = qv × B0, implies that the kinetic energy of the electron
remains constant, 1

2mv2 = constant. Can you reconcile this result with Larmor’s
formula (3.30)? What fraction of the (perpendicular) kinetic energy of the electron
will be radiated away per gyro-period in a magnetic field of 1T?

3.4 Applications

With the results of section 3.3 we now have at our disposal the tools needed to discuss a
suite of radiation problems that can be treated within classical physics. We therefore next
turn to some of the most important applications. Common to these applications is that free,
accelerated electrons are the source of the emitted radiation.1 What will be different are the
mechanisms responsible for the acceleration of the electron. We shall consider three important
examples.

a) In a binary collision between an electron and an atom or an ion, the electron will suffer
acceleration. The resulting electromagnetic radiation is referred to as Bremsstrahlung. We
shall consider the case of a collision between a non-relativistic electron and an ion.

b) Magnetic fields are frequently encountered in astrophysics. An electron moving in such
a field will follow a spiraling path. The resulting radiation is denoted cyclotron radiation. We
consider the general case of a relativistic electron.2

c) Finally, the electric field of a propagating electromagnetic wave will set free electrons
that it encounters into oscillations. The resulting radiation will act to scattered the energy
in the original wave into other directions. The process is referred to as Thompson scattering.

Also other situations can be envisioned where free electrons are accelerated and thus give
rise to electromagnetic radiation. Thus the collision between a photon and an electron give
rise to an effect known as the Compton effect. Even the acceleration of the electron in a
nuclear beta-decay will result in the emission of radiation. The latter two examples will
require a quantum mechanical treatment.

3.4.1 Bremsstrahlung

Let us first conclude that in the collision between two non-relativistic charged particles with
identical charge to mass ratio, no radiation is emitted. For this case we substitute the total
electric current from the two particles in (3.29). This will only require qβ̇ to be replaced with

∑

i

qiβ̇i =
qi
mi

d

dt

∑

i

miβi.

From momentum conservation in the collision this expression vanishes and we have proved
our statement. For relativistic electrons the result will be different. In fact, when the kinetic

1Due to their much large mass and therefore much smaller accelerations, ions usually contribute insignifi-
cantly to the radiation

2For relativistic electrons this radiation is sometimes referred to as synchrotron radiation
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energy of the electrons are of the order of the rest mass energy m0c
2, higher order quadrupole

radiation from electron-electron encounters are comparable to that of electron-ion collisions.

Figure 3.3: Hyperbolic encounter between electron and positive ion

We therefore next consider the encounter of the non-relativistic electron with a much
heavier ion. To lowest order we may consider the ion to be a fixed force center during the
collision. If the radiation energy loss suffered by the electron during the encounter is small
compared with its kinetic energy, the electron will in the inverse square force field of the ion,
and in accordance with the discussion of the two-body problem in chapter 2 (see (1.16)),
follow a hyperbolic orbit as illustrated in figure 3.3,

r(ψ) =
D

1 + cosψ/ sin χ
2

, (3.38)

where ψ is the angle between r and the pericentrum direction P̂ . We note that r(ψ) → ∞
for ψ → ±(χ+ π)/2.

The constant D and the total deflection χ suffered by the electron during the encounter
are related to the electron speed v and the impact parameter b. The relationship is easily
found by noting that

b = lim
ψ→(χ+π)/2

r(ψ) sin(
π

2
+
χ

2
− ψ) = D tan

χ

2

and making use of the angular momentum and energy conservation laws

bv = r0v0

1

2
mv2 =

1

2
mv2

0 −
Ze2

4πε0r0
.

Here r0 = r(ψ = 0) and v0 are the pericentrum distance and the corresponding orbital speed.
The result is

tan
χ

2
=
b0
b

with b0 =
Ze2

4πε0mv2
. (3.39)

We note that b0 is the impact parameter that leads to a 90◦ deflection.
Let us now return to our radiation problem. For the non-relativistic electron the term

n̂ ·Rq(t
′)/c in the exponent of (3.35) is of the order βt′ during the encounter and may thus
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be neglected together with the other terms containing β. As an order of magnitude estimate
of the effective duration τ of the encounter we may write τ = b/v. In the high-frequency
end of the spectrum (ωτ � 1) the exponential in (3.35) oscillates rapidly compared with the
variation in β̇. The time integral and thus also the radiation spectrum will therefore take
small values. In the low frequency end of the spectrum (ωτ � 1), however, the exponential
in (3.35) is approximately constant and we find

I(ω) ≈ e2

16π2ε0c
|∆β |2 sin2 θ, ωτ � 1

where ∆β is the vectorial change in β during the encounter and θ is the angle between n̂ and
∆β. As seen from figure 3.3 and (3.39)

|∆β |2= 4β2 sin2 χ

2
=

4v2

c2
b20

b20 + b2
.

The limiting forms of the Bremsstrahlung spectrum will therefore be

I(ω) ≈





e2v2

4π2ε0c3
b20

b20 + b2
sin2 θ ωτ � 1

0 ωτ � 1
(3.40)

We expect the change-over between the low- and high-frequency limits to take place at near
the frequency ω = v/b.

For a quantitative discussion of the Bremsstrahlung spectrum we substitute v̇ = −Γr/r3

with Γ = Ze2/4πε0m in the non-relativistic limiting form of (3.35),

I(ω) =
e2

16π2ε0c3

∣∣∣∣ n̂×
(

n̂×
∫ ∞

−∞
v̇ exp(ιωt) dt

)∣∣∣∣
2

.

Expressing the hyperbolic orbit in terms of the true anomaly F (see section 1.2.2),

r = b0

(
P̂(η − coshF ) +

√
η2 − 1Q̂ sinhF

)

t =
b0
v

(η sinhF − F ),

where the eccentricity of the orbit, here denoted by η, is given by η =
√

1 + b2/b20, the result
is

Iencounter(ω) =
e2v2

6π2ε0c3
b20

b2 + b20

(
A2

P +A2
Q

)
(3.41)

with

AP = η

∫ ∞

0

η − coshF

(η coshF − 1)2
cosωt dF (3.42)

AQ = η
√
η2 − 1

∫ ∞

0

sinhF

(η coshF − 1)2
sinωt dF. (3.43)

In (3.41) an average over different orientations of the orbital plane have been taken. We
have also introduced the subscript “encounter” as a reminder that the result represents the
radiation emitted during one encounter between an electron and an ion for a given impact
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parameter b. To find the radiation emitted per electron per unit time in a plasma with Ni

ions per unit volume, we have to multiply with Niv 2πbdb and integrate over b,

Ielectron(ω) = Ni
e2v2

3πε0c3
b20v

∫ ∞

0
db

b

b2 + b20

(
A2

P +A2
Q

)
. (3.44)

In figure 3.4a the integrand in (3.44) have been plotted as a function of ωb0/v for different
ratios ρ = b/b0. In figure 3.4b the corresponding integral, again as a function of ωb0/v,
is given. We see that the higher radiation frequencies are produced by close encounters,
b < b0. This is a natural consequence of the fact that close encounters have the shorter
effective collision time. On the other hand many distant encounters and therefore the smaller
frequencies dominate in the total radiation spectrum.

There are limitations to the validity of this result both at high and low frequencies. At
the high frequency end quantum mechanical corrections come into play when the impact
parameter b approaches the de Broglie wavelength of the electron λdB = h/mv. At the low
frequency end the effective Debye shielding of the inverse force field of the ion by surrounding
electrons must be taken into account.

Figure 3.4: Bremsstrahlung from electron-ion encounters: a) relative shape of the spectrum
from a single encounter for different impact parameter ratios ρ = b/b0 (each spectrum multi-
plied with the same ratio b/b0), b) relative shape of the total radiation spectrum per electron
per unit time in a plasma.

An important general observation is that the orbital planes for individual encounters in a
plasma will be oriented “at random”. When adding up the contributions from all encounters
we thus expect the total emitted radiation from the plasma to be unpolarized. From this
perspective the factor sin2 θ in (3.40) can be replaced with its average value 2/3. With
respect to polarization, Bremsstrahlung differs significantly from cyclotron radiation to be
discussed in the next subsection.
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3.4.2 Cyclotron Radiation

The Lorentz force −ev ×B0 acting on an electron moving in a magnetic field B0 will give
rise to a spiraling orbit for the electron. We will refer to the ensuing emitted radiation as
cyclotron radiation irrespective of the electron energy. Due to the common occurrence of
magnetic fields in cosmos, cyclotron radiation constitutes a common contributor to the total
radiation observed.

Figure 3.5: Radiation diagram for a spiraling point particle

In figure 3.5 the radiation diagram is given for an electron spiraling in a constant magnetic
field B0. The parallel velocity is set to zero. The spiraling electron is indicated in the lower
part of the figure. The plot gives the distribution of the radiated energy per unit solid angle
according to (3.28), emitted during one gyro period T = 2π/ωB. The radiated energy is
measured in units of the relativistic kinetic energy K = m0c

2(γ − 1). Here γ = 1/
√

1− β2,
m0 is the rest mass of the electron and ωB = eB0/γm0. Results are given as a function of the
polar angle θ relative to the direction of the instantaneous velocity β and for different values
of β for a magnetic field strength B0 = 1 T. Full curves correspond to the radiation diagram
in the (β, β̇) plane, dashed curves correspond to the radiation diagram in the (β,β × β̇)
plane. Note the logarithmic scale. The polar diagram with the chosen normalization scales
linearly the the strength of the magnetic field B0. If the magnetic field is reduced from 1T
to .1T, the scale of the radiation diagram should thus also be reduced with a factor 10.

In the non-relativistic limit the radiation pattern is dipolar with the maximum radiated
power in the directions perpendicular to β̇. With increasing β the radiated power increases
and the radiation diagram tilts in the velocity forward direction. For a highly relativistic
electron the radiation takes the shape of a pencil beam of angular width θrms varying inversely
with γ, θrms ≈ .27/γ.

To find the corresponding energy spectrum the actual charged particle trajectory need to
be substituted in (3.35) or (3.36) and the remaining integral performed. Before taking on this
task, however, let us study the problem in a semi-quantitative manner by making use of basic
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Figure 3.6: Observed frequency spectrum from a spiraling charged particle

properties of the Fourier transform. For the case of a highly relativistic electron spiraling in a
magnetic field with an angular frequency ωB, a distant observer will be illuminated only as the
pencil shaped radiation beam with typical angular width 2θrms swings in her direction. That
is, the observer will, if properly placed, receive a series of short radiation pulses of duration
∆t. This duration may be estimated by noting that seen from the particle the observer will
be located within the radiation beam for a time interval

∆t′ ≈ 2π

ωB

2θrms

2π
=

2θrms

ωB
.

The corresponding time interval for the observer is

∆t ≈ (1− β)∆t′ ≈ ∆t′

2γ2
≈ θrms

γ2ωB
.

A radiation pulse of duration ∆t will give rise to a frequency spectrum with significant
components up to the order of a critical frequency ωc ∼ (∆t)−1, (see quiz 2.18). The result
is illustrated in figure 3.6 for a γ = 5 electron for which ωc ≈ 500ωB. The radiation spec-
trum from the spiraling, relativistic electron thus extends to frequencies far exceeding the
fundamental gyro frequency ωB of the electron.

For the more quantitative discussion of the radiation spectrum let us consider a relativistic
electron spiraling in the xy-plane with orbital radius ρ = cβ⊥/ωB, passing the origin at the
retarded time t′ = 0,

Rq(t
′) = ρ(x̂ sinωBt

′ + ŷ (1− cosωBt
′)).

The electron is viewed by an observer located in direction n̂, without loss of generality chosen
to lie in the xz-plane and making an angle α with the x-axis. The geometry is illustrated in
figure 3.7. Substitution gives

t′ − n̂ ·Rq(t
′)/c =

1

ωB
(ωBt

′ − β⊥ sinωBt
′ cosα) (3.45)
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Figure 3.7: Observer and radiating particle geometry

and
n̂× (n̂× β) = β⊥(−ε̂⊥ sinωBt

′ + ε̂‖ cosωBt
′ sinα). (3.46)

The unit vectors ε̂⊥ and ε̂‖ constitute together with n̂ a right-handed orthogonal vector
triplet. With (3.45) and (3.46) substituted in (3.36) we find

I(ω) =
e2β2

⊥

4π2ε0c

ω2

ω2
B

| ε̂‖A‖(ω) + ε̂⊥A⊥(ω) |2 (3.47)

where

A⊥(ω) = −ι
∫ ∞

0
sin τ sin

(
ω

ωB
(τ − β⊥ cosα sin τ)

)
dτ (3.48)

and

A‖(ω) = sinα

∫ ∞

0
cos τ cos

(
ω

ωB
(τ − β⊥ cosα sin τ)

)
dτ. (3.49)

For ω � ωB these are rapidly oscillating integrands. Non-canceling contributions to the inte-
grals for β⊥ cosα ≈ 1 arise mainly from a small interval around τ = 0 where τ −β⊥ cosα sin τ
is nearly stationary. For β⊥ ≈ 1 and small α the integrals may be approximated as

A⊥(ω) = − ι√
3

(
1

γ2
+ α2

)
K2/3(ξ) (3.50)

A‖(ω) =
α√
3

(
1

γ2
+ α2

) 1

2

K1/3(ξ) (3.51)

where

ξ =
ω

3ωB

(
1

γ2
+ α2

)3/2

(3.52)

and K1/3 and K2/3 are modified Bessel functions.
The shape of the spectrum confirms the result of our previous semi-quantitative discussion.

In fact, the frequency spectrum plotted in figure 3.6 was calculated from (3.47) for an observer
O located in the plane of the spiraling electron, α = 0.
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In our calculation of the radiation spectrum we considered only one radiation pulse. In
reality, the received radiation will be in the form of a series of similar pulses with a repetition
rate ωB/2π. According to the theory of Fourier transform of periodic signals outlined in table
2.2, we should therefore expect to see a spectrum composed of lines at integral multiples of
the fundamental angular frequency ωB. We can simply convert to this format by considering
the angular distribution of radiated power in the nth harmonic of the fundamental frequency

dPn
dΩ

=
ω2
B

2π
I(ω = nωB). (3.53)

The factor ωB/2π is the repetition rate and converts energy to power while the last factor
ωB converts from per frequency unit to per harmonic.

In the total cyclotron radiation spectrum from relativistic electrons in a magnetized plasma
we do not expect to see discrete spectral lines. The electrons in the plasma will have a broad
distribution of kinetic energies. This will give rise to a corresponding spreading out of the
spectral lines from each individual electron, resulting in a continuous total cyclotron radiation
spectrum.

The polarization of the cyclotron radiation from relativistic electrons differ significantly
from that of Bremsstrahlung. The polarization of the radiation from an individual electron
is given by the direction of the vector sum in (3.47). From (3.48)-(3.49) the dominating
polarization of the emitted radiation from each individual electron is seen to be in the ε̂⊥-
direction (see figure 3.7). This will therefore also be the case for the total cyclotron radiation
from the magnetized plasma. We thus expect observed cyclotron radiation spectra to be
significantly linearly polarized in the direction perpendicular to the projection of the ambient
magnetic field.

Quiz 3.10 : Instead of a single charge q spiraling in a magnetic field B, a set of N such
charges move with fixed relative positions around the same circle. Show that the
power radiated into the n.th harmonic of ωB is

dPn(N )

dΩ
=

dPn(1)

dΩ

∣∣∣∣∣∣

N∑

j=1

exp(ιnθj)

∣∣∣∣∣∣

2

where dPn(1)/dΩ represents the radiation from a single charge and θj is the angular
position of charge j at time t = 0. What are the limiting forms of this result for the
case that i) the charges are uniformly spaced around the circle, and ii) the charges
clump together in one location? Can you give a qualitative explanation of this result?

Quiz 3.11 : In the Crab nebula we find electrons with energies up to 1012 eV moving in
magnetic fields of 10−8 T.
a) What is the fundamental frequency ωB and the critical frequency ωc for this case?
What type of polarization do you expect for the resulting radiation? Discuss.
b) Estimate the time needed for one electron to decrease its energy from 1012 eV to
1011 eV when no energy replenishing mechanism is provided.
c) At the lower end of the frequency axis the energy emitted by a single electron
takes the spectral shape

I(ω) ∼ ωκ.
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What is the value of κ?

3.4.3 Thompson scattering

Free electrons in a plasma will be set into oscillatory motions by the electric field of an
incoming electromagnetic wave. This will according to (3.29) cause the electron to radiate.
The energy radiated will be taken from the incoming wave. The net result is that energy
is taken from the incoming wave and reradiated into different directions, that is, the energy
in the wave is being scattered by the free electrons. The process is being referred to as
Thompson scattering. We want to estimate the effectiveness of this mechanism. The situation
is illustrated in figure 3.8.

Figure 3.8: Thompson scattering of an electromagnetic wave

Let us assume the incoming wave to plane polarized,

E(r, t) = E0 cos(k0 · r − ω0t)

where the amplitude and wave vectors E0 = E0ε̂ and k0 are constants. In a dilute plasma and
for high enough frequencies the dispersion relation can be approximated by the the vacuum
relation ω0 = k0c. The motion of an electron in the wave is governed by

r̈(t) =
qE0

m
cos(k0 · r(t)− ω0t)

≈ qE0

m
cos(ω0t− α), (3.54)

where we assumed the variation in k0 · r(t) to be negligible over one wave period, that is, we
assume α to be constant.

Substitution of (3.54) into (3.29) gives

dP (t)

dΩ
=

e4E2
0

16π2ε0m2c3
|n̂× (n̂× ε̂)|2 cos2(ω0t− α).

The scattered radiation is seen to have the same frequency as the incoming wave. The
polarization of the radiation is determined by the polarization of the incoming wave. The
radiation diagram is dipolar with time averaged value

dP (t)

dΩ
=

e4E2
0

32π2ε0m2c3
|n̂× (n̂× ε̂)|2 . (3.55)
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The Solar corona is made visible during occultations through Solar radiation scattered by
free electrons.

Quiz 3.12 : Discuss conditions for the validity of the approximation in (3.54). What
role will the magnetic field in the incoming wave play?

Quiz 3.13 : Estimate the fraction of the Solar radiation flux that will be scattered per
unit volume element by free electrons in the corona. What do you predict about the
polarization of the scattered radiation?

Quiz 3.14 : Compare Bremsstrahlung and Thompson scattering from the Solar corona.
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Chapter 4

Spectra of One–Electron Atoms

By the end of the nineteenth century, spectroscopy had provided detailed and very accurate
evidence that any given atom or molecule was only able to emit or absorb radiation at a
definite set of wavelengths. Thus, in 1885 Balmer pointed out that the wavelengths of four of
the hydrogen lines in the visible part of the spectrum could be expressed through the simple
formula

λ = constant
n2

1

n2
1 − 4

for n1 = 3, 4, 5, 6.

This result was rearranged and extended by Rydberg to read

1

λ
= RH

(
1

22
− 1

n2
1

)
for n1 = 3, 4, 5, 6, · · · (4.1)

where RH = 1.0967758 ·107 m−1 is the Rydberg constant for hydrogen. The quantity σ = 1/λ
is called the repetence. In spectroscopic literature the unit Kayser = 1 cm−1 is often used
for this quantity. The empirical formula (4.1) gave the wavelengths of all lines in the Balmer
series with a relative accuracy better that 10−5.

Additional series of lines of the hydrogen spectrum were soon found to be described
accurately in terms of the more general formula

1

λ
= RH

(
1

n2
− 1

n2
1

)
for n1 = n+ 1, n+ 2, · · · (4.2)

with n being a positive integer number: Lyman, Balmer, Paschen, Brackett and Pfund series
for n = 1, 2, 3, 4 and 5, respectively.

These experimental results indicated that the hydrogen atom was only allowed to exist in
one of a discrete set of energy states,

Wn = −hcRH
1

n2
for n = 1, 2, 3, · · · , (4.3)

and that emission and absorption of radiation was thus restricted to radiation with wave-
lengths λ satisfying

1

λ
=
Wn1

−Wn

hc
.

Available energy levels of the hydrogen atom according to (4.3) with corresponding transitions
are illustrated in figure 4.1. In the same figure, the spectrum insert shows the actual position
of the spectral lines corresponding to the Lyman and the Balmer series.

55
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Figure 4.1: The hydrogen spectrum

These results were in striking contrast to contemporary physics of that time. Classical
physics was not able to explain why the hydrogen atom was only allowed to exist in discrete
energy states. The spectroscopic results thus pointed to the necessity of improvements in
the laws of physics. Bohr (1913) provided a partial answer, but it was only through the
introduction of quantum mechanics by Schrödinger, Heisenberg, Pauli and their colleagues in
Göttingen during the 1920’s that a satisfactory new theory was finally established. Any un-
derstanding of atomic or molecular spectra is only possible through the formalism of quantum
mechanics.

The interpretation of the radiation received from different celestial bodies and the extrac-
tion of the underlying physics lies at the very heart of astrophysics. This involves the study
of literally millions of different spectral lines. Most of these are of atomic origin, but many
are also of molecular origin. A complete discussion of all aspects of the physics of spectral
line formation clearly lies outside the scope of our discussion. We shall have to be satisfied
by studying some of the more fundamental facts. In this chapter we review the formalism of
quantum mechanics as applied to the spectra of one-electron atoms. In the next chapter we
proceed to a discussion of the corresponding spectra from many-electron atoms, while chapter
6 contains a review some typical aspects of molecular spectra.

4.1 Quantum Mechanics

In classical mechanics the motion r(t) of a particle with mass m is determined by the Newton
equation of motion

m
d2r

dt2
= F , (4.4)
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where F is the total force acting on the particle. If the total force is conservative, that is,
if it is derivable from a potential, F = −∇U(r) ≡ −∂U(r)/∂r, a mathematically equivalent
form of Newton’s equation of motion is the Hamilton equations

dr

dt
=
∂H(r,p)

∂p
(4.5)

dp

dt
= −∂H(r,p)

∂r
(4.6)

where p = mv is the particle momentum and

H(r,p) =
p2

2m
+ U(r) (4.7)

is the Hamiltonian. In (4.5)-(4.6) the Hamiltonian H(r,p) is to be considered a function of
independent variables r and p. Physically we recognize H(r,p) as the total energy of the
particle. For time-independent force fields, the total energy is a constant of motion, that is,

H(r,p) = W (4.8)

where W is a constant depending on the initial conditions imposed on the system. With
forces varying with time the Hamiltonian will also depend on time explicitly, H(r,p, t). In
this case the Hamiltonian is not a constant of motion.

At first glance the formulation (4.5)-(4.6) may seem more complicated than the origi-
nal Newton’s equation of motion (4.4). Mathematically, however, Hamilton’s formulation is
a rather powerful one. The formalism is easily generalized from the simple point particle
problem to any complicated mechanical system ruled by conservative forces. Any advanced
discussion of mechanics will have the Hamiltonian or the closely related Lagrangian formu-
lation as its starting point. These aspects fall outside the scope of our discussion. The
important point to note is that the prescription of a single function H(r,p), together with
the corresponding set of rules (4.5)-(4.6), completely describes the dynamics of the system.

Classical mechanics as represented by (4.4) or (4.5)-(4.6) provides a precise description
of the motion of macroscopic systems. Spectroscopy, however, clearly demonstrated that
these laws failed when it came to atomic or molecular levels. Classical mechanics provided
no mechanism that would lead to the formation of a discrete set of spectral lines. In fact,
classical mechanics could not even predict the existence of stable atoms. An electron in orbit
around a nucleus experiences a continuous acceleration and should according to classical
theory radiate electromagnetic waves, the electron orbit finally collapsing into the nucleus.
One of the greatest breakthroughs in physics therefore came when Schrödinger was able to
give a recipe for how to generalize the laws of mechanics to be valid also for atomic systems.
The more general theory is quantum mechanics. The quantum mechanical “recipe” consists
of a few simple steps summarized in table 4.1.

A few comments on this set of rules may be appropriate. For time independent problems
the classical statement (4.8) of the total energy as a constant of motion is in quantum mechan-
ics replaced with the stationary Schrödinger equation (4.10). This is an eigenvalue problem,
where the total energy W and the wave function Ψ(r) are eigenvalues and eigenfunctions of
the Hamilton operator H(r,p). Physically acceptable solutions Ψ(r, t) will be found for a
discrete set of values for the total energy W . This will be repeatedly demonstrated in the
following and is indeed the property needed in order to accommodate the experimental results
of atomic spectroscopy. Some useful operator definitions and theorems are listed in table 4.2.
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For a quantum mechanical analysis of a given system, (if a classical analogue exists) first
establish the classical Hamiltonian H(r,p, t).

Replace the momentum vector p with the corresponding momentum operator p = −ιh̄∇,
and thus transform the classical Hamiltonian function H into the corresponding Hamilto-
nian operator H.

Replace the classical concept of a precise particle position r(t) with the (for bound states)
normalized wave function Ψ(r, t),

∫
|Ψ(r, t) |2 d3r = 1, (4.9)

and interpret |Ψ(r, t) |2 as the probability density for finding the system at position r at
time t.

For time-stationary problems determine the wave function Ψ as the solution of the sta-
tionary Schrödinger equation

H(r,p)Ψ(r) = WΨ(r) (4.10)

with suitable boundary conditions imposed.

For non-stationary problems solve the time-dependent Schrödinger equation

ιh̄
∂

∂t
Ψ(r, t) = H(r,p, t)Ψ(r, t). (4.11)

Any physical quantity (observable) Q is represented by a corresponding operator Q. Pos-
sible results of a measurement of the value of the physical quantity Q are the set of
eigenvalues q of the eigenvalue equation, QΦ = qΦ where the eigenfunctions Φ need not
be simultaneous eigenfunctions of the Schrödinger equation.

Two physical quantities Q1 and Q2 are simultaneously measurable if the corresponding
operators Q1 and Q2 have identical eigenfunctions Φ. This will be possible only if the two
operators commutes,

[Q1, Q2] ≡ Q1Q2 −Q2Q1 = 0.

The evolution of the mean value of Q, defined as 〈Q 〉 ≡ (Ψ, QΨ), is determined by

d

dt
〈Q 〉 =

ι

h̄
〈 [H,Q] 〉+ 〈 ∂Q

∂t
〉. (4.12)

Table 4.1: The quantum mechanical recipe
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We recognize the left-hand side of the normalization condition (4.9) as the scalar product
of the wave function Ψ(r) with itself. The normalization condition implies that for physi-
cally acceptable wave functions |Ψ(r) |2 may at most have integrable singularities and must
approach zero fast enough as r →∞. Since Schrödinger’s equation (4.10) is linear in Ψ, the
normalization condition (4.9) may always be satisfied as long as a square integrable solution
is found. This normalization is necessary for interpreting |Ψ(r, t) |2 d3r as the probability for
finding the particle at time t in the volume element d3r centered on r. The probability con-
cept in quantum mechanics means that we have to abandon the classical idea of the electron
as a point particle with an electron smeared out as charge cloud.

Quantum mechanics represents a generalization of classical mechanics. From the mathe-
matical and interpretational point of view, quantum mechanics is the more demanding theory.
In contrast to classical theory, quantum mechanics provides correct predictions at the atomic
level. And, in the ”infinite mass” limit, quantum mechanical can be shown to reduce to
classical mechanics.

We consider operators Q acting on functions φ(r) and ψ(r), sufficiently differentiable and
approaching zero fast enough as |r |→ ∞ for the following expressions to exist.

The scalar product of φ and ψ is defined as (φ, ψ) ≡
∫
φ∗(r)ψ(r) d3r.

The functions φ and ψ are orthogonal if (φ, ψ) = 0.

The adjoint operator Q† is defined by (Q†φ, ψ) ≡ (φ,Qψ).

The operator Q is self-adjoint or Hermitian if Q† = Q.

The eigenvalues λ of the Hermitian operator Q are real-valued.
Proof: With Qψ = λψ we find λ∗(ψ,ψ) = (Qψ,ψ) = (ψ,Qψ) = λ(ψ,ψ).

The eigenfunctions ψ1, ψ2 of an Hermitian operator Q corresponding to different eigen-
values λ1 and λ2 are orthogonal.
Proof: With λ2(ψ2, ψ1) = (Qψ2, ψ1) = (ψ2, Qψ1) = λ1(ψ2, ψ1) and λ1 6= λ2 it follows that
(ψ2, ψ1) = 0.

Eigenfunctions belonging to identical eigenvalues may be chosen to be orthogonal.
Proof: If Qψ1 = λψ1, Qψ2 = λψ2 and (ψ1, ψ2) = K(ψ1, ψ1) 6= 0 then ψ1 and ψ′

2 are
orthogonal if ψ′

2 = ψ2 −Kψ1.

Table 4.2: Useful operator definitions and theorems

In the next sections we review the application of quantum mechanics to the simplest
atomic system, the hydrogen or hydrogen-like atom, consisting of a nucleus with charge Ze
surrounded by one electron with charge −e. Examples of such atoms are H I, He II, Li III, CVI
and Fe XXVI. We have here made use of the standard notation where the Roman number
added to the chemical element symbol indicates the ionization state of the atom. I refers to
the atom in its neutral state, II represents the first ionization state, and so on. We shall later
argue that even the alkali type atoms Na I, Mg II, K I and Ca II may in many respects be
considered as examples of one-electron atoms.
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Quiz 4.1 : Substitute (4.7) into (4.5)-(4.6) and verify that these equations are indeed
equivalent to (4.4).

Quiz 4.2 : Show that the Hamiltonian H(r,p) is a constant of motion for a time-
independent force field, that is, dH(r,p)/dt = 0. What is the corresponding result
for H(r,p, t)?

Quiz 4.3 : Prove that

p = −ιh̄∇ and H =
p2

2m
+ U(r)

are both Hermitian operators.

[Hint: Perform one or two partial integrations, using for instance (A.21), (A.22) and
(A.37), and assume that the functions φ and ψ appearing in (φ,pψ) and (φ,Hψ)
both approach zero sufficiently fast as |r |→ ∞.]

Quiz 4.4 : Verify (4.12). Argue that (4.12) will be valid also if we define 〈Q 〉 as the
scalar product of Q between two different wave functions Ψ1 and Ψ2, that is, 〈Q 〉 =
(Ψ1, QΨ2).

[Hint: Perform the time derivative of 〈Q 〉 and make use of the Hermitian property
of H.]

Quiz 4.5 : Show that

[r, H] =
ιh̄

m
p.

Then make use of (4.12) to prove Ehrenfest’s theorem

m
d

dt
〈 r 〉 = 〈p 〉 and

d

dt
〈p 〉 = −〈∇U(r) 〉. (4.13)

Do you see some similarities with the corresponding classical equations of motion?

Quiz 4.6 : Let A and B be Hermitian operators. Define the standard deviation of A

as 〈∆A 〉 ≡
√

(Ψ, (A− 〈A 〉)2Ψ) ≡
√(

Ψ, A′2Ψ
)

and similarly for B. Verify the

following steps in the derivation of the Heisenberg uncertainty relation :

(Ψ, [A,B]Ψ) = (Ψ, [A′, B′]Ψ) = (A′Ψ, B′Ψ)− (B′Ψ, A′Ψ) = 2ι Im
(
(A′Ψ, B′Ψ)

)

and therefore
1

2
|(Ψ, [A,B]Ψ) | ≤ |(A′Ψ, B′Ψ) | ≤ 〈∆A 〉〈∆B 〉. (4.14)

Interprete your result. Choose A = x and B = px as a specific example.

4.2 The One-Electron Atom

We consider a one electron atom with nuclear charge Ze. The electron mass m is much smaller
than the corresponding nuclear mass M . In the lowest order approximation the nucleus may
therefore be considered fixed at the origin of the coordinate system, not participating in
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any motion. In the classical picture the electron at position r(t) then moves in a central
electrostatic force field with corresponding potential

U(r) = − Ze2

4πε0r
. (4.15)

The Hamiltonian operator is then

H0 = − h̄2

2m
∇2 + U(r). (4.16)

The explicit form of the ∇2-operator (see appendix A) depends on the choice of coor-
dinates. With a spherically symmetric force field it is convenient to make use of spherical
coordinates. The Schrödinger equation (4.10) then takes the form

− h̄2

2mr2

[
∂

∂r
(r2

∂Ψ

∂r
) +

1

sin θ

∂

∂θ
(sin θ

∂Ψ

∂θ
) +

1

sin2 θ

∂2Ψ

∂ϕ2

]
+ U(r)Ψ = WΨ. (4.17)

We are looking for ”bounded” solutions of the wave function Ψ in (4.17). This means that,
in addition to requiring |Ψ |2 to be finite everywhere, we also require the wave function to
vanish at infinity, that is, Ψ→ 0 as r →∞.

The solution is easily found by making use of the method of separation of variables. With
this method we look for a solution of the form

Ψ(r) = Ξ(r)Θ(θ)Φ(ϕ). (4.18)

From the mathematical point of view, equation (4.17) is known to have unique solutions.
If a solution of the form (4.18) can be found, satisfying the physically relevant boundary
conditions, then this solution is the only possible solution.

Substitution of (4.18) into (4.17) and dividing each term by Φ(ϕ) lead to an equation of
the form

A(r, θ) +B(r, θ)

[
1

Φ

d2Φ

dϕ2

]
= 0.

The explicit expression of the functions A and B may be found from (4.17). For our present
needs it is sufficient to note their formal variable dependence, both are independent of the
azimuthal angle ϕ. For this equation to be satisfied for any given values of r and θ and for
all values of ϕ, it is necessary that

1

Φ

d2Φ

dϕ2
= constant = −m2

` .

The uniqueness condition, Φ(ϕ+ 2π) = Φ(ϕ), requires the separation constant to be equal to
the negative square of an integer number m`. We shall refer to m` as the azimuthal quantum
number. The solution is therefore

Φm`
(ϕ) = exp(ιm`ϕ). (4.19)

The functions (4.19) constitute an orthogonal set of functions with normalization

∫ 2π

0
Φ∗
m′

`
(ϕ)Φm`

(ϕ) dϕ = 2πδm′
`
,m`
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Associate Legendre polynomials of first kind – definition

Pm` (x) =
(−1)m

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)`

Some lower order polynomials

P 0
0 (x) = 1 P 0

1 (x) = x P 1
1 (x) = −(1− x2)1/2

P 0
2 (x) =

1

2
(3x2 − 1) P 1

2 (x) = −3x(1− x2)1/2 P 2
2 (x) = 3(1− x2)

Recurrence relations

(1− x2)1/2Pm+1
` (x) = (`−m)xPm` (x)− (`+m)Pm`−1(x)

(`−m+ 1)Pm`+1(x) = (2`+ 1)xPm` (x)− (`+m)Pm`−1(x)

Pm`+1(x) = Pm`−1(x)− (2`+ 1)(1− x2)1/2Pm−1
` (x)

Normalization

∫ 1

−1
Pm` (x)Pm`′ (x) dx =

2

2`+ 1

(`+m)!

(`−m)!
δ`,`′

Table 4.3: Associate Legendre functions

where δm′
`
,m`

is the Kronecker δ.

With Φ(ϕ) known, the Schrödinger equation divided by Ψ/r2 may now be written as

C(r) +
1

Θ

[
1

sin θ

d

dθ
(sin θ

dΘ

dθ
)− m2

`

sin2 θ
Θ

]
= 0.

The explicit expression for C(r) is again irrelevant for our arguments. We only note that
C(r) is independent of θ. For this equation to be satisfied for any given r and for all values
of θ, we must require

1

Θ

[
1

sin θ

d

dθ
(sin θ

dΘ

dθ
)− m2

`

sin2 θ
Θ

]
= constant = −`(`+ 1). (4.20)

Physically, we must require Θ(θ) to remain finite in the interval [0, π]. It can be shown that
to satisfy this requirement, the separation constant must this time take the particular form
−`(` + 1) with ` being a non-negative integer (see quiz 4.7). Equation (4.20) is known as
the associated Legendre differential equation. Relevant solutions are the associated Legendre
polynomials of first kind

Θ`m`
(θ) = P

|m`|
` (cos θ). (4.21)

Some useful properties of the associated Legendre polynomials Pm` are listed in table 4.3. We

note in particular that P
|m`|
` (cos θ) will be non-vanishing only for

|m` |≤ `. (4.22)
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Spherical harmonics functions – definition

Y m
` (θ, ϕ) = (−)m

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ) eιmϕ, m ≥ 0

Y −m
` (θ, ϕ) = (−)mY m∗

` (θ, ϕ)

Some lower order functions

Y 0
0 =

√
1

4π
Y 0

1 =

√
3

4π
cos θ Y ±1

1 = ∓
√

3

8π
sin θ e±ιmϕ

Y 0
2 =

√
5

16π
(3 cos2 θ − 1) Y ±1

2 = ∓
√

15

8π
sin θ cos θ e±ιmϕ Y ±2

2 =

√
15

32π
sin2 θ e±2ιmϕ

Recurrence relations

cos θ Y m
` =

√
(`+m+ 1)(`−m+ 1)

(2`+ 1)(2`+ 3)
Y m
`+1 +

√
(`+m)(`−m)

(2`+ 1)(2`− 1)
Y m
`−1

sin θ e±ιϕ Y m
` = ∓

√
(`±m+ 1)(`±m+ 2)

(2`+ 1)(2`+ 3)
Y m±1
`+1 ±

√
(`∓m)(`∓m− 1)

(2`+ 1)(2`− 1)
Y m±1
`−1

Orthonormalization
∫
Y m′∗
`′ (θ, ϕ)Y m

` (θ, ϕ) d2Ω = δ`′, ` δm′,m (d2Ω = dcos θ dϕ)

Completeness relation

∞∑

`=0

∑̀

m=−`

Y m∗
` (θ′, ϕ′)Y m

` (θ, ϕ) = δ(Ω′ −Ω).

Table 4.4: Spherical harmonics

The associated Legendre polynomials Pm` (cos θ) and the complex exponentials exp(ιmϕ)
find a practical combination in the spherical harmonics functions Y m

` (θ, ϕ). Their definition
and some of their properties are summarized in table 4.4. The Y m

` -functions are normalized,
they are orthogonal with respect to both indices, and they form a complete set, that is, any
function of the polar angles θ and φ may be expanded in terms of {Y m

` }. [In the literature
also the notation Y`m for the spherical harmonics will be found.]

The radial part Ξ(r) of the wave function is now determined by the equation

1

r2
d

dr
(r2

dΞ

dr
) +

[
2m

h̄2 (W − U(r))− `(`+ 1)

r2

]
Ξ = 0. (4.23)

It is here convenient to introduce the dimensionless variable

ρ = 2βr with β2 = −2mW

h̄2 . (4.24)
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Then, making the substitution

Ξ(r) = ρ` exp(−ρ
2
)u(ρ),

we see that u(ρ) will have to satisfy the associated Laguerre differential equation

ρ
d2u

dρ2
+ (µ+ 1− ρ)du

dρ
+ (ν − µ)u = 0 (4.25)

with

µ = 2`+ 1, ν = n+ ` and n = − Ze2β

8πε0W
. (4.26)

A solution such that Ξ(r) remains finite at the origin and vanishes at infinity, is only possible
if n is an integer satisfying the condition n > `. The solution for u(ρ) is then the associated
Laguerre polynomials Lµν (ρ) defined in table 4.5.

Combining equations (4.24) and (4.26), the allowed energy states of the one-electron atom
is seen to be

Wn = −1

2
mc2

(Zα)2

n2
= −hcR∞

Z2

n2
, (4.27)

where

α =
e2

4πε0h̄c
=

1

137.0372
(4.28)

is the dimensionless fine structure constant and

R∞ =
mc2

2hc
α2 = 1.0973731 · 107 m−1 (4.29)

is the Rydberg constant for the infinitely massive nucleus. The stretching factor β in (4.24)
is found to reduce to

β =
Z

naB
(4.30)

where

aB =
4πε0h̄

2

me2
= 5.2917715 · 10−11 m (4.31)

is the Bohr radius.
The radial part of the wave function is seen to depend on two quantum numbers, the

principal quantum number n > 0 and the angular quantum number ` < n,

Ξn`(r) = Rn`(
2Zr

naB
) (4.32)

where
Rn`(ρ) = ρ` exp(−ρ

2
)L2`+1

n+` (ρ) (4.33)

is referred to as the Laguerre function. Some useful properties of the Laguerre functions are
listed in table 4.5.

The result of applying the Schrödinger equation (4.10) to the one-electron atom is therefore
that the wave functions available to the electron are

Ψn`m`
(r) = Cn`Rn`(

2Zr

naB
)Y`m`

(θ, ϕ) (4.34)
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Associate Laguerre polynomials – definition

Lµν (x) =
dµ

dxµ

(
exp(x)

dν

dxν
(xν exp(−x))

)

Some lower order polynomials

L1
1(x) = −1 L1

2(x) = −4 + 2x L2
2(x) = 2

L1
3(x) = −18 + 18x− 3x2 L2

3(x) = 18− 6x L3
3(x) = −6

Recurrence relation

(ν − µ+ 1)Lµν+1(x) = (ν + 1)
[
(2ν − µ+ 1− x)Lµν (x)− ν2Lµν−1(x)

]

xLµ+1
ν (x) = (ν − µ)Lµν (x)− ν2Lµν−1(x)

Laguerre function

Rn`(x) = x` exp(−x
2
)L2`+1

n+` (x)

Normalization
∫ ∞

0
x2Rn′,`(x)Rn,`(x) dx =

2n{(n+ `)!}3
(n− `− 1)!

δn,n′

Table 4.5: Laguerre polynomials

with the normalization constant

Cn` =

{(
2Z

naB

)3 (n− `− 1)!

2n{(n+ `)!}3

}1/2

. (4.35)

The wave function (4.34) depends on three integer quantum numbers n, ` and m`, satisfying
the condition

n > ` ≥|m` | . (4.36)

The energy levels (4.27) available to the electron in contrast only depend on the principal
quantum number n. This means that different electron states may correspond to the identical
energy. To the energy level Wn there are n2 different states for the electron, that is, we have
n2-fold energy degeneracy. With the subsequent introduction of the electron spin we shall see
that the energy degeneracy is actually 2n2-fold.

In figure 4.2 the radial distribution of the electron density,

ρr(r) =

∫
|Ψn`m`

(r) |2 r2 dcos θ dϕ

=

(
2Z

naB

)3 (n− `− 1)!

2n{(n+ `)!}3 r
2R2

n`

(
2Z

naB
r

)
,

is plotted as a function of Zr/aB for some of the lowest order electron states. We note that
ρr(r) dr represents the probability for finding the electron in a spherical shell of radius r and
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Figure 4.2: Radial distribution of the electron cloud

thickness dr. In the lowest energy state, n = 1, ` = 0, the electron will normally be found in
the neighborhood of the spherical shell of radius r = aB/Z. With increasing n the electron
moves away from the nucleus with the average radius increasing as r = n2aB/Z. At the
same time the electron cloud spreads over a larger radial range. The radial distance rule is
in accordance with the classical point of view if it is assumed that the energy levels available
to the electron are given by (4.27). Thus, if we assume the ”classical” electron to move in a
circular orbit with a centripetal acceleration in accordance with the acting Coulomb force,

m
v2

r
=

∂

∂r
U(r) = −U

r
,

and further require the total energy to be given by the quantum mechanical value (4.27),

H =
p2

2m
+ U(r) =

1

2
U(r) = Wn,

then the radius r of the electron orbit is indeed found to satisfy r = n2aB/Z.
With the radial electron density given, the average values of different powers of r,

〈 rk 〉n` =

∫
rk |Ψn`m`

(r) |2 r2 dr dcos θ dϕ, (4.37)

may be calculated. For reference purposes we conclude this section by including table 4.6
containing the results for some selected powers k. Note that the k = −3 result is only valid
for ` 6= 0.

Quiz 4.7 : Show that (4.20) for m` = 0 reduces to

d

dx

[
(1− x2)

d

dx
Θ

]
− λΘ = 0,
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k 1 -1 -2 -3(
Z
aB

)k
〈 rk 〉n` 3

2n
2 − 1

2`(`+ 1) n−2 n−3(`+ 1
2)−1 n−3

[
`(`+ 1

2)(`+ 1)
]−1

Table 4.6: Average values of some selected powers of r

where x = cos θ and λ is the separation constant. Argue that solutions may be
written in the form

Θ(x) = · · ·+ akx
k + ak+2x

k+2 + · · ·
with

ak+2

ak
=

k(k + 1) + λ

(k + 1)(k + 2)
.

Thus, verify that non-singular solutions for Θ in the interval x = [−1, 1] is only
possible if λ = −`(` + 1), where ` is a non-negative integer number. [The infinite
power series with ak+2/ak → 1 as k →∞ diverges as x2 → 1.]

Quiz 4.8 : With ϑ = (x2 − 1)` show that

(1− x2)
dϑ

dx
+ 2`xϑ = 0.

By differentiating this equation `+ 1 times, show that

[(1− x2)
d2

dx2
− 2x

d

dx
+ `(`+ 1)]

d`ϑ

dx`
= 0,

and therefore that d`(x2 − 1)`/dx` is a solution of (4.20) for m` = 0 with x = cos θ
(see table 4.3).

Quiz 4.9 : Make use of the properties listed in table 4.3 to show that the functions

P
|m`|
` (cos θ) exp(ιm`ϕ) will have even or odd symmetry under the transformation

r → −r (that is, cos θ → − cos θ and ϕ → ϕ + π) if ` is an even or odd integer,
respectively. [This result will be needed for the discussion of selection rules.]

Quiz 4.10 : Verify (4.27) and (4.30).

Quiz 4.11 : Verify that for a given n there are n2 different combinations of ` and m`

allowed.

Quiz 4.12 : Make use of the recurrence relations for the Laguerre polynomials (see table
4.5) to prove by induction that L1

n(0) = −nn!

4.3 Physical Interpretation of Quantum Numbers

The quantum numbers n, ` and m` allow for an immediate physical interpretation. We
have already seen the association between allowed energy levels and the quantum number n.
The quantum number n is therefore also referred to as the principal quantum number. The
quantum numbers ` and m` are both related to the angular momentum of the electron in its
orbit.
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The classical definition of angular momentum is L = r × p. In quantum mechanics the
same definition applies, but L is now an operator. The components of L as well as L2 all
commute with the Hamiltonian, [H,L] = 0 and [H,L2] = 0. L2 and the component of L

along an arbitrary chosen z-axis similarly commute, [L2, Lz] = 0. The components of L do
not, however, commute among themselves, instead it is easily shown that

[Lx, Ly] = ιh̄Lz (4.38)

and similar relations derived by cyclic permutations of the indices. According to the quantum
mechanical recipe of table 4.1, L2 and Lz are both simultaneously measurable with H, but
not the full L-vector. In fact, simple calculations show that

L2Ψn`m`
= h̄2`(`+ 1)Ψn`m`

(4.39)

LzΨn`m`
= h̄m`Ψn`m`

. (4.40)

The angular quantum number ` thus determines the magnitude of the orbital angular momen-
tum. The azimuthal quantum number m` represents the component of the orbital angular
momentum along the (arbitrarily chosen) z-axis. Possible directions for the angular momen-
tum vector for a given choice of z-axis are illustrated for the case ` = 2 in figure 4.3. In
particular, it is seen that the angular momentum vector will never fall along the z-axis. If
it was to fall along the z-axis, Lx and Ly would both vanish while at the same time also
Lz would take a definite value. This is in conflict with the fact that the components of the
orbital angular momentum vector L are not simultaneously measurable quantities.

Figure 4.3: Quantization of the angular momentum vector, ` = 2

Quiz 4.13 : In spherical coordinates show that

L = −ιh̄r ×∇ = −ιh̄
(

ϕ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂ϕ

)
, (4.41)

Lz = −ιh̄ ∂

∂ϕ
, (4.42)

L2 = −ιh̄r · (∇×L) = −h̄2

[
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

]
, (4.43)
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and

− h̄2

2m
∇2 = − h̄2

2mr2
∂

∂r

(
r2
∂

∂r

)
+

L2

2mr2
. (4.44)

Remember that these operators all operate on scalar wave functions Ψ(r) and make
use of formulas listed in section A.2.3.

Quiz 4.14 : Make use of the results of quiz 4.13 to show that the operators H, L2 and
Lz all commute,

[H,Lz] = 0, [H,L2] = 0, and [L2, Lz] = 0.

Quiz 4.15 : Verify (4.39) and (4.40).

Quiz 4.16 : With Ψ given by (4.34), show that the orbital angular momentum vector
L as given by (4.41) is not measurable, that is, it is not possible to find a constant
vector l such that LΨ = lΨ.

Quiz 4.17 : The operators L+ and L− are defined by

L± = Lx ± ιLy (4.45)

and have the property of raising or lowering the m-index of the spherical harmonics,

L±Y
m
` = h̄

√
`(`+ 1)−m(m± 1)Y m±1

` . (4.46)

Show that

L± = h̄ exp(±ιϕ)

(
± ∂

∂θ
+ ι cot θ

∂

∂ϕ

)

and verify (4.46) for ` = 1. Note that L±Y
±`
` = 0.

4.4 The Isotope Effect

In the discussion of the one-electron atom in section 4.2 several different effects were neglected.
The nucleus was assumed to have infinite mass, the electron spin was not taken into account,
effects due to external fields were not included, and so on. We must therefore consider this
discussion only as a lowest order theory. In particular, we shall refer to (4.16) as the zeroth
order Hamiltonian H0 in the following. We shall now consider a number of correctional or
additional effects, one at the time, starting with the isotope effect. The isotope effect arises
because the nuclear mass M is finite and therefore that the nucleus will respond slightly to
the motion of the electron. This response is reflected in the two-body Hamiltonian

H =
p2
n

2M
+

p2
e

2m
+ U(|re − rn |), (4.47)

where rn and re refer to the position vectors of the nucleus and the surrounding electron.
The corresponding momentum vectors are pn = M ṙn and pe = mṙe.

The two-body central force problem can, however, always be reduced to an equivalent
one-body problem for an equivalent particle of the reduced mass

µ = Mm/(M +m) (4.48)
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and position vector r = re − rn, in addition to a uniform motion of the center-of-mass of
the system, RCM = (Mrn +mre)/(M +m). This conclusion follows from the fact that the
two-body Hamiltonian (4.47) can be written as

H =
P 2
CM

2(M +m)
+

p2

2µ
+ U(r) (4.49)

with PCM = (M +m)ṘCM and p = µṙ.

The quantum mechanical recipe according to table 4.1 is to replace the momentum vectors
of the equivalent particle and the center-of-mass system by operators p = −ιh̄∂/∂r and
PCM = −ιh̄∂/∂RCM , respectively. The Schrödinger equation, now a partial differential
equation in six independent variables, naturally separates into equations in RCM and r. The
first part corresponds to the center-of-mass motion of the atom and is of no interest here.
The second part, the equivalent particle part, is identical to our one-electron atom with fixed
nucleus problem. The only change necessary to incorporate the effect of a finite nuclear mass
is therefore to replace the electron mass m in (4.16) by the reduced mass µ as given by (4.48).
The corrected energy levels for the atom are given by

Wn = −hc M

M +m
R∞

Z2

n2
. (4.50)

The theoretical value of the modified Rydberg constant MR∞/(M +m) for the H I atom now
agrees with Rydberg’s experimental value to within a relative error 2 · 10−7.

Quiz 4.18 : Two point particles with masses m1 and m2 at positions r1 and r2 are
acting on each other with equal and opposite forces F depending only on their mutual
distance r =|r1−r2 |. According to classical non-relativistic mechanics the equations
of motion are

m1r̈1 = F (|r1 − r2 |)
m2r̈2 = −F (|r1 − r2 |).

Introduce the relative vector r = r1 − r2 and the center-of-mass vector RCM =
(m1r1 +m2r2)/(m1 +m2) as new independent variables and show that the problem
reduces to a uniform motion of the center-of-mass in addition to a one-body problem
for a particle with the reduced mass µ = m1m2/(m1+m2) in a spherically symmetric
force field F (r).

Quiz 4.19 : Verify that (4.49) is equivalent to (4.47). Argue that the wave function
of the two-body problem can be written in the form of the product Ψ(r,RCM ) =
ΨR(RCM )Ψr(r) where Ψr(r) is given by (4.34) with the electron mass m replaced
by the reduced mass µ. What is the corresponding ΨR-function?

Quiz 4.20 : When going from H I to D I what is the relative difference in the energy
levels, (Wdi

n −Whi
n )/Whi

n ? [D represents deuterium, that is 2H.] What is the corre-
sponding value when going from 3He II to 4He II?
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4.5 An External Magnetic Field

From the classical point of view, the motion of the electron in a closed orbit in the central
force field of the nucleus represents a magnetic dipole moment mL = IA, where I is the
equivalent current carried by the electron in its orbit, I = e/T and where T is the orbital
period of the electron. A is the area of the orbit, with the positive direction in accordance
with the right-hand rule, that is, A points in the direction traveled by a right hand screw
when rotated in the direction of the orbital current. As illustrated in figure 4.4, this area can
be expressed as

A =

∫
dA = −1

2

∫ T

0
r × v dt = − T

2m
L.

The latter step follows since L = r ×mv is a constant of motion.

Figure 4.4: Orbital magnetic dipole moment

The orbital magnetic dipole moment of the electron is thus

mL = − e

2m
L, (4.51)

that is, a constant of proportionality e/2m relates the orbital magnetic dipole moment mL

to the orbital angular momentum L of the electron. The relation is sometimes written in the
form mL = µBL/h̄ where µB = eh̄/(2m) = 9.2740155 · 10−24 Js is the Bohr magneton. We
note that when the isotope effect is included, the reduced electron mass should be used in
this expression.

In an external magnetic field the orbital magnetic dipole moment represents an additional
potential energy term in the Hamiltonian

HBL = −mL ·B =
e

2m
B ·L. (4.52)

Quantum mechanically, HBL should be treated as an extra operator term to be included
in the Hamiltonian, H = H0 + HBL. The zero-order Hamiltonian H0 is given by (4.16).
With the z-axis along the magnetic field and Lz and H0 simultaneously measurable, the wave
function does not change with the introduction of the external field. The energy levels do,
however, take new values

W = W (0) + ∆WBL

with W (0) given by (4.27), and, using (4.40),

∆WBL = h̄
eB

2m
m` = h̄ωLm`. (4.53)
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Here ωL = eB/2m is the angular Larmor frequency of the electron in the external magnetic
field. This result would mean that the energy degeneracy discussed in section 4.2 would be
partially lifted by the external magnetic field, with the energy level n splitting into 2n − 1
equidistant levels. Unfortunately, this result does not fit with experiments (although it will
be recovered under certain conditions for many-electron atoms). To rectify the result it is
necessary to take into account that electrons also possess internal spin.

Quiz 4.21 : For one-electron atoms with “spin-less” electrons in an external magnetic
field B, determine the energy degeneracy of the energy level Wnm`

.

4.6 The Electron Spin

The Stern-Gerlach experiment (1921) in which a well collimated beam of silver atoms were
shot between the pole pieces of a strong permanent magnet, gave the unexpected result that
the beam was split into two slightly diverging beams after passage through the inhomogeneous
magnetic field region. The experiment was explained by Goudsmit and Uhlenbeck (1925)
by assigning to the electron a magnetic dipole moment mS associated with a spin angular
momentum S of the (valence) electron. The Hermitian spin operator S is independent of the
position r of the electron, but operates in an internal spin parameter space of the electron.
Assuming, in analogy with the orbital magnetic dipole moment, a linear relationship between
the spin magnetic dipole moment and the spin operator, and that the spin operator behaves
similarly to the orbital angular momentum L as regards quantization rules,

S2 |Ψ 〉 = h̄2s(s+ 1) |Ψ 〉 (4.54)

Sz |Ψ 〉 = h̄ms |Ψ 〉, (4.55)

the splitting of the beam could be understood if the corresponding quantum numbers s and
ms were only allowed to take the values s = 1

2 and ms = ±1
2 .

In (4.54) and (4.55) we introduced the notation | Ψ 〉 for the wave function. This is
done as a reminder that the wave function, in addition to the previous space-dependent part
Ψn`m`

(r), now also contains a factor describing the spin state of the electron. This extra factor
is sometimes referred to as α or β corresponding to ”spin up” or ”spin down”. To specify
a particular wave function the values of the quantum numbers involved must be prescribed.
With the electron spin included, this means the specification of five quantum numbers: n,
`, m`, s and ms. When an explicit indication of the quantum numbers is needed we will
make use of the notation |Ψ 〉 = |n `m` sms 〉. In terms of the the spin factors α and β, we
may identify | n `m`

1
2

1
2 〉 = αΨn`m`

(r) and | n `m`
1
2 − 1

2 〉 = βΨn`m`
(r). In the subsequent

discussion we shall also find it convenient to represent a complete set of quantum numbers
by a single symbol, that is, let | i 〉, |f 〉 or |q 〉 indicate different quantum states.

With s = 1
2 , the spin state space consists of only two different states, in accordance with

the Stern-Gerlach experiment. The spin factors α and β may therefore be represented by
two-dimensional column matrices, for instance,

α =

(
α1

α2

)
.
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The scalar product of α with itself now reduces to the matrix product α†α between α and
the adjoint matrix with α† = (α∗

1, α
∗
2).

We shall find it convenient to write the normalization condition for the wave function |Ψ 〉,
in the form

〈Ψ | Ψ 〉 ≡ (|Ψ 〉, |Ψ 〉) = 1. (4.56)

For the case that |Ψ 〉 = αΨn`m`
, this condition takes the explicit form

〈Ψ | Ψ 〉 = α† α

∫
|Ψn`m`

(r) |2 d3r = 1.

With Ψn`m`
(r) normalized, this leads to the corresponding normalization requirements on

the spin factors,
α† α = β† β = 1.

The wave functions corresponding to different quantum states are or may always be chosen
to be orthogonal. This is a consequence of the fact that the Hamiltonian is an Hermitian
operator also when including electron spin. This leads to the additional requirements

α† β = β† α = 0,

and therefore that we may choose the representation

α =

(
1
0

)
and β =

(
0
1

)
. (4.57)

In the following discussion we shall find it convenient, for arbitrary Hermitian operators
O, also to introduce the notation

〈Φ | O | Ψ 〉 ≡ (O | Φ 〉, |Ψ 〉) = (|Φ 〉,O | Ψ 〉). (4.58)

The new notation does not indicate the position of the “comma” in the scalar product. For
Hermitian operators O this is allowed since the results of letting the operator act to the
“right” or to the “left” are identical.

In section 4.5 a linear relationship between the magnetic dipole moment mL and the
angular momentum L associated with the orbital motion of the electron was demonstrated.
A similar relationship has been established between the magnetic dipole moment mS due to
the spinning electron and the electron spin vector S,

mS = −gs
e

2m
S. (4.59)

The dimensionless factor gs is called the gyro-magnetic ratio of the electron. It turns out
to that gs ≈ 2. We shall see that this difference in the proportionally factors between the
orbital and the spin magnetic moments and the orbital and spin angular momenta leads to
considerable complications.

For the proper discussion of the effects of electron spin, including the magnitude of the
gyro-magnetic ratio, the Schrödinger equation must be replaced by the relativistic Dirac
equation1. Such a discussion will, however, fall outside our scope. For the present purposes it

1Dirac’s relativistic electron equation predicts gs = 2. Including quantum electrodynamic (QED) effects
the corrected value is gs = 2.002319314, in close agreement with experimental values.
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will suffice to note that to lowest order the Hamiltonian H0 and therefore the corresponding
energy levels are independent of the electron spin. This means that the degeneracy of the
energy level n as discussed in section 4.2 should be increased by a factor 2 to 2n2 when
including electron spin.

In an external magnetic field, the spin magnetic dipole moment of the electron will give
rise to an additional potential energy term in the Hamiltonian of the form

HBS = −mS ·B =
e

m
B · S. (4.60)

We shall return to a discussion of the effects of electron spin in an external magnetic field in
section 4.13.

Quiz 4.22 : Show that if the spin states α and β are represented by the vectors (4.57)
and the components of the spin operator S = h̄σ/2 by the two-by-two Pauli spin
matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −ι
ι 0

)
and σz =

(
1 0
0 −1

)
, (4.61)

then

S2α =
3

4
h̄2α, S2β =

3

4
h̄2β

and

Szα =
1

2
h̄ α, Szβ = −1

2
h̄ β,

in accordance with (4.54) and (4.55).

Quiz 4.23 : A simple calculation will show that the orbital angular momentum operator
L = −ιh̄r ×∇ satisfies the commutator rule

[Lx, Ly] ≡ LxLy − LyLx = ιh̄Lz.

Show that the spin angular operator S = h̄σ/2 with σ represented by (4.61) satisfies
the corresponding matrix commutator rule

[Sx, Sy] ≡ SxSy − SySx = ιh̄Sz.

Quiz 4.24 : Show that the spin operators

S± ≡ Sx ± ιSy (4.62)

satisfy the following relations,

S+

{
α
β

}
= h̄

{
0
α

}
and S−

{
α
β

}
= h̄

{
β
0

}
, (4.63)

that is, S± acts to raise or lower the ms value. Note that this in accordance with the
results for L± (see quiz 4.17).
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Quiz 4.25 : Verify that

L · S = LzSz +
1

2
(L+S− + L−S+) (4.64)

Quiz 4.26 : An electron is placed in a constant magnetic field B = Bẑ. Taking account
only of the spin part (4.60) of the Hamiltonian and letting S = h̄σ/2 with σ given
by (4.61), show that the time-dependent wave function | ψ(t) 〉, the eigenfunction of
the time-dependent Schrödinger equation (4.11), may be written as

| ψ(t) 〉 = cα exp(−ιω0

2
t)α+ cβ exp(ι

ω0

2
t)β,

where cα and cβ are complex constants and ω0 = eB/m. Thus show that

〈Sx 〉 ≡ 〈ψ(t) | Sx | ψ(t) 〉 = Re (c∗αcβ h̄ exp(ιω0t))

〈Sy 〉 ≡ 〈ψ(t) | Sy | ψ(t) 〉 = Im (c∗αcβ h̄ exp(ιω0t))

〈Sz 〉 ≡ 〈ψ(t) | Sz | ψ(t) 〉 =
h̄

2

(
| cα |2 − | cβ |2

)

〈Sx 〉2 + 〈Sy 〉2 + 〈Sz 〉2 =
h̄2

4
.

Argue that the average spin vector 〈S 〉 of the electron behaves “classically”, pro-
cessing as a spinning top around the direction of the magnetic field.

4.7 Total Angular Momentum

The orbital momentum L and the spin momentum S both represent angular momenta. In
classical physics we may add such vectors in order to obtain the total angular momentum
of the system. This holds true also in quantum mechanics. The rules for how to quantize
the different angular momenta are, however, more complicated. The complications arise
because the different components of the L, the S and the J operators do not commute
among themselves.

The two groups of operators, H0, L2, Lz and S2, Sz, operate in different spaces, the former
ones in the continuous configuration space r, the latter ones in the discrete spin parameter
space. The two groups of operators therefore trivially commute. Thus, L2, Lz, S2 and Sz
may be quantized simultaneously with the Hamiltonian H0 with corresponding eigenfunctions
|n `m` sms 〉. The quantization rules imply that for a given value of L2 only certain values of
Lz are allowed, that is, only certain directions of L are allowed. The same argument applies
to S and even holds true for the total angular momentum operator

J = L + S.

It can be shown that also the group of operators L2, S2, J2 and Jz may be quantized
simultaneously with H0

L2 |Ψ 〉 = h̄2`(`+ 1) |Ψ 〉
S2 |Ψ 〉 = h̄2s(s+ 1) |Ψ 〉
J2 |Ψ 〉 = h̄2j(j + 1) |Ψ 〉
Jz |Ψ 〉 = h̄mj |Ψ 〉,

(4.65)
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where j and mj are new quantum numbers replacing the former orbital and spin azimuthal
quantum numbers m` and ms. The new quantum numbers must satisfy the constraints

j =|`− s |, |`− s | +1, · · · , `+ s (4.66)

and

mj = −j, −j + 1, · · · , j. (4.67)

The constraint (4.66) is a statement of the fact that the sum of two vectors takes its minimum
and maximum length when the two vectors are anti-parallel and parallel, respectively. The
wave function |Ψ 〉 as given in (4.65) is specified in terms of the five quantum numbers n, `,
s, j and mj and shall also be denoted |n ` s j mj 〉.

Wave functions of the type |n ` s j mj 〉 are expressible as linear combinations of the wave
functions of the type |n `m` sms 〉, and vice versa. In fact, for s = 1

2 the following result can
be shown to be valid

|n `=0 s j=
1

2
mj 〉 = |n `=0m`=0 sms=mj 〉 (4.68)

|n ` s j=`± 1

2
mj 〉 =

√
`±mj + 1

2

2`+ 1
|n `m`=mj−

1

2
sms=

1

2
〉

±

√
`∓mj + 1

2

2`+ 1
|n `m`=mj+

1

2
sms=−

1

2
〉 for ` > 0. (4.69)

With ` = 0 we have j = s and mj = ms. The former result is therefore trivially true. The
latter result can be justified by noting that

• for given ` > 0 and s = 1
2 the only allowed values for j are j = `± 1

2 ,

• to produce a given mj we must require m` +ms = mj ,

• the expansion coefficients ensure that |n`sj=`± 1
2 mj 〉 are orthonormal, and finally,

• the m` values referred to on the right hand side of (4.69) satisfy |m` |≤ `.

The coefficients of the expansion (4.69) are known as Clebsch-Gordan coefficients.

Quiz 4.27 : Make use of (4.64) to show that [H0,J
2] = 0, [L2,J2] = 0 and [S2,J2] = 0

and thus argue that H0, L2, S2, J2 and Jz are simultaneously measurable.

Quiz 4.28 : Show that the |n`sjmj 〉 wave functions, as expressed by (4.68)-(4.69), are
normalized if the wave functions | n`m`sms 〉 are orthonormal. Demonstrate that
|n`s j = `+ 1

2 mj 〉 and |n`s j = `− 1
2 mj 〉 are orthogonal.
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4.8 Spectroscopic Notation

It has become common practice to denote different electron states in the atom in terms of
the n, `, s, j, mj set of quantum numbers in the form

n` 2S+1Lo,eJ . (4.70)

The first part of this form, n`, will be referred to as the electron configuration, 2S+1L as the
spetral term and 2S+1LJ as the spectral level. In this notation the principal quantum number
n and the spin and total angular momentum quantum numbers S = s and J = j are given
by their numerical values. The orbital angular momentum quantum numbers ` and L = ` are
indicated by letters. In table 4.7 the letters corresponding to different values of ` are given.
For L the corresponding capital letters are used. The superscripts o or e indicate the parity
of the wave function regarding the transformation r → −r. If the wave function changes sign
during this transformation, the parity is said to be odd. This is indicated by the superscript
o. If the wave function remains unchanged during the mirroring transformation, the parity is
even. This is indicated by the superscript e – or more commonly by suppressing the subscript.
The latter tradition is unfortunate because sometimes also the superscript o is suppressed.

` 0 1 2 3 4 5

symbol s p d f g h

Table 4.7: Spectroscopic terminology

For the one-electron atom, the terminology (4.70) may seem unnecessary complicated.
First of all, the orbital angular momentum values are indicated twice, once with ` and once
with L. Additionally, from quiz 4.9 it follows that the parity of the wave function will be even
or odd according to whether the `-value is an even or odd integer. Finally, for the electron
S = 1

2 and therefore 2S + 1 = 2 always. We shall refer to this value 2 as indicating a doublet
state in the following. The reason for this seemingly unnecessary duplication of notation
will become clear when we discuss many-electron atoms in the following chapter. On the
contrary we note that the value of the azimuthal quantum number mj is not indicated by the
terminology (4.70).

The ground state of the one-electron atom, corresponding to the lowest energy level, is
characterized by quantum numbers n = 1, ` = 0 and s = j = 1

2 and will therefore be denoted

1s 2S1/2.

The first excited states have n = 2, ` = 0 or 1, s = 1
2 and j = 1

2 or 3
2 . The corresponding

electron states are

2s 2S1/2, 2p 2Po1/2, 2p 2Po3/2.

Quiz 4.29 : Express the n = 3 states in spectroscopic notation.
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4.9 Transition Rates

Except for the brief introductory discussion of the effects of an external magnetic field, we
have so far considered the atom as an isolated system without interaction with the outside
world. We have demonstrated that the atom may only exist in a discrete set of energy states.
The next problem to be discussed is how the atom may jump between different energy states
with the accompanied emission or absorption of electromagnetic radiation. To study these
phenomena it is necessary to include an additional time-dependent term in the Hamiltonian
of the system. We shall limit our discussion to purely radiative transitions. That is, we
shall only consider emission and absorption processes where a single atom is involved in the
interaction with the electromagnetic field. In dense gases additional effects may appear as a
result of interactions (collisions) with neighboring atoms.

In the search for the extra term H ′ of the Hamilton operator describing the interaction
between the one-electron atom and an external electromagnetic wave, we shall be guided
by the corresponding classical system. Together with the positive nucleus at the origin, the
electron at position r represents a time-varying electric dipole moment

mE = −er.

In the electric field E of an external plane wave, this electric dipole has a potential energy

H ′ = −mE ·E = er ·E(r, t) (4.71)

with

E(r, t) =
E0

2
(ε̂ exp(ιk · r − ιωt) + ε̂∗ exp(−ιk · r + ιωt)) . (4.72)

Here E0 is the (real) amplitude of the electric field while ε̂ is the (possibly complex) polar-
ization vector.

The extra term (4.71) makes the total Hamiltonian

H = H0 +H ′

time dependent2. It is therefore necessary to replace the stationary Schrödinger equation
(4.10) with the corresponding time-dependent Schrödinger equation (4.11), here rewritten in
the form

ιh̄
∂

∂t
|Ψ(t) 〉 = H |Ψ(t) 〉. (4.73)

The time dependence of the wave function | Ψ 〉 was explicitly indicated. We shall seek
solutions of (4.73) in the form

|Ψ(t) 〉 =
∑

q

cq(t) exp(− ι
h̄
Wqt) |q 〉, (4.74)

2The more general discussion of the interaction between the atom and an external electromagnetic field will
start by expressing the Hamiltonian in terms of the electromagnetic potentials Φ and A,

H(r, p) =
1

2m
(p − qA)2 + qΦ.

The results of the two different approaches coincide except at very strong fields.
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where cq(t) are time-dependent coefficients and where |q 〉 and Wq are the eigenfunctions and
eigenvalues of the zeroth order problem,

H0 |q 〉 = Wq |q 〉.
We are allowed to seek solutions of (4.73) of the form (4.74) because the set of eigenfunc-

tions of the zeroth order problem constitute a complete set. The form of the solution we are
seeking also allows for an immediate physical interpretation. If the atom in the absence of
any external wave field is prepared in a particular state i at time t = 0,

cq(t = 0) =

{
1 for q = i
0 otherwise,

then the atom will remain in this state,

cq(t) = cq(t = 0) for all q’s.

In the presence of a perturbing external electromagnetic wave field, the atom may decide to
jump to another state. In this case H ′ 6= 0 and the coefficients cq(t) will evolve with time. In
particular, the probability that the atom will be making a transition from state i to another
state f by time t is given by | cf (t) |2. A schematic illustration is given in figure 4.5. The
transition probability per unit time or the transition rate is therefore

wfi =
d

dt
|cf |2 . (4.75)

Figure 4.5: State probabilities at different times

With this interpretation we are only left with the problem of solving for cq(t). We sub-
stitute the expansion (4.74) into (4.73) and form the scalar product of the resulting equation
with | f 〉. Taking into account the orthogonality of different eigenstates of the unperturbed
atom, 〈 f | q 〉 = δfq, and defining

ωfq ≡
Wf −Wq

h̄
,

the result of this operation is

ιh̄ ċf (t) =
∑

q

cq(t) exp(ιωfqt) 〈 f | eE(r, t) · r | q 〉. (4.76)
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We note that the right hand side expansion is an infinite sum over all states of the zeroth
order system.

Two approximations lead to considerable simplifications. First, the wavelength λ repre-
sents a typical scale length for variations of the electric field E of the electromagnetic wave,
the corresponding length for the wave function |q 〉 is the Bohr radius aB. With λ� aB the
electric field E may be considered approximately constant over the atom, that is, we may
replace E(r, t) in (4.76) with E(r = 0, t). We shall refer to this approximation as the electric
dipole approximation. Secondly, while the transition probability from the initial state i to
any other state remains small, ci ≈ 1 and | cq |� 1 for q 6= i, only the term i in the sum
(4.76) needs to be retained. The time dependence of ċf (t) for f 6= i is now of the simple form
exp(ι(ωfi ± ω)t) and may easily be integrated to give

cf (t) =
eE0

2h̄
〈 f | ε̂ · r | i 〉 1− exp(ι(ωfi − ω)t)

ωfi − ω

+
eE0

2h̄
〈 f | ε̂∗ · r | i 〉 1− exp(ι(ωfi + ω)t)

ωfi + ω
. (4.77)

The result depends on the frequency ω of the electromagnetic wave. Significant inter-
actions between the electron and the external wave will take place only if one of the two
numerators vanishes, that is, if

ω = ±ωfi. (4.78)

In an absorption process, Wf > Wi, the first term of (4.77) contributes, in an emission
process the second term is the important one. We recognize (4.78) as the frequency condition
for photons involved in the transition of the atom from one state to another.

One final step is needed in order to calculated the transition rate wfi according to (4.75).
In (4.77) the electromagnetic wave was assumed to be strictly monochromatic. This is an
idealization. To get the physically relevant transition rate we should integrate the idealized
transition probability | cf (t) |2 over a frequency interval containing the frequency satisfying
the frequency condition (4.78). For this purpose we replace the factor | E0 |2 appearing in
| cf (t) |2 with the spectral power density per unit area and unit solid angle I(ω) of the wave
(2.58) according to the prescription

ε0
2
E2

0c→ I(ω) dω d2Ωk,

where dω is an angular frequency interval and d2Ωk is a solid angle interval in the direction
of the wave vector k of the external radiation field. Notice that we in our notation suppressed
the possible directional dependence of the power spectrum.

Assuming I(ω) to be approximately constant over the actual frequency interval and mak-
ing use of the integral identity ∫ ∞

−∞

sin2 x

x2
dx = π,

the transition probability for a transition from state i to state f during time t reduces to

|cf (t) |2 =
4π2α

h̄
I(|ωfi |) d2Ωk | 〈 f | ε̂ · r | i 〉 |2 t,



4.9. TRANSITION RATES 81

where α is the fine-structure constant (4.28). The corresponding external radiation field
induced transition rate per unit solid angle is, according to (4.75),

wfi =
4π2α

h̄
I(|ωfi |) | 〈 f | ε̂ · r | i 〉 |2 . (4.79)

The transition rate is seen to be proportional with the power density of the external radiation
field at the frequency satisfying the frequency condition (4.78). In addition, the result contains
the factor 〈 f | ε̂·r | i 〉, proportional to the product of the matrix element of the electric dipole
moment mE = −er of the atom between the initial and final states and the polarization of
the radiation field. The result thus represents the interaction between the electromagnetic
wave and the electric dipole moment of the atom and is therefore said to represent the electric
dipole transition rates.

To interpret the result (4.79) further, let us now consider two atomic states a and b with
Wa < Wb. In a transition from the lower energy state a to the higher state b a photon with
the proper energy h̄ωba is absorbed by the atom. The transition rate per unit solid angle for
this absorption process is given by

wabsba =
4π2α

h̄
I(ωba) | 〈 b | ε̂ · r | a 〉 |2 . (4.80)

As expected, the absorption rate depends on the number of photons in the appropriate energy
range passing by the atom per unit time as represented by the spectral power density I(ωfi).

It may be more surprising that the same statement also applies for the corresponding
expression for the reverse process in which the atom jumps from the higher energy state b
to the lower state a while getting rid of its excess energy through the emission of an extra
photon with identical energy and direction of propagation. The transition rate per unit solid
angle is

wst.eab =
4π2α

h̄
I(ωba) | 〈 a | ε̂ · r | b 〉 |2 . (4.81)

Because this transition rate depends on the number of incident photons similar to the emitted
photon, the latter process will be referred to as stimulated emission. The absorption and the
stimulated emission processes are illustrated schematically in figure 4.6.

The transition rates for absorption and stimulated emission, (4.80) and (4.81), are seen
to be equal. Still, stimulated emission is usually much less intense than absorption. This is
a result of the fact that the number of atoms in the higher energy state Nb is usually much
less than the number of atoms in the lower energy state Na.

In addition to these absorption and stimulated emission processes, the atom may also
take part in a spontaneous emission process between the two atomic states and for which
the transition rate wsp.eab is independent of the presence of the external radiation field. The
expression for the spontaneous emission rate can be derived by invoking the principle of
detailed balance for a gas in thermodynamic equilibrium with a radiation field. The principle
states that to be able to maintain the thermodynamic equilibrium distributions of particles
and fields in the presence of transition processes, it is necessary that the total number of
transitions in either direction between any two atomic states are equal.

Consider the gas and radiation field to be in thermodynamic equilibrium at temperature
T = κT . Here κ is the Boltzmann constant and T and T are the temperature in energy
units or degrees Kelvin, respectively. Let Na and Nb denote the number of atoms occupying
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Figure 4.6: Absorption, stimulated emission and spontaneous emission processes between two
atomic states a and b with energies Wa and Wb

the two states a and b. The number of transitions from state a to b per unit time and per
unit solid angle is given by wabsba Na. The number of reverse transitions is (wst.eab + wsp.eab )Nb.
According to the principle of detailed balance these transition rates be equal, that is,

wsp.eab = wabsba

Na

Nb
− wst.eab . (4.82)

In thermodynamic equilibrium the ratio of the number of atoms in the two atomic states
a and b is determined by the energy difference between these states in accordance with the
Boltzmann relation (see section 7.7)

Nb

Na
= exp(− h̄ωbaT ), (4.83)

where T is the temperature in energy units (T = κT ). The energy density in the radiation
field is given by Planck’s radiation function (see section 7.15)

u(ω) =
h̄ω3

π2c3
1

exp( h̄ωT )− 1
, (4.84)

and includes the energy density of photons of both polarizations and propagating in arbitrary
directions. Thus, the power density I appearing in the expressions for the absorption and
stimulated emission rates is related to this quantity by the relation

I(ω) =
1

2

c

4π
u(ω). (4.85)

Substitution of (4.83) - (4.85) into (4.82) now leads to the transition rate for spontaneous
emission rate per unit solid angle and polarization ε̂ as

wsp.eab =
αω3

ba

2πc2
| 〈 a | ε̂ · r | b 〉 |2 . (4.86)

Also the spontaneous emission process is indicated schematically in figure 4.6.
The expressions (4.80), (4.81) and (4.86 all refer to transition rates per unit solid angle

and specified polarization. The corresponding transition rates regardless of polarization and
direction of propagation for the involved photons, Wabs

ab , Wst.e
ab and Wsp.e

ab , are found by first
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for given direction of propagation summing over orthogonal polarizations and then integrating
over all directions. The results are derived in quiz 4.32.

The transitions rates (4.80), (4.81) and (4.86) all refer to transitions between discrete,
negative energy eigenstates of the atom. We refer to such transitions as bound-bound tran-
sitions. These lead to the formation of line spectra. An atom may also be involved in a
photo-ionization transition in which the energy of the absorbed photon is sufficient to tear
of an electron from the atom. A radiative recombination transition is the opposite process.
Here a free electron is captured by an ion while the excess energy is radiated away. Char-
acteristic of these bound-free transitions is that the corresponding spectra are continuous.
We also speak of free-free transitions in which the electron involved in the transition is in a
free state both before and after the event. Examples are the Bremsstrahlung emission, the
cyclotron radiation or the Thompson scattering by free electrons accelerated in the electric
field of heavy ions, in an external magnetic field or in the electric field of an electromagnetic
wave. We discussed these processes in chapter 3.

Quiz 4.30 : Why is it for the quantum mechanical treatment of the extra term H ′ not
sufficient to substitute the complex expression (2.27) for the electric field of the plane
wave?

Quiz 4.31 : With the wave function |Ψ(t) 〉 defined by (4.74), show that the normaliza-
tion condition 〈Ψ(t) | Ψ(t) 〉 = 1 leads to

∑

q

|cq(t) |2= 1.

Argue that |cq(t) |2 can be interpreted as a probability, the probability that the atom
at time t occupies state q.

Quiz 4.32 : The expression (4.81) for the transition rate per unit solid angle for spon-
taneous emission wsp.e

ab (ε̂) from state | b 〉 to state | a 〉 with polarization ε̂, contains
the factor 〈 a | ε̂ · r | b 〉.
a) Make use of the fact that any wave with polarization ε̂ can be written as a sum of
two plane-polarized waves with mutually orthogonal polarizations ε̂1 and ε̂2 to derive
the expression for the total transition rate for spontaneous emission from state | b 〉
to state | a 〉 for arbitrary (all) polarization(s),

Wsp.e
ab =

∫
(wsp.e

ab (ε̂1) + wsp.e
ab (ε̂2)) d2Ω =

4αω3
ab

3c2
| rab |2 . (4.87)

where rab ≡ 〈 a | r | b 〉. [Hint: Note that 〈 a | ε̂ · r | b 〉 = ε̂ · rab, let θ denote the
angle between k and rab, choose ε̂1 in the (k, rab)-plane and ε̂2 perpendicular to this
plane, and then integrate over solid angle Ω.]

b) Show that the corresponding total transition rates for absorption and stimu-
lated emission between state | a 〉 and state | b 〉 for isotropic radiation regardless of
polarization are

Wabs
ba =Wst.e

ab =
4π2α

3h̄
I(ωba) | rab |2 . (4.88)
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Quiz 4.33 : In 1916 Einstein studied the relation between absorption, stimulated and
spontaneous emission in thermodynamic equilibrium through the rate equations

Ṅba = BbaNaρ(ωba)

Ṅab = AabNb +BabNbρ(ωba),

requiring detailed balance, Ṅba = Ṅab. Here Na, Nb are the number of atoms in
states a and b, Ṅab, Ṅba are the number of atoms making transitions from b to a and
from a to b per unit time, and ρ(ωba) is the energy density in the electromagnetic
radiation field at the relevant frequency. The coefficients Aab, Bab and Bba are known
as the Einstein coefficients for spontaneous and stimulated emission and absorption,
respectively.

Show with reference to (4.82)-(4.84) and quiz 4.32 that

Bba = Bab

[
=
Wabs
ba

ρ(ωba)

]
(4.89)

Aab =
h̄ω3

ba

π2c3
Bab

[
=Wsp.e

ab

]
. (4.90)

4.10 Selection Rules and Atomic Lifetimes

To estimate the strength of the spectral line feature corresponding to atomic transitions
between states i and f , it is necessary to know the value of the transition rate wfi. A
transition from state i to another state f will be called an allowed transition if wfi > 0. A
forbidden transition is one for which wfi = 0. Fortunately, simple rules can be established to
decide for which transitions the transition rate takes non-vanishing values. The rules we are
looking for are known as the selection rules for electric dipole transitions.

We shall again consider the one-electron atom with n, `, m`, s and ms as quantum
numbers. Let the change in these quantum numbers associated with the transition between
the two states be denoted by ∆n, ∆`, ∆m`, ∆s and ∆ms. The set n, `, s, j and mj would
have been a more proper choice of quantum numbers at this point. With the help of the
relations (4.68) - (4.69) it will, however, be easy to transform results from one set of quantum
numbers to the other.

For the spin part of the wave function it is trivially seen that ∆s = 0. The electron will be
a spin s = 1

2 particle before and after the transition. Furthermore, since ε̂ · r is independent
of electron spin, the orthogonality of the spin part of the wave functions immediately leads
to the requirement ∆ms = 0.

The unperturbed wave functions have even or odd parity under the coordinate transfor-
mation r → −r. If | i 〉 and | f 〉 have identical parity then the integrand of 〈 f | r | i 〉 is an
odd function of r and the integral will vanish. Necessary for a non-vanishing transition rate
is therefore that the initial and final electron states have different parities.

For plane polarized waves we may choose, ε̂ = ẑ and therefore ε̂ ·r = r cos θ. The angular
part of the integral (4.80) reduces to

∫ 1

−1
d cos θ

∫ 2π

0
dϕ exp(−ι∆m`ϕ) cos θ P

|m`+∆m`|
`+∆` (cos θ)P

|m`|
` (cos θ).
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The properties of the complex exponential and those of the associated Legendre polynomials,
listed in table 4.3, will show that the angular integrals will take non-vanishing values only if

∆m` = 0 and ∆` = ±1. (4.91)

For circularly polarized waves we choose instead, ε̂ = (x̂ ± ιŷ)/
√

2 and therefore ε̂ · r =
r sin θ exp(±ιϕ) The corresponding integrals are

∫ 1

−1
d cos θ

∫ 2π

0
dϕ exp(−ι(∆m` ∓ 1)ϕ) sin θ P

|m`+∆m`|
`+∆` (cos θ)P

|m`|
` (cos θ).

These integrals will take non-vanishing values only if

∆m` = ±1 and ∆` = ±1. (4.92)

We notice (see quiz 4.9) that the requirement ∆` = ±1 represents a strengthening of the
requirement that the initial and final electron states must have different parities.

Combining the above results with the relations connecting | nj`smj 〉 and | n`m`sms 〉
eigenstates of the atom, (4.68) and (4.69), the general set of selection rules for electric dipole
radiation transitions of the one-electron atom may now be formulated.

The one-electron atom will absorb or emit radiation in electron
transitions satisfying the following conditions:
• ∆s = 0
• initial and final states have different parities
• ∆` = ±1
• ∆j = 0, ±1
• ∆mj = 0, ±1.

In figure 4.7 a common way of illustrating possible transitions have been given. Here
the energy levels for the H I atom have been ordered according to spectral term, 2S+1L. The
energy levels have been given in units of Kayser [cm−1] and electron volts [eV] with the energy
level of the ground state as origin. Examples of allowed transitions between different states of
the atom, satisfying ∆` = ±1, have been indicated, some with the corresponding wavelength
in units of ångstrom [Å]. A diagram of this type is called a Grotrian diagram and is often met
with in the literature. The usefulness of such diagrams will seen in chapter 5 where we will
be discussing properties and spectra of many-electron atoms.

A transition for which any one of the above requirements is not fulfilled represents a
forbidden transition. This does not mean that the corresponding spectral line may not be
observed in nature. A forbidden transition only means that according to the electric dipole
approximation the transition may not occur. A forbidden transition may still give rise to a
forbidden line in the spectrum when higher order effects are taken into account. For instance,
in the electric quadrupole approximation, the r-dependence of the wave electric field E(r, t)
in (4.76) is taken into account to first order in r through the expansion

exp(ιk · r) ≈ 1 + ιk · r.

This gives rise to the appearance of matrix elements of the type 〈 f | k · rr | i 〉. For
these elements to take non-vanishing values, the initial and final electron states must have
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Figure 4.7: Grotrian diagram showing energy levels for different spectral terms and examples
of allowed transitions

identical parities. Similar conclusions apply for magnetic contributions to the magnetic dipole
transition rate. In addition, effects due to inter-atomic collisions may give non-vanishing
transition rates. It is, however, normally found that transition rates for forbidden transitions
will be smaller than those for allowed transitions.

Left to itself, shielded from external radiation fields, an excited atom will tend to decay to
some lower energy state of the atom. The rate at which this decay takes place is determined
by the sum of the spontaneous emission rates from the given excited state i to all lower energy
states f ,

Wi =
∑

f

Wsp.e
fi . (4.93)

If Ni(t) atoms are prepared in state i at time t, then during the time interval dt a number
Ni(t)Widt of these will decay to lower energy states. This leads to the differential equation
for the remaining number of atoms in state i,

d

dt
Ni(t) = −Ni(t)Wi,

with the solution Ni(t) = Ni(t = 0) exp(−Wit). During every time interval of length

∆t = τi ≡ 1/Wi, (4.94)

the number of the original atoms remaining in state i is reduced by a factor e−1. The quantity
τi represents the natural lifetime of the state i.

For atomic states for which allowed transitions to lower energy states exist, natural life-
times are typically found in the range 10−8 to 10−6 s. If allowed transitions to lower states
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do not exit, the natural lifetimes may be orders of magnitude longer. Such states are referred
to as meta-stable states. In the presence of external radiation fields or inter-atomic collisions
typical lifetimes of the meta-stable states will be shortened.

Quiz 4.34 : List all allowed transitions between the n = 2 and n = 3 states.

Quiz 4.35 : Determine the meta-stable states of one-electron atoms.

Quiz 4.36 : Make use of the orthogonality property of the angular part of the wave-
functions together with the recurrence relations for the associated Legendre functions,
as given in table 4.3, to verify (4.91) and (4.92).

Quiz 4.37 : Argue for the selection rules for ∆j and ∆mj given the corresponding se-
lection rules for ∆`, ∆m` and ∆ms. [Hint: Given `, what are the allowed values for
j? Given `′ = `± 1, what are the allowed values for j′?]

4.11 Spectral Line Formation

With the selection rules at hand, let us now study the formation of spectral lines for one-
electron atoms. To lowest order the energy levels only depend on the principal quantum
number n. The ground state is 1s 2S1/2. The lowest excited states are 2s 2S1/2 and 2p 2Po1/2,3/2,
all corresponding to the identical energy to lowest order. Transitions between the ground state
and the two p-states are both allowed. The corresponding spectral line formed is called the
resonance line. For hydrogen the resonance line is found at λ1216 and is referred to as the
Lα-line of the Lyman series. A transition between the ground state and the 2s 2S1/2 state is
forbidden since these states both have even parity. The latter state is therefore a meta-stable
state, for hydrogen with a natural lifetime of 0.12 s.

For transitions between the n = 1 and n = 3 energy levels, only the 3p 2Po1/2,3/2 states
may participate. These transitions give rise to the Lβ-line in the Lyman series at λ1026.
The 3s 2S1/2 and 3d 2D3/2,5/2 states are not meta-stable states as these may participate in
transitions with the 2p 2Po1/2,3/2 states, leading to the Hα-line of the Balmer series at λ6563.

Transitions between the 2p 2Po1/2 and the 3d 2D5/2 states are not allowed as these would
correspond to ∆j = ±2. In a similar manner the selection rules may be used to determine
allowed transitions between any set of energy levels. In fact, it will be seen that there will
exist allowed transitions between any given set of energy levels, as indicated in figure 4.1 for
the hydrogen atom. This statement is true as long as the energy levels only depend on the
principal quantum number n.

The polarization of the emitted or absorbed radiation is determined by the value of ∆mj

for the transition. If ∆mj = 0, the polarization is linear. For ∆mj = ±1 the radiation is circu-
larly polarized. This conclusion follows directly from arguments leading to the establishment
of the selection rules in section 4.10.

The strength of a given spectral line depends on the value of the corresponding transition
rate, together with the number of atoms available for participating in the transition. For an
absorption process this means the number of atoms in the lower energy state, for emission
processes it is the number of atoms in the higher energy state that is the relevant quantity.
The distribution of atoms over different electron states will be discussed in chapter 7. Suffice it
here to say that the fraction of atoms in the higher energy states increases with temperature.
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If an electromagnetic radiation field with a continuous frequency or wavelength spectrum
on its way toward an observer traverses a gaseous medium, a certain fraction of the photons
with the appropriate energy will be lost due to absorption processes. If the absorbed photons
are not replaced by photons created in the corresponding emission processes, the observer will
see a deficit in the spectrum at frequencies corresponding to radiation transitions in the gas.
An absorption line in the original continuous spectrum will result. The first observations of
spectral features were of this type. With the help of a glass prism, Fraunhofer was able to
demonstrate that the Solar radiation consisted of a continuous spectrum with a number of
dark lines (Fraunhofer lines). The lines form as the continuous spectrum radiation emerging
from the photosphere on its way passes the cooler chromosphere. If, on the other hand, the
number of photons emitted by the gas exceeds the number of absorbed photons an emission
line superposed on the continuous spectrum will be formed. This situation arises for instance
in scattered light observation from the hot, but tenuous coronal gas outside the Solar limb.

Observed absorption or emission line features have finite widths. Different processes con-
tribute to this line broadening. At this point we shall discuss two of the basic mechanisms,
leading to distictively different spectral line profiles. Subsequent sections will discuss other
mechanisms.

4.11.1 Natural line profile

Due to the decay rate of the excited state | i 〉, the ci(t) coefficient in (4.76) will not remain
constant as assumed for the derivation of (4.77). Instead, for the next order approximation
it must be assumed that the state | i 〉 component of the total wavefunction (4.74) will vary
with time as

χ(t) = exp

(
−ιWi

h̄
t− t

2τi

)
for t > 0,

where τi is the natural lifetime (4.94) of the state | i 〉. The corresponding Fourier transform
(2.43) is

χ̃(
W

h̄
) =

1

2π

∫ ∞

0
exp

(
ι
W −Wi

h̄
t− t

2τi

)
dt =

ι

2π

(
W −Wi

h̄
− ι

2τi

)−1

. (4.95)

Figure 4.8: Formation of the Lorentz spectral line profile
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The energy probability distribution of the excited state, given by the absolute square
of the Fourier amplitude (4.95), and illustrated in figure 4.8b, is in accordance with the
Heisenberg uncertainty principle: the energy uncertainty increasing inversely proportional
with the natural lifetime of the excited state. Each of these energies will contribute to the
resulting spectral line and therefore leading to a normalized spectral line profile

ψL(∆ω) =
1

2πτi

(
(∆ω)2 +

1

4τ2
i

)−1

(4.96)

illustrated in figure 4.8c. We here defined ∆ω = ω−ωfi. This profile refered to as the Lorentz
spectral line profile. The full width at half height of the Lorentz line profile is seen to be given
by

∆ωfwhh =
1

τi
. (4.97)

In the above discussion we assumed the natural lifetime of the final state |f 〉 to be infinite and
the corresponding energy probability distribution therefore δ-function like. With allowance
for a finite natural lifetime τf for the final state the lifetime τfi to be used in (4.96) is defined
by

1

τfi
=

1

τi
+

1

τf
. (4.98)

4.11.2 Collisional or pressure broadening

The natural line profile results from the natural finite lifetime for atoms in a given state.
Collisions between atoms in a gas resulting in radiationless transitions of the colliding atoms
between different atomic states lead to a similar effect. The combined effect due to natural
lifetime and collisions is described by replacing the inverse natural lifetime τ−1

i for state | i 〉 by
an effective lifetime νi+ τ−1

i in (4.96). Here νi represents the collision frequency for collisions
leading to radiationless transitions out of state | i 〉.

Collisions between atoms in a gas will thus lead to a broadening of spectral lines, but
the line profile will remain Lorentzian. The collision frequency νi increases with increasing
pressure in the gas. The broadening of spectral lines due to collisions is therefore referred to
as collisional or pressure broadening.

Collisional broadening will normally dominate the natural line width. In fact the natural
line width will only be observed for gases with vanishing pressure. In stellar interiors high
gas pressure and therefore strong collisional broadening effects contributes to the production
of the continuous radiation spectra from stars.

4.11.3 Doppler broadening

Relative motions between the atoms in the emitting or absorbing medium is another mecha-
nism contributing to the line profile. The Doppler effect arises when there is a relative motion
between the emitting or absorbing atom and the observer. If the atom in its rest frame is
emitting photons with angular frequency ω0, an observer moving with velocity v toward the
atom will observe a shifted frequency

ω = ω0

(
1 +

v

c

)
. (4.99)
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If all emitting atoms within the field of view are moving away from the observer, the spectral
line will be shifted toward smaller frequencies (red-shifted). If the emitting atoms are moving
toward the observer, the line will be shifted toward higher frequencies (blue-shifted). But if
there is a spread in line-of-sight velocities of the emitting atoms within the field of view, a
broadening of the line will result. Identical conclusions apply to absorption lines. The effect
is referred to as Doppler broadening and the corresponding line profile as the Doppler line
profile.

As a quantitative example consider a gas with a Maxwellian distribution of line-of-sight
velocities (see figure 4.9)

fv(v) ∼ exp

(
−Mv2

2T

)
.

Here M is the atomic mass and T kinetic temperature in energy units (T = κT ). The fraction
fv(v)dv of atoms with line-of-sight velocities in the range (v, v + dv) will contribute to the
broadened spectral line at the relative frequency shift ∆ω/ω0 = (ω − ω0)/ω0 = v/c. The
spectral line profile will therefore in this case take a Gaussian shape

ψD(∆ω) =

√
M

2πT
c

ω0
exp

(
−M(∆ω)2c2

2T ω2
0

)
. (4.100)

The full width at half height ∆ωfwhh (∆λfwhh) is given by

∆λfwhh

λ0
≈ ∆ωfwhh

ω0
=

√
8 ln 2 T
Mc2

. (4.101)

In figure 4.9 we assumed that the radiating gas had no net line-of-sight velocity relative to the
observer. With a net line-of-sight velocity superposed on the thermal motions of the individual
radiating atoms the line profile will suffer a corresponding shift in frequency (wavelength).

Doppler broadening will result from thermal motions in a gas, from inhomogeneous macro-
scopic motions such as produced from turbulence or waves in the gas, or from the rotational
motion of astronomical object.

Figure 4.9: Distribution of line-of-sight velocities leading to spectral line broadening

4.11.4 The Voigt line profile

In the previous subsections the combined effect due to natural lifetime and collisions and the
Doppler effect were considered independently of each other. These two effects have distic-
tively different origins and give rise to distinctively different line profiles, the Doppler effect
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giving rise to a broad central core and narrow wings, the Lorentz profile having the opposite
characteristics. In reality these two effects will work together in forming the spectral line
profile. The total effect is found by forming the convolution product of the two profiles,

ψV (∆ω) = ψL(∆ω)⊗ ψD(∆ω) ≡
∫ ∞

−∞
ψL(∆ω′)ψD(∆ω −∆ω′) d∆ω′ (4.102)

The line profile at a certain frequency shift ∆ω is the sum of products of contributions from
the two profiles with a sum of individual frequency shifts equal to the given value. The
combined profile is known as the Voigt line profile. In figure 4.10 the result is plotted for
the case where the Lorentz and the Doppler profiles have identical full widths at half height.
For a narrower Lorentz profile the Voigt profile approaches the Doppler profile, for a wider
Lorentz profile, the Voigt profile approaches the Lorentz profile. Generally, the core of the
total line profile is dominated by the Doppler profile, while the wings are determined by the
Lorentz profile.

Line profiles are regularly used to infer density and temperature of the emitting or absorb-
ing medium, temperature mainly from the form of the central core of the line, density from
the wings. Characteristic Doppler broadening effects also result from stellar rotations and
from waves or turbulent motions. But there are also other mechanisms that will contribute
to the final line shape. Some of the more important of these include fine structure splitting,
Zeeman and Stark effects. We shall discuss these effects in the following.

Figure 4.10: Voigt spectral line profile

Quiz 4.38 : A distant star with radius R equal to the Solar radius R� has a rotational
axis perpendicular to the line of sight. The rotational period is P = 6 hours. The
surface temperature of the star is T = 6000 K. Calculate the width of the Hα-line
resulting from the stellar rotation. What is the corresponding width due to thermal
Doppler broadening? How is your result modified if the angle θ between the rotational
axis and the line of sight is changed?

4.12 Fine Structure Splitting

At this point we have concluded the lowest order discussion of one-electron atomic spectra. It
will now be necessary to consider some smaller but still important additional effects leading
to modification and splitting of the zeroth order energy levels. These include fine structure
splitting due to relativistic and spin-orbit interaction effects in the atom, the Zeeman and
Stark effects due to external magnetic and electric fields, and finally also hyperfine effects
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due to the existence of nuclear spin. These effects may each give rise to splitting, shifting or
broadening of spectral lines. We start with fine structure splitting.

For a stringent discussion of this effect, the relativistic Dirac electron equation is needed.
As this falls outside our scope, we shall have to be satisfied with a semi-empirical discussion.
For this purpose let us again consider the one-electron atom as a classical system. The electron
is moving in its orbit with velocity v in the electrostatic field

E =
Ze

4πε0

r

r3

from the nucleus. An observer moving with velocity v in an electric field E will “see” a
magnetic field

B′ = − 1

c2
v ×E = − 1

mc2
p× Ze

4πε0

r

r3
=

Ze

4πε0mc2
L

r3
. (4.103)

In this magnetic field B′, the spin magnetic moment mS = −eS/m of the electron due to
the electron spin S will give rise to an extra potential energy term in the Hamiltonian

HB′S = −mS ·B′ =
Ze2

4πε0m2c2
L · S
r3

.

A rigorous relativistic treatment of the motion of the spinning electron in its bounded
orbit will introduce one additional contribution of the identical form, only half the size and
of the opposite sign. The effect is known as Thomas precession. Combining these two effects
we have the spin-orbit term of the Hamiltonian

HLS =
Ze2

8πε0m2c2
L · S
r3

. (4.104)

We must also include a first order relativistic kinetic energy correction to the Hamiltonian.
Expanding the relativistic kinetic energy expression we find

√
m2c4 + p2c2 −mc2 = mc2

(
1 +

p2

2m2c2
− p4

8m4c4
+ · · · − 1

)
=

p2

2m
− p4

8m3c2
+ · · · .

The first term is the non-relativistic kinetic energy. The second term is the relativistic mass
term of the Hamiltonian. We write it in the form

HRM = − p4

8m3c2
= − 1

2mc2

(
H0 +

Ze2

4πε0r

)2

. (4.105)

The relativistic treatment will show that there is still an extra term of the Hamiltonian
that need to be included. The term is referred to as the Darwin term and reads

HD =
πh̄2

2m2c2
Ze2

4πε0
δ(r). (4.106)

The sum of the relativistic mass, the spin-orbit and the Darwin terms is known as the
fine structure term of the Hamiltonian

HFS = HRM +HLS +HD. (4.107)
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Let a complete set of orthonormal eigenfunctions {| q(0) 〉} with corresponding eigenval-

ues {W (0)
q } of the Hamiltonian H0 be known. We are seeking approximations for the

eigenfunctions |q 〉 and eigenvalues Wq of the Hamiltonian H = H0 +H ′,

H |q 〉 = Wq |q 〉, (4.108)

assuming H ′ to be “small”.

If W
(0)
q is a non-degenerate eigenvalue, then | q 〉 =| q(0) 〉+ |∆q 〉 and Wq = W

(0)
q + ∆Wq

where

|∆q 〉 =
∑

p 6=q

〈 p(0) |H ′ |q(0) 〉
W

(0)
q −W (0)

p

|p(0) 〉+O((H ′)2) (4.109)

∆Wq = 〈 q(0) |H ′ | q(0) 〉+
∑

p 6=q

| 〈 p(0) |H ′ | q(0) 〉 |2

W
(0)
q −W (0)

p

+O((H ′)3). (4.110)

If W
(0)
q is a g-fold degenerate eigenvalue with corresponding mutually orthonormal eigen-

function |q(0)i 〉, i = 1, · · · , g then

|q 〉 =

g∑

i=1

ci |q(0)i 〉+O(H ′) and Wq = W (0)
q + ∆Wq, (4.111)

where the coefficients {ci} and the first order part of ∆Wq are determined as solutions of
the eigenvalue problem

g∑

j=1

(
〈 q(0)i | H ′ |q(0)j 〉 −∆Wq δij

)
cj = 0, i = 1, · · · , g. (4.112)

In particular, ∆Wq is found from the consistency relation

det |〈 q(0)i | H ′ |q(0)j 〉 −∆Wq δij | = 0. (4.113)

If H ′ does not introduce any cross-coupling between eigenfunctions {| q(0)i 〉}, that is,

〈 q(0)i | H ′ |q(0)j 〉 = 0 for i 6= j, then

∆Wqi = 〈 q(0)i | H ′ |q(0)i 〉+O((H ′)2).

Table 4.8: Stationary perturbation theory
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The eigenfunctions of the Hamiltonian H = H0+HFS differ from those of the unperturbed
HamiltonianH0. The effects of the fine structure term (4.107) may, however, still be evaluated
from the knowledge of the eigenfunctions of the unperturbed Hamiltonian by using first order
stationary perturbation theory. First order stationary perturbation theory is reviewed in
table 4.8.

As discussed in section 4.6, the energy levels Wn of the zero order Hamiltonian H0 are
2n2-fold degenerate. We also note that HLS and therefore also HFS do not commute with L

or S. This means that the {|n`m`sms 〉}-set of eigenfunctions is not the most optimum basis
set for the perturbation analysis. However, making use of

L · S =
1

2
(J2 −L2 − S2),

we note that HFS induces no cross-coupling between eigenfunctions {|n`sjmj 〉}, that is,

〈n`′sj′m′
j | HFS |n`sjmj 〉 6= 0

only if `′ = `, j′ = j and m′
j = mj . From table 4.8 the energy shifts introduced by HFS are

∆WFS = 〈n`sjmj | HFS |n`sjmj 〉

= − 1

2mc2

(
W 2
n + 2Wn

(
Ze2

4πε0

)
〈 1
r
〉n` +

(
Ze2

4πε0

)2

〈 1

r2
〉n`
)

+
Ze2h̄2

16πε0m2c2
(j(j + 1)− `(`+ 1)− s(s+ 1)) 〈 1

r3
〉n` (1− δ`0)

+
πh̄2

2m2c2
Ze2

4πε0
|Ψn00(0) |2 δ`0.

Average values of 1/r, 1/r2 and 1/r3 over the zeroth order wave functions are given in
table 4.6. The central value of the zero-order wave function Ψn00(r) can be found from (4.34)
(see also quiz 4.12),

|Ψn00(0) |2= Z3

πa3
Bn

3
. (4.114)

Substituting these values we find

∆WFS =
1

2
mc2

(Zα)4

n3

(
3

4n
− 1

`+ 1
2

+
j(j + 1)− `(`+ 1)− s(s+ 1)

2`(`+ 1
2)(`+ 1)

(1− δ`0) + δ`0

)
. (4.115)

The first two terms in the parenthesis of (4.115) represent the effects of the relativistic mass
correction (4.105). The δ`0 is the Darwin term and the remaining 1 − δ`0 term is spin-orbit
coupling. Still another simplification can be made in the result. Making use of the fact that
s = 1

2 and j = `± 1
2 , the fine structure energy correction term (4.115) can be written

∆WFS =
1

2
mc2

(Zα)4

n3

(
3

4n
− 1

j + 1
2

)
. (4.116)
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Figure 4.11: Fine structure splitting of the n = 2 and n = 3 H I energy levels.

Fine structure splitting of the energy levels of one-electron atoms will lead to the corre-
sponding splitting of the spectral lines. As an example consider n = 2 and n = 3 energy
levels of H I. Transitions between these levels give rise to the Hα-line of the Balmer series at
λ6563. The fine structure splitting of these energy levels compared with the corresponding
zeroth order result is illustrated in figure 4.11. The energy levels are now functions of n and j.
Identical values of j can be achieved through two different combinations of ` and s = 1

2 . Some
energy degeneracy is therefore still left. The splitting of the energy levels is seen to diminish
with increasing n. In the figure the spectroscopic notation for the different electron states
corresponding to the different energy levels are also given. The energy differences among the
n = 2 and the n = 3 levels are drawn to the same scale, while the distances between n = 2
and n = 3 levels are off-scale.

The selection rules derived in section 4.10 are still valid. These rules limit the allowed
radiation transitions between the two given n-level states to seven. Allowed transitions are
illustrated by vertical lines in figure 4.11. Since two pairs of these transitions are between
identical energy levels, only five spectral lines will result. We thus see that the Hα-line in
fact consists of five individual lines. These are indicated in the lower part of figure 4.11.
The maximum separation of these five individual lines is .2 Å for the H I atom. This would
according to (4.101) correspond to the FWHH Doppler broadening at a temperature T ≈ 1800
K.

According to the fine structure result (4.116), the energy levels for given n and j are
identical irrespective of the value of `. Very accurate experiments as well as calculations have
shown that this is not quite correct. The corresponding effect is referred to as Lamb shift and
leads to the splitting of the 2S1/2 and 2P1/2 levels for n = 2 for hydrogen by about 1/10 of
the fine structure splitting of the same level. The discussion of this effect falls outside our
scope.

Quiz 4.39 : Estimate the magnitudes of the magnetic field B′ for typical one-electron
atoms.
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Quiz 4.40 : Show that L · S does not commute with neither L nor S. Why does this
fact make the {|n`m`sms 〉}-basis set unfavourable for the perturbation analysis?

Quiz 4.41 : Calculate the energies of the fine structure splitted n = 2 and n = 3 levels
of the hydrogen atom in units of eV and in repetence units (Kayser). Calculate the
(maximum) fine structure splitting of the Hα-line in ångstrom.

Quiz 4.42 : The maximum fine structure splitting of the hydrogen Hα-line is ∆λFS ≈ .2
Å. The equivalent temperature T equiv(H I), determined by requiring the thermal full
width at half height ∆λfwhh = ∆λFS , is T equiv(H I) ≈ 3500 K. We want to find the
corresponding equivalent temperature for the “Hα”-line from the (Z − 1)-th ionized
state of the element N

Z X.

Show that ∆λFS/λ ∼ Z2 and therefore

T equiv(NZ X) = NZ4 T equiv(H I).

What is T equiv(4He)?

Quiz 4.43 : To verify (4.109) and (4.110) substitute H = H0 +H ′, Wq = W
(0)
q + ∆W

and |q 〉 = |q(0) 〉+ |∆q 〉 in (4.108) and assume H ′, ∆W and |∆q 〉 all to be “small”.
a) Show that for |q 〉 to be normalized will require 〈 q(0) |∆q 〉 = 0 +O((H ′)2).
b) Left-multiply (4.108) with 〈 q(0) | and verify that ∆W = 〈 q(0) |H ′ |q(0) 〉+O((H ′)2).
c) Next verify (4.109), that is, expand |∆q 〉 in terms of the unperturbed eigenfunc-
tions.
d) Finally verify (4.110).

4.13 The Zeeman Effect

We now return to the effect of an external magnetic field B on the energy levels of the atom.
In astrophysical context this is an important effect which will allow us to infer the strength
and structure of stellar and interstellar magnetic fields from the observation of the shape and
polarization of spectral lines.

An introductory study of this effect was made in section 4.5, that time disregarding the
effects of electron spin. It is now necessary to investigate the total effect of the external
magnetic field, taking into account both the orbital and the spin magnetic momenta of the
electron as described by the perturbing term

HB = HBL +HBS =
e

2m
B · (L + 2S) =

e

2m
B · (J + S). (4.117)

The study of the effects of an external magnetic field is complicated by the fact that
we may not “turn off” the omnipresent fine structure splitting effect. We shall therefore be
satisfied by restricting our discussion to two limiting cases, the weak field limit in which the
external magnetic field effect is dominated by the fine structure effect, and the strong field
limit where the opposite relation is valid. Both limits find applications in astrophysics. We
start with the weak field limit.
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4.13.1 The weak field limit

In section 4.12 we learned that when taking fine structure effect into account, the |n ` s j mj 〉
set of eigenfunctions is the proper choice. When we therefore now want to include the ad-
ditional and assumed smaller effect of a weak external magnetic field, we have to evaluate
the average value of HB with this set of wave functions as zeroth order states. This task
reduces to the evaluation of the expression 〈n ` s j mj | Jz +Sz |n ` s j mj 〉. The first term is
trivial due to the quantization rules (4.65). To evaluate the second term we make use of the
expansion of the wave functions |n ` s j mj 〉 in terms of |n `m` sms 〉 as given by (4.68) and
(4.69). The result is that the additional contribution to the energy levels from the external
magnetic field is

∆WB =
eB

2m
〈n ` s j mj | Jz + Sz |n ` s j mj 〉

=

(
1± 1

2`+ 1

)
h̄
eB

2m
mj for j = `± 1

2

= g h̄ωLmj (4.118)

where

g = 1 +
j(j + 1)− `(`+ 1) + s(s+ 1)

2j(j + 1)
(4.119)

is the Landé g-factor and ωL = eB/2m the angular Larmor frequency of the electron. The
effect of the external magnetic field is seen to split any energy level into 2j + 1 equidistant
levels with an energy separation increasing linearly with the strength of the external magnetic
field. The energy separation, however, also depends on the values of both j and `.

Figure 4.12: Anomalous Zeeman splitting of selected n = 2 and n = 3 H I energy levels

In figure 4.12 the splitting of some selected n = 2 and n = 3 energy levels due to an external
magnetic field B = .05 T have been indicated. Transitions between the chosen energy levels
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are producing the two highest frequency components of the fine structure splitted Hα-line (see
figure 4.11). The 2S1/2 energy level splits into two levels with a Landé g-factor g = 2. Also
the 2Po1/2 energy level splits into two levels but this time with g = 2/3. The 2Po3/2 energy level

splits into four individual levels with the Landé g-factor g = 4/3. In the figure, the splittings
among the n = 2 and among the n = 3 levels are drawn to scale. The distances between the
n = 2 and n = 3 levels are off scale.

The splitting behavior described differs significantly both regarding the number of and
the energy difference between splitted levels from that predicted on the basis of “spin-less”
electrons as given in (4.53). The corresponding “spin-less” result is indicated to the right in
figure 4.12.

In the figure we have also indicated allowed radiative transitions between the given energy
levels and the relative position of the corresponding spectral lines. The spectral line pattern
for “spin-less” electrons is for historical reasons referred to as normal Zeeman effect. In the
present context this case would seem to have only “academic” interest. In the next chapter,
however, where we will be discussing the physics of many-electron atoms, this case will find
physical applications. The realistic case, for which the electron spin is taken into account,
is referred to as anomalous Zeeman effect. In the figure, also the polarization (plane (π) or
circular (σ)) of the radiation in the different spectral lines are indicated.

The result (4.118) is a valid approximation as long as the effect of the external magnetic
field is small compared to the fine structure effect. That is, the result (4.118) is valid as long
as the external magnetic field is small compared to the apparent magnetic field (4.103) “seen”
by the electron in its orbit in the electric field from the nucleus. For hydrogen atoms this
means magnetic fields of order of magnitude less than 1 T.

Quiz 4.44 : Verify (4.118).

Quiz 4.45 : What are the Landé g-factors for the 2D3/2 and 2D5/2 levels? Illustrate the
splitting of these two levels compared to the splitting of the 2Po3/2 level given in figure
4.12.

Quiz 4.46 : The fine structure splitting of the n = 2 2Po1/2 and n = 3 2S1/2 and 2D3/2

energy levels of the H I atom are identical to those of n = 2 2S1/2 and n = 3 2Po1/2
and 2Po3/2 levels, respectively. The anomalous Zeeman splitting of the latter set of
energy levels were studied in figure 4.12. What are the Zeeman splitting of the former
set of levels? What are the corresponding Zeeman splitting of the fine structure lines?

4.13.2 The strong field limit

In the opposite limit, in which the external magnetic field is much larger than the apparent
magnetic field seen by the electron in its orbit, it is better to make use of the |n `m` sms 〉 set
of eigenfunctions as zeroth order wave functions and consider the fine structure splitting effect
as a small perturbation. The contribution to the energy levels from the external magnetic
field is this time

∆WB = h̄ωL(m` + 2ms). (4.120)

The relativistic kinetic energy correctional term ∆WRM and the Darwin term ∆WD remain
identical to the corresponding terms in (4.115), depending only on the quantum numbers n
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and `. The spin-orbit contribution may be evaluated as

∆WLS = 〈n`m`sms |HLS | n`m`sms 〉 =





0 ` = 0

Ze2h̄2

8πε0m
2c2

m`ms 〈 1
r3
〉n` ` 6= 0.

We did here make use of the fact (see quiz 4.25) that

L · S = LzSz +
1

2
(L+S− + L−S+)

where L± = Lx ± ιLy and S± = Sx ± ιSy. According to the results of quiz 4.17 and 4.24, the
contributions from the two last terms vanish. After substituting the average value of 1/r3

from table 4.6, the spin-orbit contribution for ` 6= 0 thus reduces to

∆WLS =
1

2
mc2

(Zα)4

n3

m`ms

`(`+ 1
2)(`+ 1)

. (4.121)

The fine structure modification of the strong field Zeeman effect (4.120) is traditionally
referred to as the Paschen-Back effect. The result is illustrated in figure 4.13 for the 2s and
3p states for a magnetic field strength B = 1 T. For comparison the zero order energy levels
and the fine structure splitting of these levels without an external magnetic field is shown to
the left. The rightmost panel shows the strong field Zeeman splitting neglecting fine structure
effects while the remaining panel (second from the right) also includes the fine structure effect
(Paschen-Back effect).

The energy difference between the Zeeman splitted ` = 0 levels are identical for all values
of n. For ` > 0 the spin-orbit contribution leads to deviations from this equal distance rule.
This will be reflected in the spectral lines formed. Allowed transitions between the energy
levels displayed in figure 4.13 are illustrated by vertical lines. The selection rules derived in
section 4.10 are still valid. In particular, transitions may only occur between energy levels
corresponding to identical ms values. This reduces the number of allowed transitions to six,
the two m` = 0←→ m` = 0 transitions having identical frequencies. The resulting five spectral
lines are illustrated in the bottom panel of figure 4.13, the π- and σ-lines corresponding to
∆m` = 0 and ∆m` = ±1, respectively.

For intermediate external magnetic field strengths, a more careful perturbation expansion
must be performed. In particular, the degeneracy of energy levels and therefore that some
of the cross-coupling terms in (4.113) are non-vanishing must be taken into account. It
will then be seen how the weak external field result illustrated in figure 4.12 is continuously
transformed into the strong field limit of figure 4.13. In astrophysical context the strong field
limit is approached in certain compact stars (some white dwarfs, pulsars, · · · ) with magnetic
field strengths B � 1 T.

4.13.3 Physical visualization of angular momentum coupling

The two limiting cases of the Zeeman effect may be visualized through the following ”physical”
model. In an external magnetic field, a magnetic moment m will experience a torque m×B.
If the magnetic dipole is associated with a parallel angular momentum, this momentum vector
will perform a precessional motion around the magnetic field, analogous to the precessional
motion of a spinning top in a gravitational field. During this motion, the component of the
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Figure 4.13: Pachen-Back effect for selected n = 2 and n = 3 energy levels

angular momentum along the magnetic field remains constant. The quantization rule for the
normal Zeeman effect, where only one of the vectors L or S is different from zero, conforms
with this classical result. The situation is illustrated in figure 4.14a.

Figure 4.14: Precessing motions in a magnetic field

The situation is different when both L and S are non-vanishing. In the weak external
magnetic field limit the spin-orbit interaction represents the stronger coupling between these
vectors. In this case the total angular momentum J performs the precessional motion around
the magnetic field as discussed above. The individual vectors L and S are at the same time
performing a rapid precessional motion around the total angular momentum vector J . This
interpretation can be verified on the basis of (4.118)-(4.119). In ”classical” terms this result
may be written

e

2m
B · (J + J

J2 −L2 + S2

2J2 ) =
e

2m
B · (J + J

J · S
J2 ). (4.122)
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Here we made use of the identity J2 − L2 + S2 = 2J · S. The second term of the right
hand side of (4.122) is just the component of S along J in accordance with the interpretation
offered above. The situation is illustrated in figure 4.14b.

In the strong external magnetic field limit, the coupling between the L and S vectors is
not strong enough to prevent the individual vectors from precessing on their own around the
magnetic field. The average value of each vector is equal to the component of these vectors
along B in accordance with (4.120). The situation is illustrated in figure 4.14c. In this case
even the spin-orbit interaction term with its product L ·S must be evaluated as the product
of the average values of each of the two vectors L and S

L · S → B̂(B̂ ·L) · B̂(B̂ · S).

The justification for the above ”physical” model is primarily as a ”memorization” rule.
Still, the model may be a useful tool in certain situations.

4.13.4 Polarization and directional effects

Without an external magnetic field, the atom has no preferred direction. The strength of any
spectral line feature formed must therefore be independent of the direction of the radiation
absorbed or emitted by the atom. For an atom in an external field this is no longer true. The
field imposes a preferred direction for the wave function and we must expect a directional
effect for the strengths of spectral lines.

To study this effect let the external field be parallel with the z-axis and let the wave vector
k of the electromagnetic wave be lying in the xz-plane, making an angle χ with the z-axis.
The polarization vector ε̂ must be perpendicular to k. In figure 4.15a two plane polarized
directions are given, ε̂‖ in the plane containing B and k, and ε̂⊥ perpendicular to this plane.
An arbitrary wave polarization can be constructed from a suitable linear combination of these
two plane polarized directions. We note from the figure that

ε̂‖ · r = r(sinχ cos θ − cosχ sin θ cosϕ), (4.123)

ε̂⊥ · r = r sin θ sinϕ. (4.124)

Figure 4.15: Zeeman effect – directional dependence
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The strength of the spectral line resulting from a transition from state | i 〉 to state | f 〉
depends on the value of the integral 〈 f | ε̂ · r | i 〉 through the expressions for the transition
rates wfi for absorption and emission as given in (4.80) and (4.81). On the basis of our
previous discussion of selection rules in section 4.10, we see that the first term of ε̂‖ · r will
give non-vanishing contributions to these integrals only if ∆m` = 0 and ∆` = ±1. The second
term of ε̂‖ ·r and ε̂⊥ ·r both give non-vanishing contributions only if ∆m` = ±1 and ∆` = ±1.
This means, first of all, that the external B-field does not lead to any modification of the
selection rules as stated in section 4.10.

Secondly, we may easily inspect how the strength of a given spectral line will vary with
the direction χ of the electromagnetic radiation, that is, with the angle χ with respect to the
local magnetic field under which the absorbing or emitting region is viewed. The π-line with
∆m` = 0 corresponds to a radiation field polarized in the plane containing k and B. The
intensity of this line will vary with the angle χ as

Iπ(χ) = Iπ‖ sin2 χ (4.125)

where Iπ‖ is a constant. When observing along the magnetic field the π-line vanishes.

The contributions from the parallel and perpendicular polarizations to the σ-lines with
∆m` = ±1 may be added to produce an elliptical polarized spectral line with intensity varying
as

Iσ(χ) = Iσ⊥ + Iσ‖ cos2 χ (4.126)

where Iσ⊥ and Iσ‖ are both constants. In particular, for χ = π/2 the σ-lines correspond
to a radiation field polarized perpendicular to k and B. At other angles the σ-line will
be elliptically polarized. The directional dependence of the Zeeman lines are schematically
illustrated in figure 4.15b.

Making use of the polarization properties of the Zeeman lines, it is possible to infer
not only the strength of stellar magnetic fields, but also the direction of these fields. This
conclusion requires that the individual Zeeman lines can be observed, which again depends
on the temperature of the absorbing or emitting medium and the mass of the atom involved.

Quiz 4.47 : Verify that

∫ 2π

0
sinϕ exp(±ιϕ) dϕ = ±ι

∫ 2π

0
cosϕ exp(±ιϕ) dϕ.

From (4.123) and (4.124) then argue that Iσ⊥ = Iσ‖ in (4.126).

4.14 The Stark Effect

The Stark effect concerns the question of how an external electric field E may influence the
energy levels of the atom and therefore also the spectral lines produced. For a constant
external electric field E = Eẑ the additional potential energy term of the Hamiltonian is
equal to the scalar product of the external electric field with the electric dipole moment
mE = −er of the atom,

HE = −mE ·E = eEz. (4.127)
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For external fields much less than the typical internal electric field seen by the electron, the
effect of the additional term may be analyzed using standard perturbation theory, first order
perturbation theory being summarized in table 4.8. For simplicity we will, however, assume
the external fields to be large enough that fine structure effects may be neglected compared
with the electric field effect. For the n = 2 energy level to be discussed below, this means
that the external electric field must exceed 106 V/m. With these assumptions the result from
perturbation theory will be of the general form

W = W (0) + αE +
1

2
βE2 + · · · . (4.128)

The first and second order terms are referred to as the linear and quadratic Stark effects.
From a classical point of view, the linear term represents the potential energy of a permanent
electric dipole mEp in the external electric field. The quadratic term represents the potential
energy 1

2mEi ·E of a dipole moment induced by the external field, mEi = βE.
From a classical point of view we would not expect a free atom to possess a permanent

electric dipole moment. We would thus expect the linear Stark effect to vanish. For non-
degenerate energy states this holds true also from the quantum mechanical point of view.
The matrix elements 〈n`m` | z | n`m` 〉 vanishes for any wave function n`m` with even or
odd parity3. For degenerate energy states where it is necessary to make use of degenerate
perturbation theory, however, the conclusion will be different.

As an example consider the four-fold degenerate n = 2 energy level with wave functions
| 2`m` 〉, ` = 0, 1. From the discussion of selection rules, we know that the matrix elements
〈n′`′m′

` |z | n`m` 〉 are non-vanishing only if m′
` = m` and `′ = `± 1. In fact, substituting the

explicit forms for the wave functions and performing the required integrals, we find as the
only non-vanishing element

eE〈 210 |z | 200 〉 = a with a = −3aB
Z

eE, (4.129)

where aB is the Bohr radius.
According to linear degenerate perturbation theory summarized in table 4.8, we are left

with the problem of solving the equation

det

∣∣∣∣∣∣∣∣

−∆W 0 a 0
0 −∆W 0 0
a 0 −∆W 0
0 0 0 −∆W

∣∣∣∣∣∣∣∣
= ∆W 2(∆W 2 − a2) = 0.

The n = 2 energy level is seen to split into three equidistant levels with energy separation
a. The situation is illustrated in figure 4.16, where also the corresponding expressions for the
perturbed wave functions are given. Generally, the linear Stark effect splits the energy level
n of the one-electron atom into 2n− 1 equidistant energy levels.

As noted for the n = 2 energy level, the perturbed wave functions in the presence of an
external electric field will no longer have a definite parity (even or odd), nor will ` be a ”good”
quantum number any more. This means that the selection rules of section 4.10 are no longer
valid. In particular, because of the mixing of the Ψ200 and Ψ210 states, the meta-stable 2s

3Our choice of wave function notation reflects the fact that since HE is independent of electron spin, spin
effects may be disregarded in the present context.
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Figure 4.16: Linear Stark splitting of the n = 2 energy level

state will be ”quenched” by the external electric field with the lifetime being significantly
shortened compared to its ”natural” value of 1/7 s.

The quadratic Stark effect will for one-electron atoms and for electric field strengths
normally encountered be much smaller than the corresponding linear effect. The ground
state, for which the linear effect vanishes, represents one exception. Quadratic Stark effect
will be discussed in section 5.9.2.

Strong microscopic electric fields regularly occur during collisions (close approaches) be-
tween the one-electron atom and charged particles in ionized gases. Radiation transitions
taking place during such collisions will be subject to the Stark effect, giving rise to a general
broadening of spectral lines. The effect is referred to as Stark broadening. The detailed line
profile depends on the Stark effect as a function of electric field strength, but also on the
probability distribution of the strength of such fields in the plasma. The line width increases
with pressure, partly because the average inter-particle distance decreases with increasing gas
density and partly because collisions tend to become ”harder” with increasing temperature.
The combined effect of thermal, collisional and Stark broadening mechanisms taking place
in hot and dense stellar interiors are responsible for the formation of the continuous radia-
tion spectrum leaving stellar photospheres, that is, the combined effect of many neighbouring
individual broad spectral lines gives the appearence of a continuous spectrum.

Quiz 4.48 : A singly charged ion approaches an H I atom in the n = 2 state to within
a distance d = 10 Å. Calculate the maximum modification of the n = 2 energy level
of the atom induced by the ion. What is the corresponding width of the resonance
line?

4.15 Nuclear Spin and Hyperfine Effects

We shall end our review of first order effects for the one-electron atom by a brief discussion
of nuclear spin effects. This is an effect that will give us a handle on how to investigate the
density distribution of neutral atomic hydrogen in the galaxy.

Electrons, protons and neutrons are all spin 1/2 particles. The spin of protons and neu-
trons in the nucleus combine to form the total nuclear spin angular momentum I. The nuclear
spin angular momentum will satisfy quantization rules similar to those familiar for L, S or
J . The nuclear spin number I will be half-integer or integer valued for odd or even nucleon
numbers, respectively. The electrically charged and spinning nucleus represents a nuclear
magnetic moment

mI = gI
e

2M
I, (4.130)

where M is the nuclear mass and gI is the nuclear Landé factor. The latter is a dimensionless
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number of order unity. Spin numbers I and nuclear Landé factors gI for some selected nuclei
are listed in table 4.9.

Spin Landé factor
Nucleus I gI
proton 1/2 5.5883
neutron 1/2 -3.8263

2
1H 1 0.85742
3
2He 1/2 -4.255
4
2He 0 -
12
6 C 0 -

Table 4.9: Nuclear spin and Landé factors

The magnetic field generated by the nuclear magnetic moment mI will be interacting with
the orbital and spin angular momenta L and S of the electron to produce an extra potential
energy term HI of the Hamiltonian. For simplicity we shall only consider the effects of nuclear
spin on L = 0 electron states. For this case the interaction term reduces to

HI = −mS ·BI (4.131)

where the electron spin magnetic moment mS is given by (4.59) and the magnetic field BI

produced by the nuclear magnetic dipole moment mI can be derived from the vector potential

AI(r) =
µ0

4π
mI ×∇

1

r
, (4.132)

that is,

BI(r) = ∇×AI(r) =
µ0

4π

(
mI∇2 1

r
−mI · ∇∇

1

r

)
. (4.133)

We note that the result is singular at the dipole location.

The sum of the nuclear and electron spin angular momenta constitutes the total atomic
angular momentum

F = I + S. (4.134)

F and Fz obey the familiar set of angular momentum quantization rules with corresponding
quantum numbers F and MF satisfying the constraints

F =|I − s |, I + s

and
MF = −F,−F + 1, · · · , F.

Even the selection rules take the familiar form

∆F = 0, ±1,

the transition F = 0 ←→ F = 0 being excluded.

The shift in the energy levels of L = 0 states due to the interaction between the nuclear
and electron spin can now be calculated using first order perturbation theory,

∆WI = −〈mS ·BI 〉 =
µ0

4π
gI

e2

2mM
〈 (S · ∇)(I · ∇)

1

r
− S · I∇2 1

r
〉. (4.135)
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In Cartesian coordinates the volume integral part of the first term reduces to

∑

i,j

SiIj

∫
|Ψn00(r) |2

∂2

∂xi∂xj

1

r
d3r.

For i 6= j the integrands are odd functions and the volume integrals thus vanish identically.
The volume integrals of terms with i = j are all equal,

∫
|Ψn00(r) |2

∂2

∂x2
i

1

r
d3r =

1

3

∫
|Ψn00(r) |2 ∇2 1

r
d3r.

Combining both terms of (4.135) and making use of the relations

∇2 1

r
= −4πδ(r) (4.136)

S · I =
1

2
(F 2 − I2 − S2), (4.137)

the expression for the energy shift reduces to

∆WI =
2µ0

3
gI

e2

2mM
〈 1
2
(F 2 − I2 − S2) δ(r) 〉

=
µ0

6
gI
e2h̄2

mM
(F (F + 1)− I(I + 1)− s(s+ 1)) |Ψn00(0) |2 .

Here

Ψn00(0) =
Z3

πa3
Bn

3
(
µ

m
)3 (4.138)

is the value of the wave function (4.34) at the origin, but corrected for the isotope effect, that
is, the electron mass m in the expression (4.31) for the Bohr radius aB has effectively been
replaced with the reduced electron mass µ as given by (4.48).

For the H I atom we have I = 1/2 and therefore F = 0 or F = 1. The two values of F
give rise to a splitting of the l = 0 energy levels. The energy separation between the F = 0
and F = 1 levels of ground state (n = 1) of the H I atom is thus given by

δWI = hcR∞α
2 · 8

3
gI
m

M

( µ
m

)3
. (4.139)

A radiation transition between these two levels is allowed and results in the measured radio
wave frequency

ν = (1420405751.800± 0.028) Hz.

This frequency is one of the most accurately measured quantities in physics. First order
perturbation theory as represented by (4.139), predicts the experimental result with a relative
error better than 0.1 %. The radiation is normally referred to as the 21 cm radiation and
forms the basis of a method for the mapping of the distribution of H I in spiral arms of the
Milky Way and other galaxies.



Chapter 5

Spectra of Many-Electron Atoms

We proceed now to a discussion of the physics of many-electron atoms and their spectra. We
shall recognize many of the basic features seen for the one-electron atom. We shall also see
important differences. We shall even have to postulate a new principle, the Pauli exclusion
principle, in order to be able to account for the properties of the many-electron atom.

5.1 The Pauli Exclusion Principle

For many-electron atoms the zeroth order Hamiltonian will contain a sum of potential energy
contributions resulting from the mutual interaction between the different electrons

H =
N∑

i=1

H0(i) +
N∑

i=1

N∑

j=i+1

U ′(i, j). (5.1)

Here N is the number of electrons in the atom,

H0(i) =
p2
i

2m
+ U(ri) with U(ri) = − Ze2

4πε0ri
(5.2)

is the one-electron Hamiltonian for electron number i, and

U ′(i, j) =
e2

4πε0

1

|ri − rj |
(5.3)

is the interaction energy between electrons i and j at positions ri and rj . In (5.1) and (5.2)
the nucleus was assumed to be fixed at the origin of the coordinate system, and the nuclear
charge number Z satisfies the requirement Z ≥ N . Relativistic effects (the relativistic kinetic
energy correction, spin-orbit and spin-spin interactions and effects caused by nuclear spin)
together with the effects due to external electric and magnetic fields were neglected in the
present formulation. We shall return to these first order effects in subsequent sections.

The allowed energy levels W of the atom is again found as the eigenvalues of the stationary
Schrödinger equation

H |Ψ(1, 2, · · · ,N ) 〉 = W |Ψ(1, 2, · · · ,N ) 〉. (5.4)

The wave functions |Ψ(1, 2, · · · ,N ) 〉 are now functions of the coordinates and spins of all the
electrons in the atom.

107
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The Hamiltonian H for a system of N indistinguishable particles must be invariant under
an interchange of coordinates and spins of any two particles. The Schrödinger equation (5.4)
as such does not impose any particular requirement on the behavior of the wave function
under this operation. It was, however, found that for the predictions of this equation to be
in agreement with observations, it was necessary to impose the Pauli exclusion principle as
an independent requirement. This principle, (the Pauli principle for short) requires the wave
function |Ψ(1, 2, · · · ,N ) 〉 to be antisymmetric with respect to the interchange of any pair of
electron coordinates and spins,

|Ψ(1, · · · , i, · · · , j, · · · ,N ) 〉 = − |Ψ(1, · · · , j, · · · , i, · · · ,N ) 〉. (5.5)

An equivalent formulation of this principle is to say that two electrons cannot occupy identical
states in the atom. If two electrons were to occupy identical states, the wave function would
not change sign during the permutation of these two electrons, in contrast to the requirements
of the principle.

Other symmetry properties of the wave function follow from the explicit form of the
Hamiltonian. In particular, the Hamiltonian (5.1) is invariant with respect to the mirroring
of all the electrons about the origin, ri → −ri for i = 1, · · · ,N . The wave function will reflect
this fact by either remaining unchanged or by changing sign under this transformation. An
electronic state corresponding to a wave function that does not change under the mirroring
transformation will be said to have even parity. A state corresponding to a wave function
that changes sign under this transformation will have odd parity.

5.2 The Central Field Approximation

The presence of the interaction energy terms (5.3) in the Hamiltonian makes the many-
electron Schrödinger equation (5.4) inaccessible to exact analytical treatment, even in the
present zeroth order theory. Approximation methods have been developed instead. In the
central field approximation, solutions are sought by considering each electron to move in
an effective central force field that includes the attraction from the nucleus together with an
average repulsive effect between any selected electron and the other N−1 “average” electrons.
With V (r) representing the corresponding effective potential, the Hamiltonian may now be
written in the form

H = Hc +HEC (5.6)

where

Hc =
N∑

i=1

(
p2
i

2m
+ V (ri)

)
(5.7)

is the central field Hamiltonian. The remaining electron correlation term

HEC =
N∑

i=1

(U(ri)− V (ri)) +
N∑

i=1

N∑

j=i+1

U ′(|ri − rj |), (5.8)

hopefully, represents a small correctional term with the proper choice of V (r).

Seen from our selected electron, the other N − 1 electrons will act to shield the nuclear
charge. Close to the nucleus this shielding of the nuclear charge will be negligible and we
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expect the effective potential to take the form

V (ri)→ −
Ze2

4πε0ri
as ri → 0.

In the opposite limit, the other electrons are expected to occupy the space between the selected
electon and the nucleus. For this case we expect the shielding to have maximum effect and
therefore

V (ri)→ −
(Z −N + 1)e2

4πε0ri
as ri →∞.

The choice of the proper form of V (ri) for intermediate radii for a given state of the atom
represents a demanding task to which we shall not enter. Still, on the basis of simple reasoning,
we shall be able to gain valuable physical insight into the properties of the many-electron atom,
even without the knowledge of the detailed form of V (ri).

In the central field approximation the wave function |Ψ(1, 2, · · · ,N ) 〉 of the N electron
Schrödinger equation

Hc |Ψ(1, 2, · · · ,N ) 〉 = Wc |Ψ(1, 2, · · · ,N ) 〉 (5.9)

reduces to a product of N one-electron wave functions |ψ(i) 〉 satisfying

(
− h̄2

2m
∇i + V (ri)

)
|ψ(i) 〉 = wi |ψ(i) 〉. (5.10)

The corresponding energy Wc of the atom in this approximation equals the sum of the indi-
vidual contributions from each electron, Wc =

∑
iwi.

The eigenvalue problem (5.10) is identical to the Schrödinger equation (4.17) for the one-
electron atom, except for the fact that the Coulomb potential U(ri) = −Ze2/4πε0ri is replaced
with the effective potential V (ri). We may thus immediately conclude that the spatial part of
|ψ(i) 〉 will depend on three quantum numbers ni, `i and m`i, that is, the spatial part may be
written in the form ψni`im`i

(ri). The angular part of this function will be identical to that of
the wave function (4.34) of the one-electron atom. The radial part, however, will be different.
In particular, the simple Rydberg formula (4.27), in which the energy only depends on the
principal quantum number ni, is only valid for the Coulomb potential U(ri). For the effective
potential V (ri) corresponding to an extended charge distribution from the nucleus and the
N −1 “average” electrons, the energy wi will not only be a function of the principal quantum
number ni, but also depend on the shape of the electron orbital through the orbital quantum
number `i, wi = wi(ni, `i). With reference to figure 4.2, an electron with a given value of ni
will on the average be closer to the nucleus, the smaller the value of `i. The closer to the
nucleus, the less effective will the negative charge distribution from the other electrons be in
shielding the charge of the nucleus. Thus, the smaller the value of `i, the larger is the effective
nuclear charge seen by the electron, and the stronger is the electron bounded to the nucleus.
We conclude that wi(ni, `i) must be an increasing function with respect to increasing values
of both ni and `i. This conclusion is important for any understanding of the properties of
many-electron atoms.

The situation is illustrated schematically in figure 5.1. To the left the charge distribution
resulting from the nuclear charge Ze and the spherically symmetric charge distribution from
the N −1 ”average” electrons is superposed a comparison between the corresponding effective
potential energy curve V (r) and the Coulomb potential U(r) from a nuclear charge Ze. To
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Figure 5.1: A comparison of energy levels for potentials U(r) and V (r).

the right, the quantum mechanical energy levels Wn and wn` corresponding to U(r) and V (r)
are compared.

With the energy contributions wi from each electron depending on the principal and orbital
quantum numbers (ni, `i), the total energy of the atom in the central field approximation is
determined by prescribing the list of these quantum numbers for the N electrons involved,

n1`1 n2`2 · · · nN `N .
We shall refer to this list as the electron configuration of the atom. Electrons having identical
principal quantum numbers n are said to belong to the same electron shell. Different shells
are denoted by capital letters K, L, M, N, · · · . Electrons having identical principal and orbital
angular quantum numbers n and ` are said to belong to the same subshell. The `-values for
different subshells are indicated by letters s, p, d, f, · · · . Shell and subshell nomenclature are
illustrated in table 5.1.

Designation Electrons Electrons
Shell n ` of electrons in subshell in shell

K 1 0 1s 2 2
L 2 0 2s 2 8

1 2p 6
M 3 0 3s 2 18

1 3p 6
2 3d 10

N 4 0 4s 2 32
1 4p 6
2 4d 10
3 4f 14

Table 5.1: Electron shells and subshells

The solution of the N electron central field problem as outlined above suffers from one
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defect. It does not comply with the Pauli principle. In particular this principle will limit the
maximum number of electrons allowed in each shell and subshell. The maximum number of
electrons in a given subshell is 2(2` + 1). A given shell may hold 2n2 electrons. In table 5.1
these maximum numbers are indicated.

The defect is rectified by expressing the solution as a fully anti-symmetric sum of products
of one-electron wave functions in the form of the Slater determinant

|Ψ(1, 2, · · · ,N ) 〉 =
1√
N !

∣∣∣∣∣∣∣

|ψσ1
(1) 〉 · · · |ψσ1

(N ) 〉
...

...
|ψσN (1) 〉 · · · |ψσN (N ) 〉

∣∣∣∣∣∣∣
. (5.11)

Here σ in the notation | ψσ(i) 〉 denotes the complete set of quantum numbers for the one-
electron wave function for electron number i. We notice that the set of quantum numbers
of the one-electron wave functions are identical for each line of the Slater determinant, but
different from line to line, and in accordance with the chosen electron configuration of the
atom.

A wave function in the form of a Slater determinant (5.11) automatically satisfies the Pauli
principle. If two electrons were to occupy the same state, two lines in the determinant would
be identical and the determinant therefore vanish. Similarly, an interchange of electrons i
and j corresponds to the permutation of the corresponding columns in the determinant. This
would mean that the wave function changes sign, again in accordance with the Pauli principle.

The factor 1/
√
N ! in the definition of the Slater determinant (5.11) ensures the normaliza-

tion of the many-electron wave function, given that each of the the one-electron wave functions
are orthonormalized. In fact, the number of terms of the determinant is N !, these terms being
mutually orthogonal since in any product of different such terms, the set of quantum numbers
σ for the different electrons will be different.

We shall return with additional comments on the Slater determinant and its properties in
section 5.3.

Quiz 5.1 : Make use of the fact (see quiz 4.9) that P
|m |̀
` (cos θ) exp(ιm`ϕ) is an even or

odd function under the transformation r → −r if ` is an even or odd integer to show
that |Ψ(1, 2, · · · ,N ) 〉 as given by (5.11), has even or odd parity if `1 +`2 + · · ·+`N is
an even or odd integer. Here `1, `2, · · · , `N are the orbital angular quantum numbers
of the different one-electron wave functions |ψ(i) 〉.

Quiz 5.2 : Verify that the Slater determinant (5.11) is an eigenfunction of (5.9) with
eigenvalue Wc =

∑
iwi.

5.3 Angular Momenta and their Summation

The individual orbital and spin angular momenta Li and Si of the electrons are all quantized
in the familiar manner, (4.39), (4.40), (4.54) and (4.55). The total orbital and total spin
angular momenta L =

∑
i Li and S =

∑
i Si commute with the central field Hamiltonian Hc,

[Hc,L] = 0 and [Hc,S] = 0.
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The quantities L2, Lz, S2 and Sz also commute among themselves and may therefore be
quantized simultaneously with Hc,

L2 |Ψ(1, 2, · · · ,N ) 〉 = h̄2L(L+ 1) |Ψ(1, 2, · · · ,N ) 〉 (5.12)

Lz |Ψ(1, 2, · · · ,N ) 〉 = h̄ML |Ψ(1, 2, · · · ,N ) 〉 (5.13)

S2 |Ψ(1, 2, · · · ,N ) 〉 = h̄2S(S + 1) |Ψ(1, 2, · · · ,N ) 〉 (5.14)

Sz |Ψ(1, 2, · · · ,N ) 〉 = h̄MS |Ψ(1, 2, · · · ,N ) 〉. (5.15)

The quantum numbers L and ML = −L,−L+ 1, · · · , L are integer valued. The maximal
value of L is `1 + `2 + · · · + `N . Similar rules apply for the spin quantum numbers S and
MS , but these are integer or half-integer valued for even or odd numbers N of electrons in
the atom.

The Slater determinant (5.11) automatically is an eigenfunction of the linear operators
Lz =

∑
i Lzi and Sz =

∑
i Szi with the correct eigenvalues ML =

∑
im`i and MS =

∑
imsi.

A single Slater determinant is, however, not automatically an eigenfunction of L2 and S2. In
order to comply with the requirements set by the quantization of the total orbital and total
spin angular momenta, it may thus be necessary to consider wave functions |Ψ(1, · · · ,N ) 〉
in the form of linear combinations of Slater determinants.

In analogy with the results for the one-electron atom, we may also choose to work in terms
of wave functions allowing for the alternative simultaneous quantization of L2, S2, J2 and
Jz where

J = L + S (5.16)

is the total angular momentum of the electrons. With this choice the quantization rules (5.13)
and (5.15) are replaced by

J2 |Ψ(1, 2, · · · ,N ) 〉 = h̄2J(J + 1) |Ψ(1, 2, · · · ,N ) 〉 (5.17)

Jz |Ψ(1, 2, · · · ,N ) 〉 = h̄MJ |Ψ(1, 2, · · · ,N ) 〉. (5.18)

The corresponding integer or half-integer valued quantum numbers J and MJ satisfy

J = |L− S |, |L− S | +1, · · · , L+ S (5.19)

MJ = −J,−J + 1, · · · , J.

In the following we shall refer to the eigenfunctions | 1, 2, · · · ,N 〉 of the N electron
Schrödinger equation when quantized simultaneously with L2, Lz, S2, Sz or L2, S2, J2, Jz
as |LMLSMS 〉 or |LSJMJ 〉, respectively. Any wave function of the LSJMJ type may be
expressed as a linear combination of wave functions of LMLSMS type. The corresponding
one-electron case was discussed in section 4.7.

5.4 Electron Correlation and Fine Structure Effects

The central field approximation of section 5.2 with the simplified Hamiltonian H = Hc rep-
resents a zeroth order theory. For a more detailed description of the properties of the many-
electron atom additional effects represented by extra terms in the Hamiltonian must be taken
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into account. The electron correlation term HEC is one such effect. Another internal correc-
tional term is the spin-orbit interaction term

HLS =
1

2m2c2

N∑

i=1

1

ri

dV (ri)

dri
Li · Si. (5.20)

The effect of these additional terms on the energy levels of the atom can be investigated
using standard perturbation theory as summarized in table 4.8. How this perturbation cal-
culation is carried out depends on the relative importance of the correctional terms. The
situation resembles the discussion of the competing fine structure and Zeeman effects in sec-
tion 4.13. For the present problem two limiting cases may be identified. The case most often
encountered is where HEC dominates HLS . This case occurs for small and intermediate val-
ues of the charge number Z. We shall refer to this case as L-S coupling case. The opposite
case, where HLS dominates HEC , arises for large Z and is known as j-j coupling case. This
particular dependence on the charge number Z is expected on the basis of our discussion of
the fine structure effect for one-electron atoms in chapter 4. Here we found a Z4 dependence
for the fine structure effect. From the form of the HEC term, a weaker Z dependence is
expected for the electron correlation effect.

As the notation indicates, in the former case we may consider the addition of angular
momenta in the atom to proceed by first forming the total orbital and total spin angular
momenta with quantum numbers L and S, and that these then add to the total angular
momentum with quantum number J . In the latter case, the individual orbital and spin
angular momenta first add to form individual total angular momenta with quantum numbers
j, these then add to form the total angular momentum with quantum number J . We shall
only consider the L-S coupling case.

The first step of a perturbation calculation for the L-S coupling case consists in obtaining
approximate eigenfunctions and eigenvalues for the Hamiltonian H = Hc+HEC . The energy
levels Wc of the zeroth order central field approximation are degenerate since they are inde-
pendent of the values of m`i and msi for the individual electrons. Finding the energy levels
for the Hamiltonian H = Hc +HEC from a given unperturbed energy level Wc thus involves
the diagonalization of HEC with respect to the subspace of degenerate states belonging to
the eigenvalue Wc.

The perturbed eigenvalues W will be characterized by the total orbital and the total spin
quantum numbers L and S. This follows from the fact that the electron correlation term HEC

commutes with both J and S and therefore also with L. The eigenvalue W must, however,
be independent of the azimuthal quantum numbers ML =

∑
im`i and MS =

∑
imsi.

It has been found empirically that this energy dependence on L and S is normally correctly
described by Hund’s rules:

• For a given electron configuration, the state with the larger total spin
quantum number S has the lower energy.

• For a given electron configuration and a given S, the state with the larger
total orbital quantum number L has the lower energy.

The last step of the perturbation calculation involves the evaluation of the energy contri-
bution from the spin-orbit term HLS , making use of the approximate eigenfunctions for the
Hamiltonian (5.6). HLS does not commute with L or S. It is therefore advantageous to shift
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from wave functions of type |LMLSMS 〉 of the Hamiltonian Hc +HEC to wave functions of
type |LSJMJ 〉. Indeed, it can be shown that

〈LSJMJ | HLS |LSJMJ 〉 =
1

2
A [J(J + 1)− L(L+ 1)− S(S + 1)] .

A is a constant depending on the electron configuration of the atom. We thus see that
the spin-orbit interaction introduces a J dependent correctional term for the energy levels.
Keeping the electron configuration and the values of L and S constant, the energy difference
between energy levels corresponding to adjacent J values may therefore be expressed as

W (J)−W (J − 1) =
1

2
A [J(J + 1)− (J − 1)J ] = AJ. (5.21)

The result 5.21 is known as Landé’s interval rule. It has been established empirically for
atoms with one incompletely filled subshell that A > 0 if the subshell is less than half filled
and that A < 0 if the subshell is more than half filled. In the former case the state with the
lower total angular quantum number J has the lower energy (normal multiplet), in the latter
case the state with the larger J has the lower energy (inverted multiplet):

• For an electron configuration with one incompletely filled subshell and
for given total S and L quantum numbers, the state with the larger total
angular quantum number J has the larger (smaller) energy if the incom-
pletely filled subshell is less (more) than half filled.

We illustrate the above results with two examples. Consider the two-electron configuration
npn′p. With different principal quantum numbers n and n′, the Pauli principle is satisfied
whatever the choice of the remaining individual quantum numbers. Addition of the individual
orbital and spin angular momenta shows that the possible values for L and S are

L = 0, 1, 2

S = 0, 1

and therefore
J = 0, 1, 2, 3.

The energy levels for this configuration in the lowest order central field approximation, in
the central field approximation with electron correlation effects, and in the central field ap-
proximation with both electron correlation and fine structure effects included, are illustrated
schematically in figure 5.2. The figure does not pretend to represent distances between energy
levels correctly, only the relative ordering of the levels.

As a second example consider the electron configuration 1s22s22p2 where the exponents
indicate the number of electrons in the different subshells. This configuration will include the
ground state of the carbon atom. The electrons in the two filled s-subshells do not contribute
to L or S. This conclusion is valid for the electrons of any filled subshell. The conclusion
can be understood by noting that the sum of the individual azimuthal quantum numbers for
the electrons in the filled subshell, m` = 0,±1, · · · ,±`, does not give any net contribution to
ML, and therefore no net contribution to L. The similar argument applies for spin. We thus
conclude that:

• The electrons of any filled subshell give no net contribution to the values
of L, S or J .
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Figure 5.2: Splitting of the npn′p configuration by first order effects

Possible values for L and S resulting from the 2p-electrons are L = 0, 1, 2 and S =
0, 1. However, only selected combinations of these values are allowed according to the Pauli
principle. In fact, of the 36 different combinations of the two pairs of (m`,ms) quantum
numbers, only 6 · 5/2 = 15 are allowed. The first electron may choose freely among the 6
different one-electron wave functions available in the np-subshell, the next electron have only
5 different choices left, and we must divide by 2 because the electrons are indistinguishable.

To select combinations of L and S values allowed by the Pauli principle, the following
observations may be useful. First, the total number of different quantum states resulting
from the allowed set of (L, S) values, should be in accordance with the number of different
states based on the (m`,ms) type of reasoning. Second, the Lz and Sz operators are linear
combinations of the corresponding individual operators. Thus, ML =

∑N
i=1m`i and corre-

spondingly for MS . Furthermore, the maximum value for ML or MS allowed by the Pauli
principle will also be the maximum allowed value for L or S.

The largest possible value of
∑
m` is 2. This value will require anti-parallel spins,

∑
ms =

0. Thus, (L = 2, S = 0) is the only allowed combination with L = 2. Parallel spins,
∑
ms = 1

will require different m` values, that is, the maximum allowed value of
∑
m` is 1. Therefore,

(L = 1, S = 1) is an allowed combination. Together with (L = 0, S = 0) these combinations
represent all 15 allowed states. The resulting energy levels for the 1s22s22p2 configuration
are illustrated schematically in figure 5.3. The figure only indicates the correct ordering of
energy levels, not the correct distance between levels.

With the 2p-subshell less that half filled, the L = 1, S = 1, J = 0 state will have the lowest
energy (normal multiplet). The electron configuration 1s22s22p4 will allow for the identical
combinations of L, S and J . This time the 2p-subshell is more than half filled. The L = 1,
S = 1, J = 2 state now represents the lowest energy (inverted multiplet).

Quiz 5.3 : Show that the number of allowed states for the two electron configurations
np2 and npn′p with n 6= n′ can be accounted for in terms of the individual quan-
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Figure 5.3: Splitting of the central field approximation energy level of the 1s22s22p2 configu-
ration by electron correlation and fine structure effects

tum numbers ni`im`isimsi, or in terms of the total quantum numbers LMLSMS or
LSJMJ .

5.5 Spectroscopic Notation and the Periodic System

The spectroscopic notation for quantum states introduced in section 4.8 for one-electron atoms
is easily extended to many-electron atoms in the case of L-S coupling. The complete notation

n1`1 n2`2 · · ·nN `N 2S+1Lo,eJ

is seen to consist of two parts. The electron configuration part is the list of N individual
principal and orbital quantum numbers ni and `i for the electron of the atom. The individual
quantum numbers n in this list are represented by their numerical values, the ` quantum
numbers are written with symbols s, p, d, f, · · · in accordance with table 4.7. The presence
of several electrons in the same subshell is indicated by exponents. Thus, the notation n`k

indicates that k electrons occupy the n`-subshell. The configuration list is sometimes com-
pressed by suppressing the notation for electrons of filled subshells, that is, 1s22s22p2 may be
written compactly as 2p2.

The second part of the spectroscopic notation indicates the manner in which the individual
angular momenta add to form the corresponding total angular momenta. The expression
2S+1L, where the total spin quantum number S is given in terms of its numerical value and
the total orbital quantum number L is represented by capital symbols S, P, D, F, · · · again in
accordance with table 4.7, represents a spectral term. A spectral level is indicated by adding
the value of J as an index to a spectral term, 2S+1LJ . A multiplet consists of all possible
spectral levels for a given spectral term. The superscript 2S + 1 of the spectral term defines
the multiplicity of the state. With L > S the addition rules for angular momenta will allow
for 2S + 1 different values for J , J = |L − S |, |L − S | +1, · · · , L + S. The multiplicity in
this case equals the number of members in a given multiplet. If L < S, however, only 2L+ 1
different values for J are allowed. Also in this case the value 2S + 1 is referred to as the
multiplicity of the state. Quantum states with 2S + 1 = 1, 2, 3, · · · are referred to as singlet,
doublet, triplet, · · · states.

The second part of the spectroscopic notation is completed by adding the parity indicator
as an additional superscript to the spectral level, o for odd parity states and e or no superscript
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for even parity states. The parity of the wave function is determined by the sum of the
individual angular quantum numbers of the electrons in the atom, `1 + `2 + · · · + `N . The
parity is odd or even as this sum is an odd or even integer number (see quiz 5.1).

Let us now see how the spectroscopic notation apply for the ground states of the elements
of the periodic system. The He I atom is the simplest many-electron atom. In the ground
state, both electrons occupy the K-shell, that is, both electrons have n = 1 and ` = 0. The
electron spins must be anti-parallel in order to satisfy the Pauli principle. This means that
the He I ground state is characterized by L = 0, S = 0 and J = 0 and is thus denoted 1s2 1S0,
or 1S0 for short. The sum of the individual orbital quantum numbers is an even number,
corresponding to even parity of the state.

The electron configuration of the ground state of the other elements in the periodic system
may be understood on the basis of simple energy arguments. The energy of an electron
orbital generally increases with increasing principal quantum number n. For a given principal
quantum number the energy increases with increasing orbital quantum number `. With
increasing atomic number Z, we thus expect the electrons to fill in the available shells in the
order of increasing n and subshells in the order of increasing `. The results for the lower
atomic number elements are displayed in table 5.2. A few exceptions to the general rule
stated above are readily visible. Potassium (K) reveals the first irregularity. A new shell (the
N-shell) is started even though the 3d-subshell is not yet completed. For chromium (Cr) and
copper (Cu) the opposite effect is observed, two electrons move into the 3d-subshell, leaving
only one electron in the 4s-subshell. Additional irregularities are found in the higher atomic
number elements of less interest in the astrophysical context.

The ground state spectral levels, also given in table 5.2, may be understood with the
help of the Pauli principle, Hund’s rules and the Landé’s interval rule. That is, for a given
electron configuration, 1) identify the states with the largest S allowed by the Pauli principle,
2) among these look for the states with largest L again in accordance with the Pauli principle,
and finally 3) choose the state with the smallest (largest) J for normal (inverted) multiplets.

Elements for which all occupied subshells are filled are all singlet 1S0 states. Elements
with one electron outside filled subshells form normal multiplets and are doublet 2S1/2,

2Po1/2
or 2D3/2 states depending on the `-value of this electron. Elements with np5 configuration
allow for identical L, S and J values as the np1 configuration. These elements, however,
form inverted multiplets. The ground state spectral level for the np5 configuration is there-
fore 2Po3/2. The 2p2 (and therefore also the 3p2) configuration was discussed in section 5.4.

Minimum energy occurs for the triplet 3P0 state. The corresponding np4 configurations form
inverted multiplets with the triplet 3P2 state having minimum energy.

Before proceeding to a discussion of energy levels of excited states, it will be useful to
review the selection rules for many-electron atoms.

Quiz 5.4 : Explain the ground state spectral levels of K I, Ca I, Ca II and Sc I. Are you
able to explain the ground state spectral levels of N I and Fe I? Also check the parity
of these ground states.

Quiz 5.5 : An excited He I atom has one electron in the K-shell and one in the M-shell.
What are the selections of quantum numbers possible for this atom? How do you
represent the different states of the atom?
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K L M N Ground State
Z Element 1s 2s 2p 3s 3p 3d 4s Spectral Level

1 H 1 2S1/2

2 He 2 1S0

3 Li 2 1 2S1/2

4 Be 2 2 1S0

5 B 2 2 1 2Po1/2
6 C 2 2 2 3P0

7 N 2 2 3 4So3/2
8 O 2 2 4 3P2

9 F 2 2 5 2Po3/2
10 Ne 2 2 6 1S0

11 Na 2 2 6 1 2S1/2

12 Mg 2 2 6 2 1S0

13 Al 2 2 6 2 1 2Po1/2
14 Si 2 2 6 2 2 3P0

15 P 2 2 6 2 3 4So3/2
16 S 2 2 6 2 4 3P2

17 Cl 2 2 6 2 5 2Po3/2
18 Ar 2 2 6 2 6 1S0

19 K 2 2 6 2 6 1 2S1/2

20 Ca 2 2 6 2 6 2 1S0

21 Sc 2 2 6 2 6 1 2 2D3/2

22 Ti 2 2 6 2 6 2 2 3F2

23 V 2 2 6 2 6 3 2 4F3/2

24 Cr 2 2 6 2 6 5 1 7S3

25 Mn 2 2 6 2 6 5 2 6S5/2

26 Fe 2 2 6 2 6 6 2 5D4

27 Co 2 2 6 2 6 7 2 4F9/2

28 Ni 2 2 6 2 6 8 2 3F4

29 Cu 2 2 6 2 6 10 1 2S1/2

30 Zn 2 2 6 2 6 10 2 1S0

Table 5.2: Electron configuration and spectral level of the ground state of selected elements
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Quiz 5.6 : Assuming L-S coupling, list possible spectral terms 2S+1L and spectral levels
2S+1LJ for the electron configurations nd2, np3 and np4.

5.6 Summary of Selection Rules

Transition rates and selection rules for radiative transitions in one-electron atoms were dis-
cussed in sections 4.9 and 4.10. The ability of the atom to jump between different quan-
tum states by absorbing or emitting photons was explained as a time-dependent interaction
between the electric field E of the electromagnetic wave and the electric dipole moment
mE = −er of the atom. For many-electron atoms the only difference is that the electric
field this time interacts with the total electric dipole moment resulting from N electrons,
mE = −e(r1 +r2 + · · ·+rN ). The analysis is analogous to that of the one-electron atom and
will not be repeated. Except for a few minor differences, the one-electron result is generalized
by replacing the angular momenta of the single electron with the corresponding total angular
momenta of the N electrons.

The transition rate for a transition between two given states can be written in the form of
a series, with the first term (the electric dipole approximation) corresponding to neglecting
the spatial variation of the wave electric field over the atom. The second term (the electric
quadrupole approximation) takes into account first order effects due to this variation. There
are also other minor contributions (magnetic dipole approximation) to the transition rate
that sometimes need to be taken into account1. Normally, however, the electric dipole ap-
proximation represents the dominating contribution to transition rates. A given transition is
thus called an allowed transition if the contribution to the transition rate from the electric
dipole approximation term is non-vanishing.

In table 5.3 the selection rules for radiation transitions in many-electron atoms (assuming
L-S coupling) for the electric dipole approximation as well as for the electric quadrupole
and magnetic dipole approximations are listed. ∆S, ∆L and ∆J represent the changes in the
total spin, total orbital and total angular momenta of the atom associated with the transition.
The symbol (0←|→ 0) appearing in the table, for instance in connection with the total orbital
angular momentum requirement ∆L = 0,±1, means that transitions between states both
with L = 0 are not to be included.

From the table it is seen that transitions between different multiplets, ∆S 6= 0, cannot
occur according to any of the approximations listed. This is a result of the fact that the
interaction term of the Hamiltonian involving the electric field of the electromagnetic wave is
independent of electron spin. If corresponding spectral lines are still found in the spectrum,
so-called inter-combination lines, this indicates that collisions between atoms or between
atoms and free electrons have been active in the formation of the line.

For allowed transitions the two electron states involved must exhibit different parities. In
particular, if only one electron is involved in the transition, the change in the angular quantum
number ∆` of this electron must be ±1. In contrast, electric quadrupole and magnetic dipole
effects contribute to the transition rate only if the parities of the states involved are identical.

With selection rules at hand, we are ready to return to a discussion of excited states of
some selected many-electron atoms and their transitions.

1The magnetic dipole contribution arises from the interaction of the magnetic moment of the electrons with
the magnetic field of the electromagnetic wave.
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Electric dipole Electric quadrupole Magnetic dipole
(allowed) (forbidden) (forbidden)

∆S = 0 ∆S = 0 ∆S = 0

Parity change No parity change No parity change

∆L = 0,±1 ∆L = 0,±1,±2 ∆L = 0
(0←|→ 0) (0←|→ 0, 0←|→ 1)

∆J = 0,±1 ∆J = 0,±1,±2 ∆J = 0,±1
(0←|→ 0) (0←|→ 0, 1

2 ←|→ 1
2 , 0←|→ 1) (0←|→ 0)

∆MJ = 0,±1 ∆MJ = 0,±1,±2 ∆MJ = 0,±1

One electron jump One or no electron jump No electron jump
∆` = ±1 ∆` = 0,±2 ∆n = 0, ∆` = 0

Table 5.3: Summary of selection rules for radiation transitions

5.7 Alkali Atoms

The alkali atoms (Li I, Na I, K I, · · · ) have one (valence) electron in the outermost occupied
shell in addition to one or more filled inner shells or subshells. The same fact applies to a
number of ionized species (Be II, B III, C IV, Mg II, Ca II, · · · ). In figure 5.4 energy levels are
given for some of these elements for electron configurations in which only the electron outside
of filled subshells is excited. The energy levels have been marked with the n`-value of the
excited electron. Energy levels are given relative to that of the ground state. From the figure
we see as a general trend the increase in the energy levels with increasing principal quantum
number n of the excited electron. Similarly, there is an increase in energy with increasing
orbital quantum number ` within each shell.

The energy levels in figure 5.4 have been ordered according to spectral term. Energy level
diagrams ordered according to spectral term and with allowed (and forbidden) transitions and
their corresponding wavelengths indicated are called Grotrian diagrams. The alkali atoms
with their n` electron configuration always form doublet states. This means that the energy
levels displayed in figure 5.4, except for the S-term levels, will split as a result of the spin-
orbit interaction. For practical reasons, this splitting has not been given in the figure, nor
has the corresponding splitting of spectral lines been indicated. For the elements displayed
in figure 5.4, the maximum splitting of 223 cm−1 occurs for the 4p 2Po states of Ca II. The
wavelengths given represent the “average” wavelength for the corresponding sets of individual
spectral lines.

In the ground state, Li I has two electrons filling the K-shell, the last electron occupying
the L-shell. The ground state is therefore 1s22s 2S1/2 (or 2s 2S1/2). The lowest excited states
are 2p 2Po1/2,3/2 Transitions between the ground state and these two excited states are both
allowed. The corresponding resonance line is a doublet at λ6707 with a doublet separation of
0.151 Å due to the spin-orbit splitting of the two P-states.
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Figure 5.4: Energy levels for alkali elements

Two isotopes of lithium are common, 6Li and 7Li. The resonance lines of these isotopes will
be slightly different due to the different nuclear masses. For 6Li the components λ6707.921
and λ6708.072 are found while for 7Li the corresponding wavelengths are λ6707.761 and
λ6707.912. In stellar spectra these components will not be separately resolved because of line
broadening. By determining the center of the resonance line it is, however, still possible to
determine the relative abundance of these two isotopes.

For Na I in the ground state the K- and L-shells are filled with the valence electron
occupying the M-shell. The ground state is therefore 1s22s22p63s 2S1/2 (or 3s 2S1/2). The
resonance line results from transitions between the ground state and the lowest excited states
3p 2Po1/2,3/2. The resonance line of Na I is again a doublet with wavelengths λ5895.9 (D1)

and λ5889.9 (D2) and a doublet separation of 6 Å. The Na I resonance line is found both as
emission lines in stellar spectra and as weak absorption lines due to the interstellar medium.

Let us conclude with some comments on the Ca II resonance lines. These are often impor-
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Figure 5.5: Details of the lowest energy levels for Ca II

tant components of astronomical spectra. The ground state of Ca II is 4s 2S1/2. Transitions
to the excited states 4p 2P o1/2,3/2 result in the lines λ3934 (K-line) and λ3968 (H-line). The

doublet separation is thus 35 Å. Details of the transitions among the three lowest sets of en-
ergy levels of Ca II are illustrated in figure 5.5. The H- and K-lines are indicated. In addition
we see that the λ8604 line in figure 5.4c in fact consists of three individual lines at λ8498,
λ8542 and λ8662. For purpose of illustration, the energy separations of the 4p 2P and 3d 2D
multiplets have been exaggerated in the figure, the real energy separations being comparable
to the line thickness.

5.8 Helium and the Alkaline Earths

The ground state of He I and of the alkaline Earth elements Be I, Mg I, Ca I, · · · are all
characterized by having a filled s-subshell as the outermost occupied subshell. The same
applies for a number of ionized elements Li II, C III, N IV, · · · . We will recognize similarities
in energy levels of these elements.

If one of the electrons of He I occupies an excited state, the electron spins may be anti-
parallel, S = 0, or parallel, S = 1. This means that the excited states of He I will be singlet or
triplet states. For the case that the excited electron occupies the L-shell, the different states
possible are

1s2s 1S0, 1s2p 1Po1

or

1s2s 3S1, 1s2p 3Po0,1,2.

The singlet and triplet states of He I are also called para-helium and ortho-helium, respectively.

In figure 5.6 the energies of some of the lower excited states of He I are given relative to the
energy of the ground state. Only energy levels for states with one electron remaining in the
K-shell have been included. The energy levels have accordingly been labeled by the n`-value
of the excited electron. For practical reasons the splitting of the triplet energy levels due to
spin-orbit interactions have not been indicated. For instance, the splitting of the 1s2p 3Po0,1,2
multiplet is only 1 cm−1, well within the line thickness in the figure.
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Figure 5.6: Energy levels of He I with allowed transitions.

Comparing electron states with identical principal quantum numbers n for the excited
electron, the corresponding energy levels are seen to increase monotonously with increasing
values of `. This is in accordance with the discussion of the radial part of the one-electron
eigenfunctions in the central field approximation in section 5.2. A larger value of ` means
that the excited electron on the average will be further away from the nucleus, experiencing a
better shielding of the nuclear charge due to the K-shell electron and thus being less strongly
bound to the nucleus. This is in contrast to the one-electron atom where the energy levels to
lowest order only depend on the principal quantum number n. The first of the two Hund’s
rules is seen to be satisfied. The energy levels of the triplet states are all lower than their
singlet counterparts. The second of the Hund’s rules does not apply. For a given configuration
and a given multiplicity, only one value of L is possible for the states considered in figure 5.6.

A transition between the ground state and the two lowest excited energy states 1s2s 1S0

and 1s2s 3S1 are both forbidden. These states are therefore meta-stable states with lifetimes
of .02 s and 9000 s, respectively. The resonance line of He I at λ584.4 corresponds to the
transition between the ground state and the singlet 1s2p 1Po1 state.

Transitions between singlet and triplet states are not allowed, nor have such transitions
been found in observed spectra. This also applies to the intercombination line at λ591 in-
dicated in figure 5.6. Thus, we get two separate series of spectral lines from He I, one for
transitions among singlet states (para-helium) and one for transitions among triplet states
(ortho-helium). In the figure, allowed transitions and corresponding wavelengths are given.
In the visible part of the spectrum the most important He I lines involve transitions between
singlet or triplet 1s2p states and the corresponding higher 1sns and 1snd states.
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5.9 Effects of External Fields

We shall conclude our discussion of properties of many-electron atoms by considering the
effects of external magnetic and electric fields on the energy levels and therefore on the
spectral lines formed.

5.9.1 The Zeeman effect

We have seen that an external magnetic field gave rise to splitting of the energy levels of the
one-electron atom. We find the similar effect for many-electron atoms. The interaction term
of the Hamiltonian takes the identical form (4.117) in these two cases

HB =
e

2m
B · (L + 2S) =

e

2m
B · (J + S),

except that L, S and J now represent the total angular momenta of all the electrons of the
atom. This time we shall only consider the case of ”weak” external fields, that is, we limit our
discussion to situations where the effect of the external magnetic field is small compared to the
splitting introduced by the spin-orbit interaction. This means that we have to evaluate the
average value of HB for eigenfunctions |LSJMJ 〉. The calculation is completely analogous
to that of section 4.13. Since the component of the total angular momentum J along the
external magnetic field will be quantized according to (5.18), the external magnetic field will
split each energy level into 2J + 1 equally spaced levels according to

∆WB = h̄ωLgMJ . (5.22)

Here ωL = eB/2m is the angular Larmor frequency and the Landé g-factor,

g = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
, (5.23)

is now expressed in terms of the total orbital, the total spin and the total angular quantum
numbers L, S and J . We note that for J = 0 states no magnetic splitting occurs.

One important difference relative to the one-electron atom result should be noted. Even
including the effects of electron spin, the total spin of the many-electron atom may vanish.
For these singlet states the Landé factor g = 1 and the magnetic splitting reduces to the
normal Zeeman effect, that is, the energy difference between splitted levels is independent of
the values of J = L.

Let us illustrate the effect with a simple example. In an external magnetic field the
singlet states of He I experience normal Zeeman splitting of the energy levels. In figure 5.7
the Zeeman effect on transitions involving 1D2 and 1Fo3 states is illustrated. The former state
splits into five equidistant levels with individual spacing h̄ωL. The latter state splits into seven
equidistant levels with the identical individual spacing. According to the selection rules of
section 5.6, transitions are only allowed between states satisfying ∆MJ = 0,±1. This means
that the former single spectral line in the absence of a magnetic field now splits into three
individual lines as indicated in the lower part of figure 5.7: the plane polarized π-component
at the original location corresponding to ∆MJ = 0, and the two elliptical σ-components,
corresponding to ∆MJ = ±1, shifted by the Larmor frequency ±ωL.

Non-singlet states, for which S 6= 0, will through the value of the Landé g-factor show
different sensitivity to an external magnetic field. The more sensitive states have g > 3. An
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Figure 5.7: Normal Zeeman effect in the He I spectrum

example is 6D1/2 states with g = 10/3. Other states are insensitive to magnetic fields, for
instance, for 5F1 states we find g = 0. These facts may be used to advantage when choosing
spectral lines for the study of different phenomena.

The Zeeman effect is routinely used for the determination of magnetic fields in the Solar
and stellar atmospheres and in interstellar clouds. In the latter case, the 21 cm line due to
the hyperfine splitting of the ground state of hydrogen will be used. From the Zeeman effect
of this line, interstellar magnetic fields down into the 10−9 T range have been measured. For
Solar and stellar applications the Zeeman splitting of spectral lines is competing with the
thermal line broadening effect. For these applications magnetically sensitive lines of heavy
elements like Fe, Cr or V with small thermal line widths may be used. If we instead are
interested in studying flow velocities in the Solar atmosphere through spectral line Doppler
shifts produced by the flow, we would instead choose to work with magnetic insensitive lines
of heavy element in order to minimize the perturbing effects of both magnetic fields and
thermal line broadening. In table 5.4 selected magnetic sensitive and magnetic insensitive
lines of some heavier elements are listed. Note that also some forbidden transitions have been
included.

Quiz 5.7 : We will study the effect of an external magnetic field on the resonance line
of He I. What is the resulting splitting of the energy levels involved in the formation
of the resonance line? What transitions are allowed? How many individual spectral
lines will be formed? What is the line spacing? Carry through the same discussion
for the transition 1Po1 – 1D2. How do your results differ from the 1D2 – 1Fo3 case
illustrated in figure 5.7?

Quiz 5.8 : We want to determine the strength B of the surface magnetic field of a star
with radius R = 7 · 108 m, rotation period T = 2 · 106 s and with the rotation axis
at right angle to the line of sight. For the measurements we want to make use of the
Zeeman effect on singlet He I lines. What is the minimum field strength required for
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Wavelength Element Transition Landé
Å g-factor

Magnetic sensitive lines

5131.5 Fe 5P1 – 5P1 5/2
5247.6 Cr 5D0 – 5P1 5/2
5250.2 Fe 5D0 – 7D1 3
6258.6 V 6D1/2 – 6D1/2 10/3

6302.5 Fe 5P1 – 5D0 5/2

Magnetic insensitive lines

5123.7 Fe 5F1 – 5F1 0
5434.5 Fe 5F1 – 5D0 0
6613.8 Fe 5F1 – 7F0 0

Table 5.4: Selected magnetic sensitive and insensitive lines from heavier elements

the spectral line splitting to exceed the Doppler broadening of each individual line
due to the stellar rotation?

Quiz 5.9 : Describe the Zeeman splitting of the magnetic sensitive lines listed in table
5.4.

5.9.2 The Stark effect

The potential energy term of the Hamiltonian resulting from the presence of an external
electric field E are identical in form for the one-electron and the many-electron atom,

HE = −mE ·E.

We only have to replace the electric dipole moment mE = −er of the single electron with
that of N electrons,

mE = −e(r1 + r2 + · · ·+ rN ).

Yet, the resulting Stark effect is distinctly different in these two cases. For the Coulomb field
of the one-electron atom, the energy levels are degenerate. For a given unperturbed energy
level we find corresponding eigenfunctions with both parities. As discussed in section 4.14
this means that the linear Stark effect is the dominating one.

In the many-electron atom, the effective central force potential acts to partially lift this
energy degeneracy. The energy level of an electron orbital now depends, not only on the
principal quantum number n, but also on the orbital quantum number `. Even if the energy
degeneracy is not completely removed, the eigenfunctions belonging to a given unperturbed
eigenvalue now have identical parities. This means that the linear Stark term vanishes iden-
tically. In a perturbation expansion taken to second order (see table 4.8), the contribution
to the energy level WLSJ belonging to the state |LSJMJ 〉 from the quadratic Stark effect is
given as

∆W = E2
′∑ | 〈LSJMJ |mEz | L′S′J ′M ′

J 〉 |2
WLSJ −WL′S′J ′

. (5.24)

The primed sum runs over all states |L′S′J ′M ′
J 〉 different from |LSJMJ 〉. In our notation for

eigenvalues and eigenfunctions we have for convenience only included total angular quantum
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Figure 5.8: Quadratic Stark effect for the D-lines of Na I

numbers. We notice that the numerator is non-vanishing only if S′ = S, M ′
J = MJ and

J ′ = J, J ± 1. This follows from reasoning similar to that used for the derivation of selection
rules in the electric dipole approximation. The final result can be shown to be of the general
form

∆W = E2(A+BM2
J ), (5.25)

where A and B both depend on L, S and J . That is, the energy perturbation is independent
of the sign of MJ . The most important contribution to the sum (5.24) will come from the
nearest levels of opposite parity. For example, the perturbation of the 3p 2P1/2,3/2 levels of
the Na I atom will be approximately twice as large as that of the ground state 3s 2S1/2 because
the former levels are perturbed by the 3d 2D3/2,5/2 levels which lie closer. For the ground state
the energy shift in cm−1 is 7.8 · 10−5E2 where E is given in V/m. The situation is illustrated
in figure 5.8.

As discussed in section 4.14, one of the main effects of the Stark effect is to give rise
to pressure broadening of spectral lines. The pressure broadening results from the variable
electric field seen by atoms during close encounters with charged particles in ionized gases.
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Chapter 6

Molecular Spectra

In the previous chapters we studied properties of the single atom, containing one positively
charged nucleus and one or more surrounding electrons. A molecule is made up of two or
more individual atoms. The molecule thus consists of two or more nuclei together with one or
more electrons. The electrons are necessary for the stability of the molecule. In the absence
of electrons, the positively charged nuclei would repel each other and no stable system can
be formed.

As in the single atom, the electrons of the molecule are only allowed to occupy a specific
set of energy states. However, due to the presence of two or more nuclei, new types of motion
are possible in the molecule. The nuclei may participate in vibrational motion or the molecule
may rotate as a whole. In the present chapter we shall see that quantum mechanics requires
also these additional types of motion to be quantized with a corresponding set of allowed
energy states. It turns out that these additional energy states are more closely spaced than
those due to the electron motion. They will therefore give rise to easily recognizable features
in molecular spectra.

The first molecules to be discovered in the cold interstellar gas, the CH, CH+ and CN
molecules, were identified in 1937. These molecules constitute some of the basic building
blocks for the formation of more complex organic molecules and were observed as exceedingly
narrow absorption lines in stellar spectra in the red and near infra-red spectral range. With
the development of the microwave technology and the ability to observe spectra also in the
far infra-red and millimeter wavelengths, a large number of different interstellar molecules
have later been identified, particularly after 1970. Some of these molecules are surprisingly
large and complicated. In the following we shall for the greater part limit our discussion to
the simpler diatomic molecule.

6.1 The Diatomic Molecule

We may think of the diatomic molecule as being formed in a process in which the two par-
ticipating atoms are successively brought closer to each other. Let R be the inter-nuclear
distance. When far apart, the two atoms behave independently of each other. At a certain
distance the two electron clouds feel the presence of each another and therefore start to de-
form. This means that the electron clouds are no longer able to completely shield the charge
of the nuclei. The two nuclei then start to repel each other. This repulsion increases as the
two nuclei are brought closer still, eventually increasing proportional to R−2, corresponding

129



130 CHAPTER 6. MOLECULAR SPECTRA

to the electrostatic repulsion between two ”naked” nuclei. At the same time, however, the
electrons of one atom is attracted by the nucleus of the other and vise versa.

A stable molecule may form during this process if the potential energy of the system
takes a minimum value for some inter-nuclear distance Re. Typical values of the inter-nuclear
distance Re are of the order 1Å = 10−10 m. We remember that this is also the typical radius
of the atomic electron cloud in an individual atom. We would expect then that at least the
outermost electrons no longer are able to identify their original mother nuclei. Indeed, it will
be necessary to consider the electrons of the molecule as belonging to one common system
for which the Pauli principle must be satisfied. Only one electron may occupy each allowed
electron state of the molecule as a whole.

Two types of molecular bindings can be identified. In hetero-nuclear molecules, where
the two atoms forming the molecule are of different types, as in CO, the energies necessary
to remove one valence electron from these atoms will generally be different. This leads to a
binding in which the atom with the weakest bound electron, the most electro-positive atom,
supplies the electro-negative one with parts of one or more of its own electrons. One end of
the molecule becomes electrically more positive than the other. The molecule thus acquires a
permanent electric dipole moment. The binding in this case is said to be ionic or hetero-polar.
In homo-nuclear molecules, where the two atoms forming the molecule are identical, as in H2,
no permanent electric dipole moment is formed. The binding is now established through
electrons with opposite spins occupying the space between the two nuclei. The binding in
this case is called covalent or homo-polar. In both cases it is the deformed electron cloud that
supply the necessary “glue” to keep the two nuclei together.

Any quantitative discussion of the properties of the diatomic molecule starts with the iden-
tification of the proper Hamiltonian. If we assume that the mass of the electrons is negligible
compared with that of the nuclei, that is, that the center-of-mass of the molecule coincides
with the center-of-mass of the two nuclei, significant simplifications result. In analogy with
the discussion of section 4.4, the Hamiltonian reduces to

H = TN + Te + V (R, r1, · · · , rN ) (6.1)

where R = R2 − R1 is the inter-nuclear vector. Ri and ri are the position vectors of the
individual nuclei and electrons relative to the center-of-mass. The geometry is illustrated
in figure 6.1. In terms of the corresponding momenta P = µṘ and pi = mṙi where µ =
M1M2/(M1 +M2) is the reduced mass of the two nuclei and m the electron mass, the kinetic
energies of the nuclei and the N electrons are

TN =
P 2

2µ

and

Te =
N∑

i=1

p2
i

2m
.

The electrostatic potential energy is given by

V (R, r1, · · · , rN ) = −
N∑

i=1

Z1e
2

4πε0 |ri −R1 |
−

N∑

i=1

Z2e
2

4πε0 |ri −R2 |

+
N∑

i=1

N∑

j=i+1

e2

4πε0 |ri − rj |
+
Z1Z2e

2

4πε0R
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where Z1 and Z2 are the charge numbers of the two nuclei at positions R1 = −M2R/(M1+M2)
and R2 = M1R/(M1+M2) relative to the center-of-mass. The Hamiltonian (6.1) only includes
electrostatic contributions to the total energy. Relativistic and spin effects were neglected.

2
M2M1

R1

r
2

r
1

r

R

N

m

Figure 6.1: Geometry of the diatomic molecule

Solving the Schrödinger equation

H |Ψ 〉 = W |Ψ 〉 (6.2)

for the simplest diatomic molecule is a demanding task even for the zero-order Hamiltonian
(6.1). We therefore need to look for ways to simplify the problem. From a classical point of
view, we would expect the light electrons to adjust almost immediately to any relative motion
of the two nuclei. It therefore makes sense to study the electron wave equation

(Te + V (R, r1, · · · , rN )) |Φσ 〉 = Wσ(R) |Φσ 〉, (6.3)

where the inter-nuclear vector R, occurring in the eigenvalue Wσ(R) and in the electron wave
function |Φσ 〉 = |Φσ(R; r1, · · · , rN ) 〉, is considered as an external parameter. The subscript
σ specifies the electron configuration of the molecule. For symmetry reasons the electron
energy Wσ may only depend on the inter-nuclear distance R and not on the orientation of
the molecule.

Let us now assume that the electron wave equation (6.3) has been solved. Let us further
assume that the molecular wave function |Ψ 〉 may be written as a product of the electron
wave function |Φσ 〉 with another function of R only,

|Ψ 〉 = Fσ(R) |Φσ 〉. (6.4)

The nuclear wave function Fσ(R) may be determined by substituting (6.4) into (6.2). Consid-
erable simplifications result if in addition the electron wave function |Φσ 〉 may be considered
to be a slowly varying function of R relative to that of Fσ(R). This assumption is referred to
as the Born-Oppenheimer approximation and is normally found to be well satisfied for values
of R close to the equilibrium inter-nuclear distance Re. Under this assumption, the nuclear
wave equation (

− h̄
2

2µ
∇2

R +Wσ(R)

)
Fσ = WFσ (6.5)

is easily derived. The electron energy Wσ(R) is seen to represent the effective bonding energy
of the molecule. That is, it is the electrons that supply the “glue” for keeping the molecule
together.
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6.2 Molecular Vibration and Rotation

The nuclear wave equation (6.5) differs from the wave equation (4.17) for the one-electron
atom only in that the free variable is now the inter-nuclear vector R and that the Coulomb po-
tential (4.15) is replaced with the spherically symmetric ”molecular” potential energy Wσ(R),
depending on the particular choice of electron configuration σ. It follows trivially that the
nuclear orbital angular momentum N = R × P may be quantized simultaneously with the
molecular energy in the familiar manner,

N2Fσ = h̄2N(N + 1)Fσ (6.6)

NzFσ = h̄MNFσ, (6.7)

where the nuclear orbital quantum numberN is a non-negative integer number and the nuclear
azimuthal quantum number MN takes values in the range

MN = −N,−N + 1, · · · , N.

The angular part of the nuclear wave function Fσ is identical in form to that of the one-
electron atom. Indeed, if we substitute

Fσ(R) =
1

R
Fσ(R)PNM

N (cos θ) exp(ιMNφ), (6.8)

the nuclear wave equation (6.5) reduces to

(
− h̄

2

2µ

d2

dR2
+Wσ(R) +

h̄2N(N + 1)

2µR2

)
Fσ = WFσ. (6.9)

To proceed we need to know the molecular potential energy Wσ as a function of inter-
nuclear distance R for the specified electron configuration σ. From an experimental basis it
has been demonstrated that this function may often be well approximated in the form

Wσ(R) = Wσ(Re) + UM (R) (6.10)

where UM (R) is the three parameter Morse potential

UM (R) = De(1− exp(−βQ))2. (6.11)

Here Q = R − Re is the deviation of the inter-nuclear distance from the equilibrium value
Re. The shape of the Morse potential (full curve) is given in figure 6.2. The depth De of the
potential well is the binding energy of the molecule, that is, the type of energy that must be
supplied to the molecule in order to break it up into its individual parts. The parameter β
determines the width of the potential energy minimum. The three parameters Re, De and β
are to be fitted for each molecule and for each electron configuration σ.

If the nuclei of the diatomic molecule are brought out of their equilibrium configuration,
forces will arise trying to restore the equilibrium state. For small distortions, the potential
energy function (6.10) may be approximated by an expansion to second order in Q,

Wσ(R) = Wσ(Re) +
1

2
kσQ

2, (6.12)
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Figure 6.2: Morse potential (solid curve) and the corresponding harmonic oscillator potential
(dash-dotted curve)

where we defined the ”spring” constant kσ = U ′′
M (Re) = 2β2De. We recognize the second

order term as the potential energy of an harmonic oscillator . This potential (dash-dotted
curve) is compared with the Morse potential (solid curve) in figure 6.2. For a lowest order
approximation we also replace R in the angular momentum term of (6.9) by the equilibrium
value Re. The latter approximation is referred to as the rigid rotor approximation .

It will now be seen that the total molecular energy can be written as a sum of three
contributions,

W = Wσ(Re) +Wv +WN . (6.13)

We will return to a discussion of the importance of the first term Wσ(Re) in section 6.5.
The second term of (6.13) represents the vibrational energy of the molecule. It is deter-

mined from the harmonic oscillator wave equation

− h̄
2

2µ

d2F

dQ2
+

1

2
kQ2F = WvF. (6.14)

For simplicity we suppressed the appropriate electron configuration subscript σ for k, Wv and
F . Equation (6.14) is conveniently solved through the substitution

F (Q) = exp(−x
2

2
)u(x) with x =

√
αQ and α =

√
µk

h̄
. (6.15)

The unknown function u(x) will have to satisfy the Hermite differential equation

d2u

dx2
− 2x

du

dx
+ 2vu = 0, (6.16)

with the vibrational energy Wv related to the vibrational quantum number v through

Wv = h̄ω0(v +
1

2
) with ω0 =

√
k

µ
. (6.17)

The Hermite differential equation is known to have finite solutions only if v takes non-negative
integer values (see quiz 6.2). The solutions are then the Hermite polynomials u(x) = Hv(x).
Some useful properties of these polynomials are listed in table 6.1.
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Hermite polynomial

Hv(x) = (−1)v exp(x2)
dv

dxv
exp(−x2)

Some lower order polynomials

H0(x) = 1 H1(x) = 2x H2(x) = −2 + 4x2

H3(x) = −12x+ 8x3 H4(x) = 12− 48x2 + 16x4

Recurrence relation

Hv+1(x) = 2xHv(x)− 2vHv−1(x)

Normalization and orthogonality

∫ ∞

−∞
exp(−x2)Hv(x)Hv′(x) dx = 2vv!

√
π δv,v′

Table 6.1: Hermite polynomials

The energy levels Wv available to the harmonic oscillator form a series of equidistant
levels. In figure 6.3 the levels are plotted superposed on the harmonic oscillator potential
kQ2/2. The harmonic oscillator wave functions Fv(Q) = exp(−αQ2/2)Hv(

√
αQ) for each

level are also shown. The presence of the vibrational rest energy W0 = 1
2 h̄ω0 means that the

dissociation energy of the molecule should be defined as

D0 = De −
1

2
h̄ω0.

Some of the energy required to break the molecule apart is already present in the form of the
vibrational rest energy.

The third term of (6.13),

WN = BN(N + 1) with B =
h̄2

2Ie
, (6.18)

is the rotational energy of the two nuclei. The rotational constant B is here expressed in
terms of the moment of inertia Ie = µR2

e of the rigid rotor. The quantities Ie, B and WN

all depend on the electron configuration σ. From (6.18) it is seen that the energy difference
between adjacent rotational energy levels increases linearly with N + 1,

WN+1 −WN = 2B(N + 1). (6.19)

Quiz 6.1 : Verify that the moment of inertia of the rotating diatomic molecule relative to
an axis of rotation through the center-of-mass and at right angle to the line connecting
the two masses M1 and M2, can be written

Ie = M1R
2
1 +M2R

2
2 = µR2

e,
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Figure 6.3: Vibrational wave functions, energies and harmonic potential

where R1 and R2 are the distances from the center-of-mass to the two masses, Re =
R1 +R2 and µ = M1M2/(M1 +M2).

Quiz 6.2 : Argue that solutions of (6.16) may be written as power series

u(x) = · · ·+ anx
n + an+2x

n+2 + · · ·

where n is even or odd. Show that the coefficients must satisfy

an+2

an
=

2(n− v)
(n+ 2)(n+ 1)

.

Thus, verify that “physically acceptable” solutions of (6.16) will only be found if the
quantum number v takes non-negative integer values. [The infinite power series with
coefficients satisfying an+2/an → 2/n as n → ∞ behaves asymptotically as exp(x2)
for large x.]

6.3 Selection Rules for Vibrational-Rotational Transitions

With the vibrational and rotational energy levels determined, we proceed to study radiation
transitions between these levels when the molecule is exposed to an external electromagnetic
radiation field. This discussion closely resembles the previous one for radiation transitions
in one-electron atoms in section 4.9. The interaction between the molecule and the external
radiation field may be approximated by the extra perturbation term

H ′ = −mE ·E (6.20)

in the Hamiltonian. Here mE = mE(R, r1, · · · , rN ) represents the electric dipole moment
resulting from all the individual charges in the molecule and E is the oscillating electric field
of the wave.
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In the electric dipole approximation, in which the variation of the wave electric field over
the molecule is neglected,

E =
E0

2
(ê exp(−ιωt) + ê∗ exp(ιωt)) ,

the transition rate for an absorption transition from an initial state | i 〉 = | σvNNM 〉 to
another state |f 〉 = |σ′v′N ′M ′

N 〉 is given by

wafi ∼ |〈 f | ê ·mE | i 〉 |2 . (6.21)

Similar expressions are valid for the corresponding emission rates.

We restrict the discussion to transitions for which the electron configuration remains
unchanged, σ′ = σ, and introduce the corresponding average electric dipole moment

mE(R) = 〈Φσ |mE |Φσ 〉.

The averaging is performed with respect to the electron wave function | Φσ 〉, unperturbed
by the radiation field. Thus mE represents the permanent electric dipole moment of the
molecule. We further notice that mE is a function of the inter-nuclear vector R only. From
symmetry arguments we must expect mE to be parallel with R. We must also expect the
magnitude of mE to vary with inter-nuclear distance R. To first order we write

mE(R) = mE(Re) +Qm′
E(Re).

The integrals appearing in the expression (6.21) for the transition rate now simplify to

〈 f | ê ·mE | i 〉 =
∫ ∫ ∫

Fv′N ′M ′
N

(R) ê ·mE(R)FvNMN
(R)R2 dR dcos θ dφ. (6.22)

The nuclear wave function Fσ, (6.8), for the specified electron configuration σ have here been
indexed with the vibrational and rotational quantum numbers of the states involved. The
angular integrals are identical in form to those studied for one-electron atoms in section 4.10.
We may therefore conclude that a necessary condition for non-vanishing transition rates is
that ∆N ≡ N ′ −N = ±1 and ∆MN ≡M ′

N −MN = 0,±1.

The remaining radial integral in (6.22) takes the form

∫
exp(−x2)Hv′(x)

(
mE(Re) + x

m′
E(Re)√
α

)
Hv(x) dx.

Making use of the recurrence relation and the orthogonality property of Hermite polynomials
listed in table 6.1, it is seen that the first term will be non-vanishing if mE(Re) 6= 0 and
∆v ≡ v′ − v = 0. The second term will be non-vanishing if m′

E(Re) 6= 0 and ∆v = ±1. We
shall refer to transitions for which ∆v = 0 as rotational transitions, those for which ∆v 6= 0
as vibrational-rotational transitions.

We may now summarize our findings as the selection rules for rotational and vibrational-
rotational transitions:
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A diatomic molecule, in the harmonic oscillator, rigid rotor approximation, may
absorb or emit radiation in rotational or vibrational-rotational transitions if

• ∆N = ±1

• ∆MN = 0, ±1.

• ∆v = 0 and the molecule has a permanent electric dipole moment mE.

• ∆v = ±1 and the molecule has a permanent electric dipole moment mE

varying with inter-nuclear distance R.

Hetero-nuclear molecules usually have permanent electric dipole moments. Homo-nuclear
diatomic molecules do not have permanent electric dipole moments, and therefore usually do
not exhibit radiative rotational or vibrational-rotational transitions.

On the basis of these selection rules, we may understand spectral features due to rotational
and vibrational-rotational transitions of the diatomic molecule. Let us first consider purely
rotational transitions. According to (6.18), the energy difference between adjacent rotational
energy levels increases linearly with the angular quantum number of the higher energy state.
Transitions are only allowed between energy levels corresponding to adjacent values of N .
This means that rotational transitions give rise to an equidistant sequence of spectral lines
with frequency. The first line in this series,

1

λ
=

2B

hc
,

corresponds to the N = 0 to N = 1 transition. In figure 6.4 some lower rotational energy
levels, allowed rotational transitions between these levels and the corresponding spectral lines
are illustrated. Rotational spectral lines are for most molecules found in the microwave
spectral range.

Figure 6.4: Rotational energy levels, allowed transitions and spectral lines

The corresponding situation for vibrational-rotational transitions is illustrated in figure
6.5. In the figure the lower rotational energy levels for two different vibrational states, v = 0
and v = 1, are given. Notice the break in the energy scale. The energy difference between
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adjacent vibrational states is much larger that those between adjacent rotational states, vi-
brational energy differences usually corresponding to the infra-red spectral range. Transi-
tions between rotational energy levels belonging to these two vibrational states constitute
the (0, 1)-molecular band. We notice that the purely vibrational transition from v = 0, N
to v′ = 1, N ′ = N is forbidden. To each side of this forbidden line, traditionally called the
Q-branch, there appears series of equidistant lines on a frequency axis. The collection of lines
corresponding to transitions v = 0, N to v′ = 1, N ′ = N − 1 is referred to as the P-branch,
the collection of lines corresponding to transitions v = 0, N to v′ = 1, N ′ = N + 1 is called
the R-branch.

Figure 6.5: Vibrational-rotational transitions

Quiz 6.3 : For the CO molecule, the inter-nuclear distance is Re = 0.113 nm. The
“spring” constant is tabulated as k = 1.87·103 N/m. Determine the wavelengths λ for
the first three lines of the rotational spectrum. Determine the three lowest vibrational
energy levels and the corresponding wavelengths of the vibrational spectrum. Which
spectral ranges do these transitions belong to?

Quiz 6.4 : The HCl molecule has a potential energy curve described by dissociation
energy De = 36300 cm−1, shape factor β = 1.90 Å−1 and inter-nuclear equilibrium
distance Re = 1.28 Å. Determine the “spring” constant k and the energy difference
between the two first vibrational levels. Estimate the number of vibrational states
for the molecule.



6.4. GENERALIZED OSCILLATOR-ROTOR MODELS 139

6.4 Generalized Oscillator-Rotor Models

With increasing vibrational and rotational energies the harmonic oscillator, rigid rotor ap-
proximation discussed above needs to be improved upon.

With increasing vibrational energies, the harmonic oscillator potential deviates apprecia-
bly from the Morse potential as illustrated in figure 6.2. It will then be necessary to include
higher order terms in Q (at least third and fourth order terms) in the potential expansion
(6.12). The oscillator is then called an anharmonic oscillator. The vibrational energy levels
in this case get negative correction terms, while at the same time the radial parts F of the
nuclear wave functions F are modified, on the average being more extended in the radial di-
rection. Due to the latter effect the average moment of inertia increases with a corresponding
decrease in rotational energy levels.

At high rotational quantum numbers N , we would also expect increasing centrifugal forces
to stretch the inter-nuclear distance. This would increase the moment of inertia of the molecule
and therefore lead to a decrease in rotational energy levels. A model for which the variation in
R with increasing values of N in the angular momentum term of (6.9) is taken into account,
is referred to as a non-rigid rotor model.

Figure 6.6: Anharmonic potential (dash-dotted curve) and energy levels of the anharmonic
oscillator compared with the corresponding potential and energy levels of the harmonic oscil-
lator (dashed)

Including anharmonic and stretching effects the expressions for the vibrational and rota-
tional energies of (6.13) will be modified. A quantitative study (second order perturbation
theory) will show that the lowest order correction to these expression are

Wv = h̄ω0(v +
1

2
)− h̄2ω2

0

4De
(v +

1

2
)2 (6.23)

and

WN = BvN(N + 1) (6.24)
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where the rotational constant Bv is now a function for the vibrational quantum number v,

Bv =
h̄2

2Ie

(
1− 3h̄ω0

βReDe

(
1− 1

βRe

)
(v +

1

2
)

)
. (6.25)

The expressions (6.23) and (6.25) must in fact be considered as the first terms of power series
in v + 1

2 and N(N + 1) of a more complete analysis.
In figure 6.6 the Morse potential (solid curve), the anharmonic and harmonic oscillator

potentials (dash-dotted and dashed curves) and the corrected vibrational energy levels are
illustrated schematically. We note the decreasing distance between adjacent vibrational levels.
The corresponding wave functions are modified such that the maxima of |F |2 tend to occur
near the classical turning points Rv, satisfying UM (Rv) = Wv. Another consequence of the
anharmonic potential is that the selection rules for vibrational transitions must be generalized.
Transitions corresponding to ∆v = ±1, ±2, · · · are now to be expected. Still, however, the
∆v = ±1 transitions usually lead to the strongest lines. Because of the decreasing inter-
level spacing, the ∆v = ±1 transitions for the anharmonic oscillator will produce a series of
slightly shifted (v, v+1)-molecular bands. Other groups of lines result from ∆v = ±2,±3, · · ·
transitions.

The correctional term of the rotational constant Bv stems from the modification of the
“spring” constant due to rotational stretching of the inter-nuclear equilibrium distance. A
physical interpretation of this result is that the average inter-nuclear distance and therefore
the average moment of inertia, depends on the vibrational state of the molecule. This means
that the distance between the rotational energy levels for v = 1 in figure 6.5 will be slightly
smaller then the corresponding ones for v = 0. This in turn means that individual lines in
the P- and R-branches are no longer equidistant. In fact, for the (0,1)-molecular band the
frequencies of the different lines in the P-branch (N → N−1) and the R-branch (N → N+1)
are given by

hνP (N) = hν0 +B1 (N − 1)N −B0N(N + 1) (6.26)

hνR(N) = hν0 +B1 (N + 1)(N + 2)−B0N(N + 1). (6.27)

The result is that there will be a gradual decrease in the frequency difference between succes-
sive vibrational-rotational lines going from the P- to the R-branch. The effect is illustrated in
figure 6.7. This effect will be even more pronounced in vibrational-rotational transitions also
involving transitions in the electron configuration σ of the molecule. This will allow for larger
differences in the values of the rotational constants involved. We will return to a further
discussion of this effect in section 6.5.

Quiz 6.5 : Make use of (6.26) and (6.27) to show that

hνR(N)− hνP (N) = 2B1 (2N + 1)

hνR(N)− hνP (N + 2) = 2B0 (2N + 3).

Identify the P- and R-branches of the (0,1)-molecular band of the idealized diatomic
molecule spectrum shown in figure 6.7. Determine values for B0 and B1 for the
molecule. What is the equilibrium inter-nuclear distance Re? What is the “spring”
constant k?
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Figure 6.7: Vibrational-rotational absorption spectrum of a diatomic molecule displaying
anharmonic and non-rigid rotor effects

6.5 Electronic-Vibrational-Rotational Spectra

Molecules can absorb or emit radiation not only as a result of changes in their vibrational or
rotational energies, but also as a result of changes in their electron configuration. The energy
changes associated with a transition from one electron state to another are usually relatively
large, corresponding to radiation in the visible or ultraviolet spectral ranges, in contrast to
the infrared or microwave ranges for vibrational-rotational or rotational transitions.

As discussed in section 6.1, the electrons of the molecule may only exist in one of a discrete
set of eigenstates. Each electron configuration σ will as a function of the nuclear vector R give
rise to a different effective bonding potential Uσ(R). This is illustrated in figure 6.8 where
two such functions are given, one corresponding to the lowest energy state of the electrons
and one for an excited state. The bonding potentials may have different depths, different
widths and have their minima at different inter-nuclear distances. For each bonding potential
a set of allowed vibrational and rotational states exist. Some vibrational energy levels for the
two potential curves are drawn in the figure. Due to the anharmonic potential, the distance
between the energy levels is not constant, but decreases as the vibrational excitation energy
approaches the dissociation energy of the molecule.

In a transition involving changes in electron configuration, the molecule will jump from
an energy level belonging to one potential energy curve to a level belonging to another curve.
Due to the small electron mass, we expect the electrons to be able to complete their transition
before the nuclei have time to react. This is known as the Franck-Condon principle and means
that the transition may be represented by a vertical line in figure 6.8. We must expect the line
to start at an inter-nuclear distance near a maximum of the vibrational probability density
function and end up near another maximum. As illustrated in figure 6.6 we expect to find
maxima of the probability density function |F |2 near the minimum of the potential energy
function for v = 0, but near the classical turning points for v > 0. But then we must expect
that a transition from a vibrational state v = 0 to another v′ = 0 state belonging to the other
electron configuration will be possible if the minima of the two potential energy curves fall
at approximately the same inter-nuclear distance, Re = R′

e, but not if they are appreciably
different. The latter case is illustrated in figure 6.8. Here we must instead expect transitions
between v = 0 and v′ = 3 and between v = 2 and v′ = 0 to be among the more probable. In
the figure we have also indicated two other probable transitions. This is an indication that
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Figure 6.8: Potential energy functions and, vibrational energy levels for two different electron
configurations with some probable transitions.

we must expect a richer set of selection rules for transitions involving changes in the electron,
vibrational and rotational state of the molecule . The selection rules for allowed changes
in the vibrational and rotational quantum numbers v and N depend on the electron states
involved in the transitions. We must expect to see ∆v = 0, ±1, ±2, · · · . while ∆N = 0, ±1
are frequently allowed.

This means that considerable richness and complexity are to be expected in the interpre-
tation of molecular spectra. Each allowed electron transition will consist of several bands,
each band corresponding to particular values of the initial and final vibrational quantum
numbers v and v′. Each band in turn consists of several branches, P-, Q- and R-branches
corresponding to transitions from rotational quantum number N to N ′ = N − 1, N or N +1,
respectively. The Q-branch now represents allowed transitions. This is in contrast to our
previous results for pure vibrational-rotational transitions.

With initial and final states belonging to different electron configurations, we should
expect to see larger differences in the rotational constants Bv. This means that there will
be differences in the distance between corresponding adjacent rotational energy levels for
different vibrational states. This again means that instead of the regular spaced spectral lines
of pure vibrational-rotational transitions illustrated in figure 6.5, we expect to see rotational
spectral features with variations in inter-line spacing exceeding those of the anharmonic non-
rigid oscillator in figure 6.7. Indeed, it is commonly observed that, for instance, the R-branch
first extends toward higher frequencies, then comes to a halt, before turning toward lower
frequencies again with increasing rotational quantum numbers N . This follows from the
expressions for the frequencies of the individual lines of the P- and R-branches as functions
of N . Thus, it will be seen from (6.26) and (6.27) that if B1 < B0 and the difference
in these values is large enough, both νP (N) and νR(N) will eventually both decrease with
increasing values of N . This effect leads to the formation of band heads in the spectrum, that
is, the convergence of individual rotational spectral lines toward a limiting frequency. This
phenomenon is illustrated in figure 6.9 for the case (B1 −B0)/B0 = −.14. For clarity the P-
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Figure 6.9: Formation of band heads

and R-branches have been plotted “back to back” along the N -axis.

6.6 Comments on Polyatomic Molecules

The harmonic oscillator model for the diatomic molecule easily extends to polyatomic molecules.
Instead of two nuclear masses and one connecting ”spring”, theM-atomic molecule will con-
sist of M nuclear masses connected by a larger number of ”springs” of different strengths,
one spring for each pair of forces acting between the nuclei. In a 3-atomic linear molecule,
like HCN, the number of springs is 2. Linear here means that the molecule is configured such
that the three nuclei lie on a straight line. The more general 3-atomic molecule, in which
the three nuclei lie at the vertices of a triangle, like H2O, requires three springs. Each spring
corresponds to one harmonic oscillator with its own set of equidistant energy levels. Of the
3M coordinates necessary to specify the positions of the nuclei in the most generalM-atomic
molecule, 3 may be chosen to describe the center-of-mass motion of the molecule, another 3
to describe the orientation of the molecule. The remaining 3M−6 coordinates can always be
chosen to correspond to independent harmonic oscillators. Selection rules similar to the ones
derived above will apply to each of these oscillators. The result is therefore that we would
expect one set of vibrational-rotational spectral lines for each oscillator. The linear HCN
molecule, identified in interstellar spectra, show spectral lines at λ−1 = 2089 and 3312 cm−1.
For H2O with the two HO-bonds making an angle of 105◦ with each other, three vibrational
spectral features are found at λ−1 = 1545, 3652 and 3756 cm−1. The HCN and H2O molecules
with the corresponding spring models are illustrated in figure 6.10.

The rigid rotor model for the diatomic molecule also extends to polyatomic molecules.
This extension is simple in the case of ”symmetric top” molecules, that is, molecules for
which orthogonal x, y and z-axis may be found such that the moments of inertia Ix, Iy and
Iz of the molecule with respect to these axis satisfy

I = Ix = Iy 6= Iz.
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Figure 6.10: Linear and arbitrary 3-atomic molecules

The classical rotational energy for such molecules takes the form

H =
N2
x

2Ix
+
N2
y

2Iy
+
N2
z

2Iz
=

1

2I
N2 − (

1

2I
− 1

2Iz
)N2

z .

The operators N2 and Nz commute. The corresponding physical quantities are therefore
simultaneously measurable and we may immediately write down the expression for the allowed
rotational energy levels

WNMN
=
h̄2

2I
N(N + 1)− h̄2

2
(
1

I
− 1

Iz
)M2

N . (6.28)

The angular part of the nuclear wave function for the symmetric top molecule is iden-
tical to that of the rigid rotor as given in (6.19), but the z-axis is now fixed to the axis of
rotational symmetry of the molecule. The extra degrees of freedom with respect to energy
levels expressed by (6.28) naturally leads to additional richness as regards rotational spectral
features. The CH3CN molecule which was discovered in the interstellar medium in 1971 is an
example of a symmetric top molecule. The molecule is illustrated in figure 6.11. The three
H atoms are located at the vertices of an equilateral triangle, the three C-H bonds forming
an angle of 109◦ with each other.
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Figure 6.11: The CH3CN molecule

6.7 Coupling of Angular Momenta in Molecules

In our discussion of the the rigid rotor any coupling with the electrons was neglected. This is
clearly an oversimplification. The electrons may have both orbital and spin angular momenta.
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We are also from our discussion of atomic physics well acquainted with complicated ways of
combining angular vectors. Below we shall only give a few comments on the corresponding
angular momentum problem for molecules.

Let us this time start with the electrons. For the electrons of the molecule the situation is
different from that of electrons in individual atoms. With the spherically symmetric potential
of the atom, the square of the electron orbital angular momentum L2 may be quantized
together withH and Lz. In the diatomic molecule the electric field of the two nuclei introduces
a rotational symmetry around the molecular axis. The component of Lz along this axis may
thus still be quantized together with H. But L2 is no longer a good quantum number. The
quantum number corresponding to Lz is traditionally denoted Λ,

LzΦ = ±ΛΦ, Λ = 0, 1, 2, · · · . (6.29)

The electron energy is independent of the choice sign in (6.29). This introduces a double
energy degeneracy for Λ 6= 0.

Λ 0 1 2 3

symbol Σ Π ∆ Φ

Table 6.2: Molecular spectroscopic notation

Molecular electron states are identified, according to the value of Λ, with capital Greek
letters as shown in table 6.2. The notation is analogous to the situation for atoms except for
the fact that it is now the azimuthal component of the orbital angular momentum Λ which
is the ordering agency instead of the total orbital angular momentum L.

Electron states of the molecule corresponding to identical value of Λ are distinguished by
a Roman capital letter preceding the Greek symbol for the value of Λ. The ground state is
represented by the letter X, the following states by A, B, C, · · · in order of increasing energy.

The spin of the individual electrons combine to form the total electron spin angular mo-
mentum S. As usual S2 may be quantized together with H with eigenvalues h̄2S(S + 1),
the spin quantum number S taking integer or half-integer values depending on the number
of electrons in the molecule. Provided spin-orbit interactions are neglected there is a 2S + 1
energy degeneracy associated with S. The value 2S + 1 is the multiplicity of the electron
state and appears as a subscript immediately preceding the Greek symbol for the value of Λ
in molecular spectroscopic notation.

The spin angular momentum is not effected by the molecular electric field. If the molecule
does not rotate and Λ = 0, the spin angular momentum does not show any preference for the
molecular axis. If Λ 6= 0, however, the electron orbital motion induces an internal magnetic
field in the direction of the molecular axis. This internal magnetic field causes a precession of
S around this axis, the axial component taking values h̄Σ. Σ is the azimuthal spin quantum
number and takes values −S,−S + 1, · · · , S. The azimuthal spin quantum number Σ should
not be confused with the Greek symbol Σ for electron states in table 6.2.

The electron orbital and spin angular momenta L and S may couple with the nuclear
angular momentum N at right angles with the molecular axis to form the total angular
momentum

J = L + S + N
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Figure 6.12: Coupling of angular momenta according to Hund’s rules (a) and (b)

of the molecule in different ways. Hund’s rules specify which combinations are possible. Two
common cases are shown in figure 6.12.

Hund’s rule (a) applies where a strong nuclear electric field causes a rapid precession of
L around the molecular axis, while a strong induced magnetic field causes a similar rapid
precession of S around the molecular axis. The effective values of L and S are then both
collinear with the molecular axis, giving rise to an effective azimuthal quantum number

Ω =|Λ + Σ | .

The collinear and strongly coupled effective L and S vectors then couple with the perpendic-
ular N vector to give total angular quantum numbers of the molecule as

J = Ω,Ω + 1,Ω + 2, · · · .

Hund’s rule (b) applies where the coupling between S and the molecular axis is weak.
This decoupling takes place for Σ states (Λ = 0). The orbital angular momentum L may
still be strongly coupled with the molecular axis, making Λ a good quantum number. The
effective L and N then couple to form a resultant angular vector K with integer quantum
numbers

K = Λ,Λ + 1,Λ + 2, · · · .
The total angular momentum J is finally obtained by coupling K and S with quantum
numbers

J =|K − S |, |K − S |+1, · · · ,K + S.



Chapter 7

Thermal and Statistical Physics

Thermal physics is the branch of physics that deals with the properties of systems in thermal
equilibrium. It describes the state of systems that have been brought in contact with each
other and been allowed to exchange energy or particles. It describes types of processes that
systems may undertake when some parameter of the system is changed. Characteristic of
thermal physics is that very general and far-reaching conclusions on the properties of systems
can be achieved on the basis of very simple statistical assumptions.

7.1 Probability Concepts

Before embarking on our discussion of thermal physics, it will be useful to review some basic
concepts and definitions from the theory of probability. We introduce these through the
discussion of a simple experiment, that of throwing darts toward a target on the wall. Let
the center of the target be located at the origin of a Cartesian xy-coordinate system. Let X
and Y represent the ”coordinates of the dart on target”. X and Y are examples of stochastic
variables. Before a throw the values of X and Y are not known. We will indicate the result
of a particular throw i by coordinates xi and yi. In statistical jargon, xi and yi represent
a realization of the stochastic variables X and Y . In the next throw, X and Y will almost
certainly find another realization. In principle, xi and yi may both take any real value.
The state space of our particular experiment is therefore two-dimensional, real-valued and
continuous.

Now consider the target divided into rectangular cells with sides dx and dy. Each cell
is recognized by for instance its center coordinates (x, y). After throwing a large number N
of darts, a player will find dN (x, y) hits in the cell with center at (x, y). She may therefore
assign the number dN (x, y)/N as the probability of hitting the particular cell. If a new series
of N throws were made, a different result would be expected. One would argue that as the
number N increases, the difference in the results of two consecutive series of N throws for
a given player would decrease. This being the case, we could assign a probability density
function fXY (x, y) to the particular experiment such that N fXY (x, y) dxdy represents the
expected number of hits in the given cell after N throws. For convenience, we shall in the
following refer to probability density functions also as distribution functions.

The distribution function fXY (x, y) must satisfy two constraints to be acceptable. First,
it will have to be positive definite,

fXY (x, y) ≥ 0. (7.1)

147
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We cannot think of a negative number of hits in any cell. Secondly, any vald throw will
have to hit somewhere, that is, summing over all cells, all throws should be accounted for.
Mathematically, this means that the distribution function must be normalized,

∫
fXY (x, y) dxdy = 1. (7.2)

It is now useful to introduce some additional concepts related to our distribution function
fXY (x, y). We could devise a new experiment in which we were only interested in studying
one of the coordinates of the dart on target, for instance the X variable. The distribution
function for the new experiment can be derived from the old one by summing over all possible
outcomes of the now non-interesting Y variable,

fX(x) =

∫
fXY (x, y) dy. (7.3)

The distribution function fX(x) is an example of a marginal probability density function.
It will automatically satisfy the requirements of being positive definite and normalized. In
figure 7.1 a distribution function fXY (x, y) is illustrated by equi-contours. The two marginal
distributions fX(x) and fY (y) results through integrating fXY (x, y) along the y- and x-axis
respectively.

Figure 7.1: A distribution and the corresponding marginal distributions

A given function g(X,Y ) of the two stochastic variables X and Y will take different values
in each realization. A measure for the expected value of g for a particular realization can be
found by weighting the different outcomes g(x, y) with the probability for that particular out-
come, that is fXY (x, y) dxdy, and then summing over all possible outcomes. This procedure
defines the mean value of the given function,

〈 g(X,Y ) 〉 =

∫
g(x, y)fXY (x, y) dxdy. (7.4)

For the simple choice g(X,Y ) = X we thus have

〈X 〉 =

∫
xfXY (x, y) dxdy =

∫
xfX(x) dx.
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The uncertainty in the measurement of X is often represented by the standard deviation
σX defined by

σ2
X = 〈 (X − 〈X 〉)2 〉 =

∫
(x− 〈X 〉)2fX(x) dx.

The quantity σ2
X is called the variance of the stochastic variable X. The standard deviation

σX is a measure of the typical width of the distribution function fX(x) to either side of the
mean value 〈X 〉.

The stochastic variables X and Y will be called statistically independent if

fXY (x, y) = fX(x) fY (y). (7.5)

Statistical independence of two stochastic variables means that we would not be better off in
predicting the outcome of the experiment in one variable even if we were given information
as to the corresponding outcome of the other variable. Similarly, two stochastic variables X
and Y are called statistically uncorrelated if

〈XY 〉 = 〈X 〉〈Y 〉. (7.6)

Two stochastic variables that are statistically independent will also be statistically uncorre-
lated. Two stochastic variables that are statistically uncorrelated need not be statistically
independent. In figure 7.2 examples of two collections of realizations (scatters plots) for two
stochastic variables X and Y are illustrated. For case a) it would look like we would not
be better off in predicting the value of Y in a given realization if we were informed on the
corresponding value of X. This indicates that X and Y are uncorrelated variables and even
that they might possibly be statistically independent. For case b) for which small values of
X tend to be accompanied by corresponding small values of Y , this is not true.

Figure 7.2: Scatter plots

It is sometimes convenient to work with distribution functions that are not normalized to
unity as required by (7.2), but to another positive constant value N ,

∫
fXY (x, y) dxdy = N . (7.7)
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In this case some of the formulas above need to be modified. In particular, the formula for
the mean value (7.4), will now read

〈 g(X,Y ) 〉 =

∫
g(x, y)fXY (x, y) dxdy∫

fXY (x, y) dxdy
, (7.8)

with similar modifications for 〈X 〉 and σ2
X .

In the above discussion the particular realizations of the stochastic variables were assumed
to be real-valued – possibly within a limited range. That is, we assumed the state space of the
experiment to be real-valued and continuous. In a different version of the experiment we may
be interested in knowing which of a predetermined set of cells is hit and not the particular
coordinates x and y within the cell. Naming the cells by an integer index i the state space
of the modified experiment is integer-valued and thus discrete. The probability Pi of hitting
cell i may again be found as the limiting ratio of the number of hits Ni in cell i and the
total number of throws N , that is, Pi = Ni/N . The discrete probabilities Pi must satisfy
constraints similar to those of the continuous probability density function discussed above.
The discrete probabilities must be positive definite,

Pi ≥ 0 for all i. (7.9)

The discrete probabilities must also be normalized,

∑

i

Pi = 1, (7.10)

where the summation is carried out over all possible outcomes. The mean value of any discrete
function gi defined over the set of cells is again found by weighting the different realization
with the probability for that particular outcome

〈 g 〉 =
∑

i

giPi. (7.11)

Quiz 7.1 : In the measurement of the quantity Z = f(X,Y ), the quantities X and Y are
measured separately and independently. Due to different measurement errors, each
time a measurement is performed different results are found. We therefore consider
X, Y and Z as stochastic variables.

If we consider the “true” value and the “typical” measurement error for X to be
µX = 〈X 〉 and σX , and similarly for Y , what are the corresponding values for
Z = X + Y ?

If instead Z = XY verify that µZ = µXµY and σ2
Z = µ2

Y σ
2
X+µ2

Xσ
2
Y +σ2

Xσ
2
Y . Thus, if

the relative errors σX/µX and σY /µY are both small, show that the square of relative
error of Z = XY is the sum of the squares of the relative errors of X and Y , that is,
the factor with the largest relative error dominates the relative error of the product.
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7.2 Entropy and Temperature

Thermal physics adopts the view that at the microscopic level any physical system is only
allowed to occupy one of a discrete set of quantum states – in accordance with quantum
mechanics. As systems we may consider a volume of gas, a single atom or even a single
electron orbital. A closed system is one for which energy U and particle number N are given
and for which all external parameters, for instance volume, are held constant. We will in the
following denote all such parameters by the symbol V . An accessible state for the system is
one quantum state that complies with the constrains imposed on the system.

At the basis of thermal physics lies the fundamental statistical assumption that any acces-
sible state of a given closed system is equally probable. The assumption of equal probability
for any accessible state is the only realistic assumption that can be made if any information
to the contrary does not exist.

The number of accessible states for a given system Σi with given values ofNi, Ui and Vi will
be denoted the multiplicity gi(Ni, Ui, Vi) of the system. The multiplicity gn of a single atom
with energy Wn equals the number of quantum states with energy Wn, that is multiplicity is
identical to the quantum mechanical degeneracy of the given energy state. For single atoms
the multiplicities involved are typically small number, for the agregates of atoms we are now
dealing with (a volume of gas or liquid or a solid block) the corresponding multiplicities are
truely huge numbers!

Let the closed system Σ consist of two closed subsystems Σ1 and Σ2 with given individual
values of particle numbers, energies and external parameters and with individual multiplicities
g1(N1, U1, V1) and g2(N2, U2, V2). The situation is illustrated in the left-hand part of figure
7.3. The multiplicity of the total system Σ is given as

g(N1,N2, U1, U2, V1, V2) = g1(N1, U1, V1) g2(N2, U2, V2). (7.12)

This result implies that the two subsystems Σ1 and Σ2 are at most only weakly interacting,
that is, the Pauli principle does not pose significant additional constraints on the combined
system, contraints in addition to those existing for each subsystem taken isolated. The two
subsystems are now brought in thermal contact, that is, the two subsystems are allowed to
exchange energy while maintaining the total energy U = U1 + U2, as illustrated in the right-
hand part of figure 7.3. The multiplicity of system Σ must now be expressed as the sum of
multiplicities for each allowed distribution of the energy between the two subsystems

g(N1,N2, U, V1, V2) =
∑

U1+U2=U

g1(N1, U1, V1) g2(N2, U2, V2). (7.13)

The most probable distribution of the total energy U between the two subsystems in
thermal contact is the distribution U1 = U∗

1 , U2 = U∗
2 corresponding to the maximum con-

tribution to the total multiplicity g of the combined system. This particular distribution is
determined by the relation

∂g1
∂U1

g2 dU1 + g1
∂g2
∂U2

dU2 = 0 with dU1 + dU2 = 0,

or equivalently,
∂ ln g1
∂U1

=
∂ ln g2
∂U2

. (7.14)
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Figure 7.3: Systems in thermal contact

At this stage it is useful to introduce two important quantities. The entropy S of a system
Σ with multiplicity g is defined as

S(N , U, V ) ≡ ln g(N , U, V ). (7.15)

The entropy S is a dimensionless quantity.
The fundamental temperature T of a the system Σ with entropy S = S(N , U, V ) is defined

by
1

T ≡
∂S
∂U
|
N ,V

. (7.16)

Alternatively, if the energy of the system is expressed in terms of particle number, entropy
and external parameters, U = U(N ,S, V ), the fundamental temperature will be given by

T =
∂U

∂S |N ,V
. (7.17)

The subscripts |
N ,V

in (7.16) and (7.17) indicate what variables are to be kept constant while
evaluating the partial derivatives. Indirectly, this notation is a reminder that the entropy S in
the definition (7.16) is expected to be expressed as an explicit function of N , U and V before
the differentiation is performed. The similar comment applies to the dependent variable U in
the alternative definition (7.17).

From its definition we see that fundamental temperature T has energy as physical dimen-
sion. Temperature is traditionally measured in degrees Kelvin. Traditional temperature T is
related to the fundamental temperature T through

T ≡ κT,

where κ is the Boltzmann constant, κ = 1.38054 · 10−23 J/K. We thus note that the constant
κ has no physical significance except for its role in connecting the Kelvin temperature scale
with the unit of energy. When making use of the traditional definition of temperature it is
common to introduce the corresponding redefined entropy

S ≡ κS

Fundamental and traditional temperature and entropy will be used freely in the following
discussion. They will both be referred to simply as temperature or entropy.

With these definitions at hand let us return to our discussion of the most probable energy
distribution of the two subsystems in thermal contact. In terms of entropy and temperature
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the condition (7.14) reduces to

1

T1
=
∂S1

∂U1
=
∂S2

∂U2
=

1

T2
. (7.18)

The most probable energy distribution between two closed subsystems in thermal contact is
thus the one for which the temperatures of the subsystems are identical, T1 = T2. We shall
refer to this result as the condition for thermal equilibrium of the two subsystems in thermal
contact.

It is now a most fortunate fact that a general property of systems containing a very large
number of particles is that the contribution to the total multiplicity from the most probable
energy distribution U∗

1 , U∗
2 turns out to dominate the sum in (7.13) completely, that is,

g(N1,N2, U, V1, V2) ≈ max
U1+U2=U

g1(N1, U1, V1) g2(N2, U2, V2). (7.19)

We shall assume this property to be valid in the following. With this assumption the entropy
of the closed system Σ consisting of the subsystems Σ1 and Σ2 in thermal equilibrium is given
as the sum of the entropies of the two subsystems

S(N1,N2, U, V1, V2) ≈ S1(N1, U
∗
1 , V1) + S2(N2, U

∗
2 , V2). (7.20)

Quiz 7.2 : On the basis of the assumption (7.19) argue that the entropy will in general
increase as two subsystems Σ1 and Σ2 are brought in thermal contact.

7.3 The Boltzmann Distribution

With the definitions of entropy, temperature and thermal equilibrium at hand, we are ready
for one of the most fundamental results of thermal physics. Let us consider a closed system
with energy U0, consisting of a system Σ in thermal contact with a large reservoir R at
temperature T , as illustrated in figure 7.4. We assume that the energy of the reservoir is
much larger than that of the system Σ. System Σ may for instance be a single atom. We
seek an explicit expression for the probability Ps(Ws) that the system Σ will be found in a
particular quantum state s corresponding to the energy Ws.

Figure 7.4: Simple system in thermal contact with reservoir

With the state of the system Σ specified, the multiplicity of the total system equals the
multiplicity gR(U0−Ws) of the reservoir R. The probability that the system Σ will be found
in the given state s must therefore satisfy

Ps(Ws) ∼ gR(U0 −Ws) = exp (SR(U0 −Ws))

≈ exp

(
SR(U0)−

∂SR
∂U0

Ws

)
∼ exp

(
−Ws

T

)
.
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The Taylor series expansion of the entropy expression is valid as long as the energy Ws is
small enough compared with the total energy U0. Taking the normalization requirement into
account, this result can be written as

Ps(Ws) =
1

Z
exp

(
−Ws

T

)
, (7.21)

where the normalization factor

Z =
∑

s

exp

(
−Ws

T

)
(7.22)

is the partition function for system Σ. The sum in (7.22) extends over all states s available
to the system. The factor exp(−Ws/T ) will be referred to as the Boltzmann factor. The
discrete probability distribution function (7.21) is the Boltzmann distribution.

With the distribution function given, the average energy of the system Σ may now be
calculated in accordance with (7.11) as

U =
∑

s

WsPs(Ws) = T 2∂ lnZ

∂T |
V
. (7.23)

This result exhibits the intimate relationship between the partition function Z and thermo-
dynamic state variables of the system.

Quiz 7.3 : What is the probability PWs(Ws) for finding the system in energy state Ws,
that is, in any state s corresponding to the specified energy Ws?

7.4 Particles in a Box

At this point let us pause for some simple, yet important examples. We start with the simplest
of them all: one particle in a box.

Consider a free particle with mass m and without any internal structure confined to a box
with sides of length L. The potential energy of the particle vanishes inside the box and is
infinite outside. The properties of the particle in the box are determined by the solution of
the Schrödinger equation

− h̄2

2m
∇2Ψ = WΨ,

with the condition Ψ = 0 imposed at the boundary of the box. The solution, which we shall
also refer to as an orbital, is

Ψ(r) =
8

L3
sin

πqxx

L
sin

πqyy

L
sin

πqzz

L
,

with the corresponding energy

Wq =
π2h̄2

2mL2
(q2x + q2y + q2z) =

π2h̄2

2mL2
q2.

The quantum numbers qx, qy and qz are all positive integers. The square of the particle
momentum is a measurable quantity with the value

p2 =
π2h̄2

L2
(q2x + q2y + q2z) =

h2

4L2
q2. (7.24)
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To evaluate the partition function Z1 for this one-particle system, the Boltzmann factor
needs to be summed over all available states. For the case that the energy difference between
neighboring states remains small compared to T , this sum can be evaluated as an integral

∑

s

· =
∞∑

qx=1

∞∑

qy=1

∞∑

qz=1

· → 1

8

∫ ∞

0
4πq2 dq · = V

h3

∫ ∞

0
4πp2 dp · . (7.25)

Here we made use of the “spherical symmetry” of the Boltzmann factor in the quantum
number q-space and that the density of modes in this space is unity. The factor 1/8 is
introduced since the three quantum numbers can only take positive values, and the right
hand expression follows from (7.24) with V = L3. The partition function is now easily
evaluated as

Z1 =
V

h3

∫ ∞

0
exp(− p2

2mT ) 4πp2 dp = V nQ (7.26)

where

nQ ≡
(

2πmT
h2

)3/2

(7.27)

is called the quantum concentration.

Let us now generalize our system to include N non-interacting and identical particles. The
Boltzmann distribution (7.21) is valid also for the N particle system, but the specification
of each quantum state s available to the system must now include the specification of three
quantum numbers for each particle. The partition function ZN for the N particle system
may still be easily evaluated. In fact, the sum over all available quantum states will consist
of a product of sums over available states for each particle,

ZN =
1

N !
ZN

1 . (7.28)

The extra factor N ! in (7.28) has to be included because the particles were assumed to
be identical. If two given particles for a given quantum state s interchanged names (or
numbers), we would not be able to recognize the difference. The new state should therefore
not be counted as an independent state of the system. And N identical particles can be
interchanged in N ! different ways. For large values of N the extra factor can be expressed in
terms of Stirling’s approximation

lnN ! ≈ N lnN −N .

Making use of (7.26), this leads to

lnZN ≈ N
(

ln(
V

N nQ) + 1

)
. (7.29)

As a first application of this result, the average energy U for the system may be calculated
by making use of (7.23). A simple calculation leads to

U =
3

2
NT . (7.30)

Each particle in the gas has an average kinetic energy U/N = 3T /2, that is, apart from the
factor 3/2 the temperature T is a measure of the kinetic energy in the “thermal” motions of
an average gas particle.
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7.5 The Maxwell Velocity Distribution

The Boltzmann distribution is a discrete probability distribution function over the quantum
states of the free particle. It can be transformed into a continuous probability density function
by summing the probability contributions from all quantum states corresponding to a certain
phase space element, for example, over all quantum numbers q such that the corresponding
absolute value of the particle momentum |p | falls in the interval (p, p + dp). Making use of
the same reasoning underlying (7.25) leads to

∑

s∈(p,p+dp)

1

Z1
exp

(
−Ws

T

)
=

1

V
(2πmT )−3/2 4πp2 exp

(
− p2

2mT

)
V dp.

The right hand side expression represents the probability that the particle will be found in
the volume V with absolute momentum in the interval (p, p+ dp). We thus interpret

frp(p) = n(2πmT )−3/2 4πp2 exp

(
− p2

2mT

)
(7.31)

as the probability density function for finding particles in the (r, p)-space. In this interpre-
tation we implicitly assumed the probability density function to be homogeneous in r-space,
that is, we assumed the probability density function to be independent of r. This is in ac-
cordance with the form of the Boltzmann distribution (7.21). In (7.31) we introduced the
particle density n ≡ N/V . This means that we have chosen to normalize the distribution
function, not to unity, but to the total number of particles in the volume V ,

∫ ∞

0

∫

V
frp d3r dp = N .

This is a convenient and usual choice.

From (7.31), the probability density function frp in the (r,p)-space may be derived if the
momentum space is assumed to be isotropic. This assumption is in accordance with the form
of the Boltzmann distribution (7.21) and means that there is no preferred direction for the
particle momentum p. The probability density function in the (r,p)-space must then be a
function of p only, that is, frp = frp(p).

The distribution function frp is uniquely determined from the distribution frp as a
marginal distribution

frp =

∫ ∫
frp p

2 dcos θ dϕ, (7.32)

where the momentum space integration element was expressed in spherical coordinates

d3p = p2 dp dcos θ dϕ.

With the assumption of momentum space isotropy, the integrand in (7.32) is a constant. The
angular integrals are therefore trivially performed, leading to

frp(p) = n(2πmT )−3/2 exp

(
− p2

2mT

)
. (7.33)
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For non-relativistic particles, velocity v and momentum p are related through p = mv

where massm is a constant. With this relation, the probability density function in (r,v)-space
may also be derived. With

frv d3r d3v = frp d3r d3p

and d3p = m3 d3v, the result is

frv(v) = n
( m

2πT
)3/2

exp

(
−mv

2

2T

)
. (7.34)

The distribution functions (7.33) and (7.34) will be referred to as the Maxwell momentum
and velocity distributions, respectively.

Some comments on notation may be useful at this point. The probability density function,
for instance the Maxwell velocity distribution frv, in the product with a state space element
d3r d3v, frv(r,v) d3r d3v, is interpreted as the expected number of particle in the given state
space element at location (r,v). The state space location is indicated by the argument of the
density function. In (7.34) the argument list has been modified to indicate that in thermal
equilibrium we expect the density function to be homogeneous in r-space and isotropic in v-
space. The type of state space, and therefore the physical dimension of the density function, is
determined by the function subscripts. In situations where no confusion as to what probability
density is involved, the function subscripts may be suppressed.

frv

><v
v rms

vx(2 τ /m) 1/2 v (2 τ

f

/m)

*

1/2

V(2πτ /m) 1/2

V(2πτ /m) 1/2

vmp

rv
x

*

Figure 7.5: Velocity distribution functions

Several useful marginal probability density functions can be derived from (7.34). Two
examples are the distribution functions for the vx-component of the velocity v and the speed
v. The former is given by

frvx(vx) =

∫ ∫
frv(vx, vy, vz) dvy dvz = n

√
m

2πT exp

(
−mv

2
x

2T

)
. (7.35)

The latter is found by introducing spherical coordinates (v, θ, ϕ) in velocity space and inte-
grating over angular variables,

frv(v) =

∫ ∫
frv(v) v2 dcos θ dϕ = n

( m

2πT
)3/2

4πv2 exp

(
−mv

2

2T

)
. (7.36)
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These functions in normalized form are plotted in figure 7.5. Since frvx(vx) is an even function
of vx, it has only been plotted for positive values of vx.

With the velocity distribution function known, different average values may be calculated.
For instance, 〈 v2 〉 may be calculated by making use of (7.36) and the general mean value
definition (7.8) as

〈 v2 〉 =
1

N

∫ ∞

0

∫

V
v2frv(v) d3r dv =

3T
m
. (7.37)

The factor 1/N appears because we have chosen to normalize our velocity distribution func-
tions to the total particle number N in the volume V . In figure 7.5 the mean speed 〈 v 〉 and
the root mean square particle speed vrms ≡

√
〈 v2 〉 =

√
3T /m have been indicated. In the

figure we have also indicated the most probable speed vmp, defined as the particle speed most
often encountered, that is, the speed satisfying ∂frv(v)/∂v = 0. It is important to note that
these three different ways of defining “expected” speed all differ!

Quiz 7.4 : What are the physical dimensions of frv, frv and frp?

Quiz 7.5 : Show that

〈 v 〉 =

√
8T
πm

(7.38)

vmp =

√
2T
m
. (7.39)

Quiz 7.6 : Calculate 〈 vx 〉 and
√
〈 v2

x 〉.

Quiz 7.7 : Derive frw(w) where w = 1
2mv

2. Find 〈w 〉 and wmp.

Quiz 7.8 : A gas consisting of atoms with mass m and emitting at electromagnetic ra-
diation at frequency ν0, has temperature T . Because of thermal motions the spectral
line at ν0 has finite width. The normalized line profile φ(ν) is determined by the
relative number of atoms that is emitting in the interval (ν, ν + dν) as seen by a sta-
tionary observer. Express φ(ν) in terms of ν0, ν and ∆νD = ν0

√
T /m/c. Evaluate

the width of the spectral line as given by the standard deviation σν . Can you think
of alternative definitions of line width? What is the ratio of the thermal line widths
for Fe and H lines in the same frequency range?

7.6 The Ideal Gas

The particles in the box will be reflected when hitting the wall. Through this process the
particles impart impulse to the wall. The sum of individual impulses per unit time and
per unit wall area is equivalent to the gas pressure P . The number d6N of particles with
velocities in the cell d3v centered at v that will hit the wall element d2A = d2A n̂ during the
time interval dt equals the number of such particles that are contained within a cylindrical
volume with base d2A and side v dt, that is,

d6N = frv(r,v) |v · d2A | dt d3v.
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The geometry is illustrated in figure 7.6a. We remember that the distribution function frv

has been normalized to the particle number N . Each of these particles experience a change
in momentum at reflection of magnitude

|∆p |= 2 |p · n̂ | .

As seen from figure 7.6b, the momentum change ∆p is directed normal to the wall. The
contribution to the pressure from these particles is therefore

d3P =|∆p | d6N
d2A dt

= 2pxvxfrv(v) d3v, (7.40)

where the x-axis was chosen to be parallel to n̂.

A

a)

dt

d

b)

v

p

p

Figure 7.6: Geometry of impinging particles

The total pressure on the surface element is found by summing the pressure contributions
from all approaching particles, that is, integrating over all values of vy and vz and all positive
values of vx. Since pxvx and frv(v) are both even functions of vx, the velocity integrals can
be extended over all velocity space by deleting the factor 2 in (7.40). Finally, again making
use of the isotropy of the distribution function in velocity space, we may write

P =

∫
pxvxfrv(v) d3v =

1

3

∫
p · vfrv(v) d3v. (7.41)

With p = mv and frv(v) given by (7.34), the resulting pressure is

P = nT . (7.42)

The results, (7.42) and (7.30) are recognized as the equation of state and the internal energy
of the ideal gas.

If several particle species are present in the system, these species contribute independently
to the total pressure and the energy of the gas. In thermal equilibrium, the total result will
be

P =
∑

i

ni T and U =
3

2
V
∑

i

ni T ,

where ni is the particle density for species i and the summation is extended over all particle
species. We note that each particle in the gas in thermal equilibrium contributes equally to
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pressure and energy, irrespective of particle mass mi. An electron or an iron atom “at the
same temperature” will contribute equally to the total pressure or internal thermal energy of
the gas mixture.

The formulas for pressure and energy are sometimes expressed in terms of the mass density
ρm and the mean molecular weight µ, defined by

ρm =
∑

i

mini = µmh

∑

i

ni, (7.43)

where mh is the mass of the hydrogen atom. In terms of these variables, (7.42) and (7.30)
can be written

P =
ρm
µmh

T and U =
3

2

ρmV

µmh

T . (7.44)

Some comments on the validity of the ideal gas results may be appropriate at this point.
The equation of state (7.42) and the energy equation (7.30) were both derived on the basis of
a number of simplifying assumptions. For the energy equation (7.30) we assumed the particles
to be point particles without internal structure. From our quantum mechanical discussions,
we know that for atoms and molecules this assumption is not strictly valid. In addition to
kinetic energy associated with their motion, atoms contribute to the total energy of the gas
through their internal energy states. Molecules also contribute through their rotational and
vibrational degrees of freedom. We will return to these questions in the next section.

Our derivation neglected the presence of inter-particle forces. These forces also contribute
toward the total energy of the gas. In a neutral gas the inter-molecular forces have a short
effective range, often falling off with inter-molecular distance proportional to r−λ with λ = 6.
In an ionized gas (or plasma) the forces between individual charged particles have much
longer range, λ = 2. For dilute gases and even dilute plasmas, the neglect of the inter-
molecular forces will be acceptable at high enough temperatures. With increasing density
and therefore smaller average inter-molecular distances, however, these forces eventually lead
to phase transitions from the gas phase to the liquid or solid phases. For these situations the
ideal gas results are definitely no longer valid. With these limitations in mind, the ideal gas
laws (7.42) and (7.30) often represent good approximations to real gases and even plasmas.
We shall make repeated use of these laws in the following.

Quiz 7.9 : Show that the average kinetic energy of the ideal gas equals the internal
energy U as given by (7.30), that is,

∫
1

2
mv2frv(v) d3r d3v = U. (7.45)

Also show that the pressure P and the kinetic energy U of any non-relativistic gas
will satisfy the relation

P =
2

3

U

V
, (7.46)

whatever the detailed form of frv.

Quiz 7.10 : Determine the mean molecular weight µ for the following cases:
a) a fully ionized hydrogen gas,
b) a neutral gas consisting of 80 % H and 20 % He particles,
c) a neutral gas consisting of 80 % by mass of H and the rest He.
d) a fully ionized gas consisting of 80 % by mass of H and the rest He.
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Quiz 7.11 : In astrophysics we often encounter fully ionized gases in which hydrogen
and helium are by far the dominant species. Show that for these situations

µ ≈
(

2X +
3

4
Y +

1

2
Z

)−1

, (7.47)

where X, Y and Z are the mass fractions of hydrogen, helium and all the heavier
elements (normally called the “metals”). The mass fractions satisfy X + Y + Z = 1.
[Hint: For the derivation you may want to make use of the mean atomic number
A of the “metals”. The “metals” may be assumed to contain A/2 electrons on the
average.]

7.7 Particles with Internal Energy States

As the next example, consider an atom or a molecule that, in addition to different translational
states, may exist in different internal quantum states. The total energy consists of the sum
of translational and internal energies,

Ws = Wq +Wi,

where q and i represent the three translational quantum numbers and any suitable set of
quantum numbers i describing the internal state, as discussed in chapters 4, 5 and 6. The
Boltzmann distribution (7.21) will be valid also for the present problem. Since any combina-
tion of translational and internal states is possible, the sum over all available quantum states
in the partition function (7.22) reduces to the product of the sums over translational and
internal quantum states. The translational part of this problem was discussed in section 7.4.
Here we focus on the internal part and therefore define the ”internal” Boltzmann distribution
and partition function

Pi(Wi) =
1

Z int
exp

(
−Wi

T

)
(7.48)

Z int =
∑

i

exp

(
−Wi

T

)
. (7.49)

The summation in (7.49) is to be carried out over all internal quantum states i. We
often encounter systems with energy degeneracy, that is, systems where several quantum
states correspond to the same energy. In these cases it may be convenient to group quantum
states corresponding to the same energy together and sum over the different energy states Wi

instead. With this procedure the Boltzmann distribution and partition function take slightly
modified forms,

PWi
(Wi) =

gi
Z int

exp

(
−Wi

T

)
(7.50)

Z int =
∑

Wi

gi exp

(
−Wi

T

)
, (7.51)

where gi is the multiplicity of energy state Wi and the summation be carried out over all
internal energy levels Wi.
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The generalization of the above results to a system consisting of N non-interacting and
identical particles with internal energy states is trivial. In particular, the number of particles
that we expect to find in any given atomic state i is given by

Ni = NPi(Wi).

The ratio of expected numbers of particles in states i and j is therefore

Ni
Nj

= exp

(
−Wi −Wj

T

)
. (7.52)

The corresponding ratio of the expected numbers of particles in energy states Wi and Wj is

NWi

NWj

=
gi
gj

exp

(
−Wi −Wj

T

)
. (7.53)

It is important to note that the given ratios of particle numbers may be calculated without
knowledge of the actual value of the internal partition function Z int. The results (7.52) and
(7.53) are referred to as the Boltzmann relation.

In the evaluation of the internal part of the partition function, (7.49) or (7.51), the sum-
mation should be carried out over all quantum states or all energy levels available to the
system, respectively. If the number of states is infinite and we for convenience assume that
the numbering of states is such that the energy is monotonically increasing with state number,
we see that we will face a problem if the energy levels Wi do not tend toward infinity with
increasing i. This is actually the case with the energy levels of any atom or molecule. The
problem is resolved only by taking into account that, close to the continuum limit, the atoms
can no longer be assumed to act as independent particles. Charged particles in a gas establish
electric micro-fields which broaden the energy levels of atoms or ions, particularly the upper
levels. The upper levels start to overlap and the ionization energy ∆WI appears to be lowered
by an amount δW which depends on the electric micro-field intensity and therefore on the
electron density. For hydrogen and hydrogen-like elements, the lowering of the ionization
energy has been found to be of the order

δW ≈ 7 · 10−9n1/3
e [eV].

For dilute gases or plasmas the effect is small. In the partition function summation only
the discrete energy levels below the reduced ionization energy ∆W ∗

I = ∆WI − δW are to be
included. A detailed discussion of this problem falls outside our scope. We note, however,
that in situations where the two lowest energy levels are widely separated compared to the
thermal energy, W1−W0 � T , it may be enough to include only the lowest energy state (the
ground state) in the sum. For this case the normalized partition function Z ′, defined by

Z int = Z ′ exp(−W0

T ) (7.54)

reduces to the multiplicity of the ground state,

Z ′ ≈ g0. (7.55)
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This approximation is good for hydrogen and helium and many other element, but poor for
the alkali metals. In table 7.1 the ground state multiplicity g0 together with the value of
the normalized partition function for two different temperatures T = 5040 K and 10080 K
are given for the neutral and the singly ionized states of some selected elements. For later
convenience, the table also includes the corresponding ionization energies, ∆WI .

Normally we expect Z ′ to be equal to or slightly larger than the multiplicity of the ground
state. The fact that Z ′ for some elements, for instance O I, is less than the tabulated g0 is
a result of fine structure splitting of the ground state spectral term. Thus, for O I the 5 3P2

states contribute fully to Z ′ while the contributions from the 4 3P1,0 states are slightly reduced
by the exponential factor.

Z ′
I ∆WI Z ′

II ∆WII

Z Element g0 5040 K 10080 K eV g0 5040 K 10080 K eV

1 H 2 2.00 2.00 13.60 1 1.00 1.00
2 He 1 1.00 1.00 24.59 2 2.00 2.00 54.42
3 Li 2 2.09 3.09 5.39 1 1.00 1.00 75.64
4 Be 1 1.02 1.35 9.32 2 2.00 2.00 18.21
5 B 6 6.03 6.03 8.30 1 1.00 1.00 25.16
6 C 9 9.33 10.00 11.26 6 6.03 6.03 24.38
7 N 4 4.07 4.57 14.53 9 8.91 9.33 29.60
8 O 9 8.71 9.33 13.62 4 4.00 4.07 35.12
9 F 6 5.62 5.89 17.42 9 8.32 8.71 34.97
10 Ne 1 1.00 1.00 21.56 6 5.37 5.62 40.96
11 Na 2 2.04 2.88 5.14 1 1.00 1.00 47.29
12 Mg 1 1.03 1.38 7.65 2 2.04 2.04 15.04
13 Al 6 5.89 6.17 5.99 1 1.00 1.00 18.83
14 Si 9 9.55 10.96 8.15 6 5.75 5.89 16.35
15 P 4 4.47 6.17 10.49 9 8.13 8.71 19.73
16 S 9 8.13 8.71 10.36 4 4.17 5.25 23.33
17 Cl 6 5.25 5.62 12.97 9 7.76 8.32 23.81
18 Ar 1 1.00 1.00 15.76 6 4.90 5.13 27.63
19 K 2 2.19 3.98 4.34 1 1.00 1.00 31.63
20 Ca 1 1.17 3.55 6.11 2 2.19 3.47 11.87
21 Sc 10 12.02 30.90 6.54 15 22.91 33.11 12.80
22 Ti 21 30.20 75.86 6.82 28 56.23 83.18 13.58
23 V 28 41.69 107.15 6.74 25 43.65 77.62 14.65
24 Cr 7 10.47 32.36 6.77 6 7.24 13.49 16.50
25 Mn 6 6.46 14.45 7.44 7 7.76 13.49 15.64
26 Fe 25 26.92 54.95 7.87 30 42.66 63.10 16.16
27 Co 28 33.11 57.54 7.86 21 28.84 45.71 17.06
28 Ni 21 29.51 39.81 7.64 10 10.47 19.05 18.17
29 Cu 2 2.29 3.80 7.73 1 1.02 1.51 20.29
30 Zn 1 1.00 1.07 9.39 2 2.00 2.00 17.96

Table 7.1: Multiplicity, partition function and ionization energy for selected elements
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Quiz 7.12 : In the definition of the ground state multiplicities in table 7.1, the fine
structure splitting for different J-values have not been taken into account. With
the help of table 5.2, explain the values of the ground state multiplicities g0 listed
in table 7.1. For what elements does (7.55) represent a valid approximation for the
temperatures listed?

Quiz 7.13 : In figure 5.4 the lower energy levels for Ca II have been plotted. Make
use of (7.51) and (7.54) and the three lower energy levels for Ca II to verify the
tabulated value (see table 7.1) of the normalized partition function Z ′ for Ca II for
the temperature T = 10080 K.

Quiz 7.14 : Are you able to explain that for some elements the exact value of the nor-
malized partition functions are smaller than the corresponding value of g0?

Quiz 7.15 : The inter-nuclear distance of the CO molecule is Re = 0.113 nm. CO gas
is kept at temperature T = 500 K. Determine the relative population NN/N0 of
rotational energy levels WN as a function of nuclear orbital quantum number N .
Give an order of magnitude estimate of the number of rotational absorption lines
that you would expect for this gas.

7.8 Reversible Processes

Let us now return to the general formalism of thermal physics. According to the discussion
of section 7.2, a system in thermal equilibrium with a reservoir will acquire a temperature
T equal to that of the reservoir. The temperature was expressed in (7.17) as the partial
derivative of the energy U = U(S, V ) with respect to entropy S while keeping all external
parameters, here the system volume V , constant.

Now let the system participate in a process in which entropy and volume change by
small amounts dS and dV , but such that at each stage of the process the system remains
infinitesimally close to a thermal equilibrium state. Such a process will be called a reversible
process. At any stage of a reversible process, the process may be arrested, reversed and the
system brought back to its original state. Any process that does not satisfy this requirement
is an irreversible process.

The energy change associated with the reversible process is

dU =
∂U

∂S |V dS +
∂U

∂V
|
S

dV. (7.56)

The first partial derivative on the right hand side equals the temperature T . We interpret
the first term as the amount of energy added to the system during the process in the form of
heat,

δQ = T dS. (7.57)

The second derivative is interpreted as the negative of the system pressure

P = −∂U
∂V
|
S
. (7.58)
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The negative of the second term is interpreted as the work done by the system on its sur-
roundings during the process,

δW = P dV. (7.59)

We shall see below that the thermodynamic definition (7.58) of pressure is identical to the
previous kinetic definition (7.41).

With this notation the mathematical identity (7.56) represents a statement of the first law
of thermodynamics: In any reversible process the change in system energy equals the difference
between the heat added to the system and the work done by the system on its surroundings,

dU = δQ− δW = T dS − P dV. (7.60)

The choice of notation in (7.60) is important. The system energy U is a function of the state
variables S and V , dU is the total differential of this function with respect to small changes
in these variables. The quantity of heat added δQ and the work done δW are, however, not
each of them total differentials. This means that while the change in energy U only depends
on the initial and final states of the system, the latter quantities both depend on the details
of the process chosen, that is, the way in which the system is brought from its initial state to
the final state.

In (7.60) the energy U is assumed to be given as a function of entropy and volume
U = U(S, V ). According to (7.16), this also applies to the temperature T = T (S, V ). In
principle, this relation can be solved with respect to entropy giving S = S(T , V ) and therefore
also U = U (S(T , V ), V ). But this means that the total differential of energy may also be
expressed in the form

dU =
∂U

∂T |V dT +
∂U

∂V
|
T

dV. (7.61)

When combining (7.61) and (7.60), an expression for the total differential of the entropy
results

dS =
1

T
∂U

∂T |V dT +
1

T

(
P +

∂U

∂V
|
T

)
dV (7.62)

and therefore
∂S
∂T |V =

1

T
∂U

∂T |V and
∂S
∂V
|
T
=

1

T

(
P +

∂U

∂V
|
T

)
.

Since ∂2S/∂V ∂T = ∂2S/∂T ∂V , we also find

T ∂P
∂T |V = P +

∂U

∂V
|
T
. (7.63)

The above examples are but a small number of relations between thermodynamic state
variables and their partial derivatives that can be derived on the basis of the first law of
thermodynamics. Other quantities are defined through similar partial derivatives. Thus, the
heat capacities CV and CP at constant volume and at constant pressure are given as the
quantity of heat needed to increase the temperature by one unit (fundamentally one energy
unit, traditionally one degree Kelvin) under the two stated conditions. With

δQ = dU + P dV =
∂U

∂T |V dT +

(
P +

∂U

∂V
|
T

)
dV (7.64)

we find

CV ≡
δQ
δT |V . (7.65)
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If V and U are instead expressed in terms of P and T , V = V (P, T ) and U (T , V (P, T )), it
follows from (7.64) that

δQ =

(
∂U

∂T |V +

(
P +

∂U

∂V
|
T

)
∂V

∂T |P
)

dT +

(
P +

∂U

∂V
|
T

)
∂V

∂P
|
T

dP

and therefore

CP ≡
δQ
δT |P =

∂U

∂T |V +

(
P +

∂U

∂V
|
T

)
∂V

∂T |P .

Making use of (7.65) and (7.63), the latter result may also be written as

CP = CV + T ∂P
∂T |V

∂V

∂T |P . (7.66)

Thermodynamic variables can generally be divided into two classes. Consider the following
thought experiment. If a diaphragm suddenly divides a gas box in thermal equilibrium with
its surroundings in two halves, each of the two halves will still be in a state of thermal
equilibrium. The energies and the volumes of the two halves will be reduced by a factor two
relative to the original values. Pressure and temperature will remain unchanged. The former
type of variables are called extensive variables, the latter type intensive variables. By dividing
an extensive variable by the particle number of the system, that variable is turned into an
intensive variable. Thus, the energy per particle or the specific energy u = U/N and the
specific volume v = V/N are both intensive variables. It is evident that any product of two
intensive variables will itself be an intensive variable, while a product of an extensive variable
with an intensive one will result in an extensive variable.

Quiz 7.16 : Demonstrate that (7.63) is satisfied for an ideal gas.

Quiz 7.17 : Show that for the ideal gas at pressure P the work δW performed on the
surroundings during an expansion dV of its volume due to the action of pressure
forces is given by

δW = P dV. (7.67)

Quiz 7.18 : For the ideal gas evaluate the heat capacities at constant volume and con-
stant pressure, CV and CP . Show that the ratio of these two quantities is

γ =
CP
CV

=
5

3
. (7.68)

Quiz 7.19 : The coefficients of thermal expansion and compressibility are given by

βV ≡
1

V

∂V

∂T |P and κP ≡ −
1

V

∂V

∂P
|
T
. (7.69)

On the basis of the mathematical definitions (7.69), give a precise description of the
physical contents of these coefficients and prescribe processes which can be used to
measure them. Calculate these coefficients for the ideal gas.
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Quiz 7.20 : Make use of (7.62) to show that in a reversible and adiabatic process, that
is, in a process in which there is no heat exchange with the surroundings, δQ = 0,
the ideal gas must satisfy the following three relations

T V γ−1 = constant, (7.70)

PV γ = constant (7.71)

and

P 1−γT γ = constant. (7.72)

where γ = CP /CV .

Quiz 7.21 : For an ideal gas show that (7.62) reduces to

dS =
3N
2T dT +

N
V

dV.

Show that this expression may be integrated to give

S = S0 +N ln
(
V T 3/2

)
,

where S0 is an integration constant. Taking into account the extensive/intensive
properties of the thermodynamic variables involved, are you able to specify the N
dependence of S0?

7.9 The Helmholtz Free Energy

The choice of entropy S and volume V as independent variables (7.60) is sometimes in-
convenient. In the previous section it was demonstrated that by a formal inversion of the
temperature definition (7.16) a change from S and V to T and V is possible. An alternative
and powerful approach for effectuating a change of independent variables is to make use of a
Legendre transformation. In the Legendre transformation the change of independent variables
is induced through a change of dependent variable. Thus, if we prefer to work with T and V
as independent variables instead of S and V , this is easily achieved by replacing the energy
U as dependent variable with a function

F ≡ U − T S. (7.73)

The variable F = F (T , V ) is the Helmholtz free energy. By making use of the expression for
the differential of U in terms of S and V , (7.56), we find

dF = −S dT − P dV. (7.74)

We may then immediately identify the alternative expressions for entropy and pressure as
derivatives of the Helmholz free energy in terms of temperature T and volume V ,

S = −∂F
∂T |V and P = −∂F

∂V
|
T
. (7.75)
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If this expression for entropy is substituted back into (7.73), the Helmholtz free energy
can be expressed in terms of energy U

T 2 ∂

∂T

(
F

T

)
|
V
= −F + T ∂F

∂T |V = −U.

Together with the expression (7.23) for the average energy U , this leads to an explicit expres-
sion for the average Helmholtz free energy in terms of temperature and partition function

F = −T lnZ. (7.76)

With this general result at hand we may now return to the case of an ideal gas consisting
of N non-interacting and identical particles in the volume V . With the partition function
given by (7.29) we find from (7.75) the following results for the average values of pressure and
entropy in thermal equilibrium

P = nT
and

S = N
(

5

2
+ ln

nQ
n

)
, (7.77)

with the quantum concentration nQ defined by (7.27). The expression for the pressure is
identical to the previous kinetic result (7.42). The expression for the entropy is called the
Sackur-Tetrode formula and is seen to be in accordance with the result of Quiz 7.21.

7.10 Irreversible Processes

Most real processes are irreversible. It is, strictly speaking, usually not possible to reverse
a process and bring the system back to the original state. Processes involving any kind of
dissipation are good examples. During such processes the thermodynamic variables are not
defined. Only when the system has found a new equilibrium state can these variables again
be evaluated.

Still, something can be said about such processes. The second law of thermodynamics
focuses on these questions: If a closed system at a given time t is in a configuration which
is not an equilibrium state, the most probable development is that the entropy of the system
increases monotonically with time,

dS
dt
≥ 0. (7.78)

This means that we expect the entropy to take a maximum value as the system approaches
a thermal equilibrium state. This is equivalent to the expectation that the Helmholtz free
energy will take a minimum value in thermal equilibrium.

Quiz 7.22 : Two volumes V1 and V2, separated by an ideal membrane, contain two
different ideal gases at identical pressure P and temperature T . Show that in a
process in which the membrane is removed, the entropy of the system increases by
an amount

∆S =
PV1

T ln
V1 + V2

V1
+
PV2

T ln
V1 + V2

V2
.

Is the process reversible or irreversible? What would the corresponding results be if
the two volumes contained identical gas?
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7.11 The Chemical Potential

In our discussion of thermal physics we have so far assumed the particle number to remain
constant. We now want to investigate what changes are needed to be introduced when this
restriction is relaxed. Consider two systems containing identical particles in thermal contact
with each other and with a heat reservoir at temperature T . Let the two systems also
be allowed to exchange particles. The two systems will be said to be in thermal as well
as diffusive contact. The equilibrium that will be established will be called a thermal and
diffusive equilibrium state.

For processes in which volume and temperature are kept constant, the system is conve-
niently described in terms of the Helmholtz free energy. The total Helmholtz free energy of
the two systems in diffusive contact is equal to the sum of the corresponding quantities for
the two individual systems,

F = F1(N1, T , V1) + F2(N2, T , V2).

The particle numbers N1 and N2 of the two systems must now be considered as independent
variables, subject only to the constraint of a constant total particle number N = N1 +N2.

In diffusive equilibrium the total Helmholtz free energy must take a minimum value, that
is,

dF =
∂F1

∂N1
|
V1T

dN1 +
∂F2

∂N2
|
V2T

dN2 = 0 with dN1 + dN2 = 0.

Diffusive equilibrium between the two systems is seen to be characterized by the chemical
potential

µ ≡ ∂F

∂N |V T
(7.79)

taking identical values for both systems,

µ1 = µ2.

This result is analogous to the requirement of identical temperatures for systems in thermal
equilibrium.

With N considered as an independent variable, the differential of the Helmholtz free
energy F = F (N , T , V ) must now be generalized as

dF = −S dT − P dV + µdN (7.80)

and similarly for the energy U = U(N ,S, V ),

dU = T dS − P dV + µdN (7.81)

The latter statement allow for an alternative expression for the chemical potential µ,

µ = −T ∂S
∂N |UV

. (7.82)

If several particle species are present in the volume V , the term µdN needs to be replaced
with a sum of such contributions from each species.
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The chemical potential µ for an ideal gas consisting of identical particles with internal
energy levels is readily calculated from the definition (7.79) when making use of the explicit
expression for the Helmholz free energy (7.76) and the partition function for a gas of N
particles with internal degrees of freedom in a volume V . The latter function is easily derived
from (7.28) by including the partition function for the internal degrees of freedom,

Ztotal
N =

1

N !
(V nQZ

int)N ,

or approximately

lnZtotal
N ≈ N

(
ln

(
V

N nQZ
int

)
+ 1

)
. (7.83)

Since Z int is a function of temperature T only, a simple calculation leads to

µ = −T ln
(nQ
n
Z int

)
. (7.84)

With several particle species present, the chemical potential for each species will be given
by (7.84) with the proper particle mass, particle number and internal partition function Z int

substituted.

Quiz 7.23 : Is the chemical potential µ an extensive or an intensive variable?

7.12 The Law of Mass Action

In gas mixtures, chemical reactions, dissociation or ionization processes can occur in which
the number of particles of different types change. Simple examples are

2H2O ⇀↽ 2H2 + O2

H2 ⇀↽ 2H (7.85)

H ⇀↽ H+ + e.

When thermal equilibrium is reached, a certain balance between the different reaction prod-
ucts will be established. We want to study what factors determine the equilibrium balance.

The processes mentioned may all be described by a reaction equation of the form

∑

i

νiAi = 0, (7.86)

where νi are integers and Ai indicate particles of type i. If the number Ni of particles of
type i is changed by dNi for a given reaction, related changes will also occur in the particle
numbers of the other species taking part in the reaction. In fact, simple considerations show
that the changes in particle numbers induced by the reaction equation (7.86) must satisfy

dNi = kνi, (7.87)

where k is a constant.
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The Helmholtz free energy F takes a minimum value when approaching a thermal and
diffusive equilibrium state for any process proceeding at constant temperature and volume.
This means that the total differential of F must vanish when evaluated at equilibrium

dF |
T V

=
∑

i

µi dNi = 0.

Taking the constraint (7.87) into account, this result is equivalent to the requirement

∑

i

µiνi = 0,

or alternatively,

exp

(
−
∑

i µiνi
T

)
= 1. (7.88)

In terms of the normalized internal partition functions Z ′
i and particle densities ni, and making

use of the relation (7.84) valid for ideal gases, this condition can be rewritten in the form

∏

i

nνi

i =
∏

i

(
Z ′
i nQi exp

(
−Wi,0

T

))νi

. (7.89)

We notice that the right hand side expression is a function of temperature T only. The result
(7.89) is known as the law of mass action and forms the basis for an understanding of chemical
reactions, dissociation and ionization processes at thermal equilibrium. It also represents one
key to an understanding of spectral line formation in stellar atmospheres.

Let us now apply the law of mass action (7.89) to the general ionization process

XJ ⇀↽ XJ+1 + e,

where XJ represents an arbitrary element X in the ionization state J . The reaction equation
coefficients may be chosen as νxJ+1

= νe = 1 and νxJ
= −1. The electron is a particle with

two spin states, but otherwise no internal structure. This means that We = 0, Z ′
e = 2 and

therefore that the ionization balance in the gas is determined by

nxJ+1
ne

nxJ

= 2
Z ′

xJ+1

Z ′
xJ

nQe exp

(
−∆WxJ

T

)
. (7.90)

Here
∆WxJ

= WxJ+1
−WxJ

is the ionization energy for element XJ . In (7.90) we have made use of the fact that the
quantum concentrations for the XJ and XJ+1 elements are for all practical purposes equal.
Values of the ionization energies for selected elements are listed in table 7.1 together with the
corresponding values of the ”normalized” partition functions Z ′. The result (7.90) is known as
the Saha equation and applies to any ionization process in ideal gases at thermal equilibrium.

In a pure hydrogen gas, charge neutrality requires ne = nh ii. The Saha equation (7.90)
as applied to this case, may then also be expressed in terms of the degree of ionization of the
gas

α ≡ nh ii

nh

,
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Figure 7.7: Degree of ionization in a hydrogen gas as a function of temperature for different
densities

where nh = nh i + nh ii represents the total density of neutral and ionized hydrogen. We find

α2

1− αnh = nQ exp

(−∆Wh i

T

)
, (7.91)

where ∆Wh i is the ionization energy of hydrogen. In figure 7.7 the degree of ionization α
is plotted as a function of temperature T for different total hydrogen densities nh. Due to
the presence of the exponential function, the degree of ionization switches from almost zero
to near unity over a relatively small temperature interval. Above this interval the ionized
gas will not produce any hydrogen absorption lines because there is essentially no neutral
hydrogen left to take part in any absorption process. With increasing total hydrogen density,
the ionization balance is shifted toward a decreasing degree of ionization. This will also
happen if other particle species are added to the gas. In this case the contribution to the
electron density from the other species will increase the ne factor in (7.90) while the right
hand side expression remains constant. The ratio nh ii/nh i must therefore decrease.

If several different ionization processes may take place simultaneously, an equation of type
(7.90) will be valid for each reaction. In particular, if a given particle specie participates in
several reactions, the total particle density of this specie will appear in each reaction equation.
The pure helium gas represents a simple example. In this case the two ionization processes

He ⇀↽ He+ + e

He+ ⇀↽ He++ + e

give rise to the equations

nhe ii ne
nhe i

= 2
Z ′

he ii

Z ′
he i

nQ exp

(
−∆Whe i

T

)
(7.92)

nhe iii ne
nhe ii

= 2
Z ′

he iii

Z ′
he ii

nQ exp

(
−∆Whe ii

T

)
. (7.93)
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Charge neutrality this time requires

ne = nhe ii + 2nhe iii, (7.94)

while the total helium density is

nhe = nhe i + nhe ii + nhe iii. (7.95)

For given nhe and T the equations (7.92)–(7.95) represent four equations for the four unknowns
ne, nhe i, nhe ii and nhe iii.

In figure 7.8 the solution of these equations for a total helium density nhe = 1016 m−3 is
shown. Below 9000 K the helium gas consists of He I atoms. Between 11000 K and 22000
K the gas is dominated by singly ionized He II ions. Above 25000 K the gas is completely
ionized. By varying nhe the result will be modified. With nhe = 1010 m−3 the pure helium
gas will be fully ionized already at T = 18000 K, while for nhe = 1022 m−3 the temperature
will have to be raised to 60000 K to achieve the same effect. Keeping the amount of helium
constant while adding other species will also lead to changes in the result. This happens
because the electron density appearing in the Saha equations for helium is the total electron
density in the gas. Through the addition of other species the electron density increases and
the ionization curves for helium shift toward higher temperatures.

Figure 7.8: Ionization of helium as a function of temperature at Nhe = 1016 m−3

In section 7.7 comments were made on the effect of electric micro-fields in a plasma in
reducing the effective ionization energies. This effect has importance for the evaluation of
the partition function. It has also importance for the calculation of the ionization state. The
proper ionization energy to use in the Saha equation (7.90) is the reduced ionization energy
value ∆W ∗

I = ∆WI − δW .
An atom may loose an electron either because of a collision with another particle or as

a result of an interaction with a photon. Similarly, the inverse process may be a collisional
recombination or a radiative recombination. The former involves a three-body collision of
the ion, the electron to be absorbed and a third particle necessary to satisfy the requirement
of momentum conservation. In the latter process, this requirement is taken care of by the
emitted photon. Since both particles and radiation field are involved in the ionization process,
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the Saha equation (7.90) will only be valid for gases in thermal equilibrium with the radiation
field (see section 7.15). In the outer, low density part of stellar atmospheres this condition may
not be satisfied. The gas temperature may here be substantially higher than the equivalent
radiation temperature and predictions based on the Saha equation will therefore be in error.

Quiz 7.24 : Identify appropriate coefficients νi for the three reactions listed in (7.85).

Quiz 7.25 : For the dissociative process H2 ⇀↽ 2H show that the equilibrium balance is
determined by

n2
h

nh2

=
Z ′2

h

Z ′
h2

(
πmhT
h2

)3/2

exp

(
−∆Wh2

T

)
,

where

∆Wh2
= 2Wh,0 −Wh2,0

is the dissociation energy of the H2 molecule. Define the degree of dissociation in the
gas and discuss qualitatively how this quantity varies with gas density and tempera-
ture.

Quiz 7.26 : The intensities of the absorption lines in the Balmer series are proportional
to the number density nhi,1 of neutral hydrogen atoms in the lowest excited state.
For a pure hydrogen gas, derive expressions for the ratios

nh i,1

nh i,0
,

nh i,1

nh i

and
nh i,1

nh i + nh ii

.

Plot these ratios (qualitatively) as a function of temperature T for a total hydrogen
density nh = nh i + nh ii = 1016 m−3. For what temperature range would you expect
the formation of the Balmer series lines to be an important process?

Quiz 7.27 : Carbon is a minority species in the Solar atmosphere. The resonance line
of C IV is observed as an emission line that forms in a narrow temperature range
around T ∼ 105 K. The ionization energies for C III and C IV are ∆Wc iii = 47.9 eV
and ∆Wc iv = 64.5 eV. If you assume local thermal equilibrium to exist throughout
the atmosphere, establish criteria for in what temperature range you expect C IV
lines to form. For a typical total electron density ne = 1015 m−3, what is your
temperature range? Can you explain the discrepancy between your estimate and the
stated temperature range?

7.13 The Gibbs Distribution

For a system, in which the particle number is allowed to vary, the fundamental Boltzmann
distribution (7.21) needs to be generalized. Thus, consider a system Σ in thermal and diffusive
contact with a large reservoirR. The number of particlesN0 and energy U0 of the total system
R + Σ are held constant. If Σ is specified to contain N particles and be in quantum state
s(N ) corresponding to energy Ws(N ), then the reservoir R has N0 −N particles and energy
U0 −Ws(N ).
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In analogy with the discussion of section 7.3, if the state s(N ) of system Σ is specified,
the multiplicity of the total system R+ Σ equals the multiplicity gR(N0−N , U0−Ws(N )) of
the reservoir R. The probability that the system Σ in thermal and diffusive equilibrium with
the reservoir R will be found in the given state s(N ) must then according to the fundamental
statistical assumption satisfy

PN s(N ,Ws(N )) ∼ gR(N0 −N , U0 −Ws(N ))

= exp
(
SR(N0 −N , U0 −Ws(N ))

)

≈ exp

(
SR(N0, U0)−

∂SR
∂N0
N − ∂SR

∂U0
Ws(N )

)

∼ exp

(Nµ−Ws(N )

T

)
.

Here we made use of (7.82) and the fact that temperature and chemical potential will both
be identical for system and reservoir. In normalized form the result may be written

PN s(N ,Ws(N )) =
1

Z exp

(Nµ−Ws(N )

T

)
, (7.96)

where the partition function Z now includes summations over particle numbers N and quan-
tum states s(N ),

Z =
∞∑

N=0

∑

s(N )

exp

(Nµ−Ws(N )

T

)
. (7.97)

We shall refer to (7.96) as the Gibbs distribution. The factor exp
(
(Nµ−Ws(N ))/T

)
is called

the Gibbs factor. The partition function Z is also called the Gibbs or grand sum. We note in
particular that the average or expected number of particles in the system Σ is given as

〈N 〉 =
∞∑

N=0

∑

s(N )

NPN s(N ,Ws(N )) = T ∂ lnZ
∂µ

|
T V

. (7.98)

7.14 The Degenerate Electron Gas

In the discussion on the validity of the ideal gas law we noted that short-range inter-molecular
forces would under certain conditions lead to significant deviations, the phenomenon of phase
transitions from gas to liquid or solid state representing extreme examples. There is, however,
also another reason for deviations from the ideal gas law at large enough densities or low
enough temperatures, even without any phase transition taking place. These deviations are
related to quantum mechanical effects and will be evident for the free (conduction) electron
gas in metals and in the interiors of high density type stars (neutron stars, white dwarfs, etc.).
The effect is occurring for odd half spin particles (particularly electrons, but under extreme
conditions also for protons and neutrons). These particles are called fermions and obey the
Pauli principle, that is, there can be maximum one such particle in any given quantum state
in any interacting system.

Let us therefore return to the discussion of a gas of free particles in a volume V in section
7.6. Specifically, let the free particles be electrons. As long as the number of available
quantum states in the relevant energy range is much larger than the number of electrons N ,
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the probability that two electrons distributed at random should occupy the identical orbital
is negligible. This means that the constraints laid by the Pauli principle is unimportant. In
this low density limit the previous discussion of sections 7.4 and 7.6 is valid.

In the high density limit, the Pauli principle must be taken into account explicitly. To
this end, consider as system an electron orbital with quantum numbers q = (qx, qy, qz) as
described in section 7.4. The given orbital may be empty or contain exactly one electron.
With a variable number of particles, the system is described by the Gibbs distribution (7.96).
The partition function takes the simple form

Zq = 1 + exp

(
µ−Wq

T

)
.

The average number of electrons in the orbital is according to (7.98) given by

〈Nq 〉 =
1

Zq

exp

(
µ−Wq

T

)
=

1

exp
(
Wq−µ

T

)
+ 1

.

In analogy with the discussion of section 7.4, the average number of electrons in the momentum
range (p, p + dp) is found by summing the contributions from all orbitals corresponding to
this range

∑

q∈(p,p+dp)

〈Nq 〉 =
1

exp
(
W−µ
T

)
+ 1

V

h3
4πp2 dp.

This means that the probability density function for electrons in (r,p)-space, taking the Pauli
principle into account, is given by

frp(p) = fFDrp (p) ≡ 2

h3

1

exp
(
W−µ
T

)
+ 1

. (7.99)

The extra factor 2 was introduced because of the spin multiplicity of the electron. The result
is known as the Fermi-Dirac momentum distribution. In this result W = p2/2m and the
chemical potential µ(T ) is related to the total electron density n through the normalization
condition ∫ ∞

0
frp(p) 4πp2 dp = n. (7.100)

In the zero temperature limit we write µ(T = 0) ≡ p2
F /2m where pF is the Fermi momen-

tum. In this limit the Fermi-Dirac momentum distribution (7.99) reduces to the distribution
function for the fully degenerate electron gas

fDrp(p) =





2
h3 p ≤ pF

0 p > pF

. (7.101)

The Fermi momentum is related to the electron density n through the normalization condition
(7.100),

pF =

(
3h3

8π
n

)1/3

. (7.102)
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The fully degenerate result (7.101) has a simple physical interpretation. The Pauli princi-
ple sets an upper limit to the electron number in any phase space element. In every element
d3rd3p of size h3 there may at most be 2 electrons, one spin up and one spin down. If N
electrons are to be placed in a volume V , the momentum space will be filled with this maxi-
mum phase space density out to a radius pF . Thus, the momentum distribution function for
the free electron gas will have a finite width, even at zero temperature. This means that even
at T = 0 the electron gas will possess a rest kinetic energy U0 and therefore also maintain a
non-vanishing rest pressure P0. We find

U0 = V

∫ pF

0

p2

2m
fDrp(p) 4πp2 dp =

4πV

5h3m
p5
F =

3V

40

(
3

π

)2/3 h2

m
n5/3 (7.103)

and, making use of (7.41),

P0 =
1

3

∫ pF

0
pvfDrp(p) 4πp2 dp =

2U0

3V
=

1

20

(
3

π

)2/3 h2

m
n5/3. (7.104)
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Figure 7.9: Electron pressure as a function of electron density

In (7.103) and (7.104) the non-relativistic expressions for kinetic energy and particle speed
were used. These relations therefore represent the internal energy and equation of state for
the fully degenerate non-relativistic electron gas. With increasing particle densities, the Fermi
momentum pF eventually becomes large enough that relativistic formulas need to be applied,
even at T = 0. For the equation of state (7.104), this means that we have to substitute
v = pc/(m2c2 + p2)1/2. In the limiting case, pF � mc, we have v ≈ c and therefore

P0 ≈
8πc

3h3

∫ pF

0
p3 dp =

hc

8

(
3

π

)1/3

n4/3. (7.105)

This is the equation of state for the fully degenerate relativistic electron gas. In figure 7.9 the
electron pressure as a function of electron density is plotted for the non-relativistic degenerate
gas (NR) and the limiting case of the fully relativistic degenerate gas (R). In reality there
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will be a smooth transition from the one case to the other. In the figure the ideal gas result
for temperatures T = 104 K and 108 K have also been plotted.

The normalization integral (7.100) for T > 0 is best suited for numerical evaluations. In
figure 7.10 the Fermi-Dirac momentum distribution function has been plotted (solid lines)
for different ratios of electron density n to the quantum concentration nQ as given by (7.27).
For a given density, the ratio n/nQ decreases with increasing temperature T . As seen from
the figure, the Pauli principle effectively sets an upper limit of 2/h3 to the maximum value
of the momentum distribution function. This can also be seen directly from (7.99). The
maximum value is achieved in the case when the exponential function in the denominator can
be neglected compared with unity, that is, when p < pF and T → 0. At a finite temperature
and large enough p on the other hand, the unity in the denominator of (7.99) can be neglected
compared with the exponential function. In this limit the Maxwell momentum distribution
function (7.33) is recovered as expected.

n/nQ= 35

F

f
h_

p/p

2 13
F

D
rp

(p
)

.5

2

6

Figure 7.10: The Fermi-Dirac distribution function

These arguments may also be turned around to set limits to the validity of the Maxwell
momentum distribution function. The maximum value of fMrp is found for p = 0. When this
value exceeds the maximum value allowed by the Pauli principle, that is, when

n

(
1

2πmT

)3/2

=
2

h3
,

electron degeneracy will already have set in. Apart from the factor 2, this means when the
electron density n equals the quantum concentration nQ. The quantum concentration nQ is
therefore seen to be the critical density when to expect effects of quantum degeneracy to set
in. In figure 7.10 also the Maxwell momentum distribution function fMrp(p) for n/nQ = 0.1, 0.3
and 1 have been plotted (dotted lines) for comparison with the corresponding Fermi-Dirac
distribution. For n/nQ = 0.1 any difference can hardly be seen, for n/nQ = 1 significant
differences exist.

Quiz 7.28 : If frp = fDrp for the fully degenerate electron gas, what is the corresponding
energy distribution function frw where w = p2/2m?
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Quiz 7.29 : Show that the average kinetic energy per particle in the fully degenerate gas
is given by w = 3

5wF where wF is the energy corresponding to the Fermi momentum
pF .

Quiz 7.30 : Derive a condition for beginning quantum degeneracy in an electron gas.
In a log n – log T diagram delimit regions where the electron gas will behave as
an ideal gas and where it will show effects of quantum degeneracy. Indicate in the
same diagram where the quantum degeneracy will be relativistic. Finally, in the
same diagram, plot the locations of the free electron gas in a) metallic Cu at room
temperature, b) in the interior of the Sun (ρm = 1.5 · 105 kg/m3, T = 1.5 · 107 K),
and c) in the interior of a white dwarf (ρm = 1010 kg/m3, T = 108 K).

Quiz 7.31 : If we define “effective” temperature Teff for the fully degenerate electron
gas through w = 3

2Teff, what is Teff for the electron gas in metallic silver? [Assume
each atom to contribute one free electron (conduction electron) to the gas.] What
is Teff for the interior of the Sun (ρm = 1.5 · 105 kg/m−3, T = 1.5 · 107 K) and in a
white dwarf (ρm = 1010 kg/m−3, T = 108 K)?

Quiz 7.32 : Protons and neutrons are also subject to quantum degeneracy. Why is the
quantum degeneracy effect for these particles often negligible compared to that of
the electrons?

Quiz 7.33 : Show that the distribution function fDrp(p) for the fully degenerate electron
gas in a volume V at T = 0 can be re-derived by assuming that in every phase space
element V d3p of size h3 there can at most be 2 electrons (2 because of the spin
multiplicity of the electron).

7.15 The Photon Gas

The photon is the elementary quantum of the electromagnetic radiation field. A photon of
frequency ν has energy W = hν and momentum p = hν/c. Even if the photon has only
two different polarizations or spin states, the photon is a spin s = 1 particle and therefore
behaves as a boson. For bosons the Pauli principle does not apply. This means that in any
given quantum state of the radiation field there may be an arbitrary number of photons. In
the following we shall also make use of the fact that the chemical potential µ of the photon
is known to vanish.

To derive the photon distribution function we consider the simple case of a radiation
field enclosed in a perfectly conducting box with sides of length L. The radiation field is
determined by the Maxwell equations (2.1)-(2.4). In vacuum, the electric field must obey the
wave equation

∇2E − 1

c2
∂2

∂t2
E = 0. (7.106)

The boundary conditions require the electric field to be perpendicular to the perfectly con-
ducting wall. For x = 0, L the electric field must satisfy the conditions Ey = Ez = 0, and
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similarly at the other walls. It is easy to check that

Ex = E0x cos(2πνt) cos
πqxx

L
sin

πqyy

L
sin

πqzz

L

Ey = E0y cos(2πνt) sin
πqxx

L
cos

πqyy

L
sin

πqzz

L
(7.107)

Ez = E0z cos(2πνt) sin
πqxx

L
sin

πqyy

L
cos

πqzz

L

represents a solution of (7.106) satisfying the imposed boundary conditions. The mode or
quantum numbers q = (qx, qy, qz) are all positive integers. The frequency ν is related to these
mode numbers through the dispersion relation

ν2 =
c2

4L2
(q2x + q2y + q2z) =

c2

4L2
q2. (7.108)

For each choice of mode numbers q, the polarization of the radiation field must be chosen
such as to satisfy the divergence condition on the electric field, ∇ ·E = 0, that is,

E0xqx + E0yqy + E0zqz = 0.

Two different choices are always possible.

With photons acting as bosons, an arbitrary number of photons may occupy any given
mode q. Let us now consider as our system one such mode in thermal equilibrium at temper-
ature T . With a vanishing chemical potential for the photons, the partition function (7.97)
is easily evaluated,

Zq =
∞∑

N=0

exp

(
−Nhνq

T

)
=

1

1− exp
(
−hνq

T

) . (7.109)

The average number of photons in the given mode is then

〈Nq 〉 =
1

Zq

∞∑

N=0

N exp

(
−Nhνq

T

)
= − 1

Zq

dZq

d
(
hνq
T

) =
1

exp
(
hνq
T

)
− 1

. (7.110)

The average number of photons in the volume V with frequency in the interval (ν, ν+dν)
is found by summing over all modes with frequencies belonging to this interval. From (7.108)
we have ∑

q∈(ν,ν+dν)

· → 1

8
4πq2 dq · = 4π

V

c3
ν2 dν · .

The average photon number in the specified frequency range is therefore

2〈Nq 〉
4π

c3
V ν2 dν =

8π

c3
ν2

exp
(
hν
T

)
− 1

V dν.

The extra factor 2 was included because of the two polarizations states available to the photon.
The photon frequency distribution function is readily identified as

frν(ν) =
8π

c3
ν2

exp
(
hν
T

)
− 1

. (7.111)
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The spectral energy density in the radiation field, that is, the energy in the radiation field
per unit volume and per unit frequency interval can now be expressed as

uν = hνfrν(ν) =
8πh

c3
ν3

exp
(
hν
T

)
− 1

=
4π

c
Bν(T ) (7.112)

where

Bν(T ) ≡ 2h

c2
ν3

exp
(
hν
T

)
− 1

(7.113)

is Planck’s radiation function. The relation (7.112) is referred to as Planck’s radiation law.
The radiation function is plotted in figure 7.11 for different temperatures T . The shape of the
different curves are identical, but the curves shift to higher frequencies and higher intensities
as the temperature increases.

Figure 7.11: Planck’s radiation function for different temperatures T

By integrating the spectral energy density uν over all frequencies, the total energy density
u in the radiation field in thermal equilibrium at temperature T is found as

u =
4π

c

∫ ∞

0
Bν(T ) dν =

8πT 4

h3c3

∫ ∞

0

x3 dx

exp(x)− 1
=

8π5

15h3c3
T 4 = aT 4. (7.114)

The constant a defined by (7.114) has the value a = 2.08217 · 1076 Jm−3J−4 (or alternatively
a = 7.56591 · 10−16 Jm−3K−4 with temperature measured in Kelvin).

Like material particles, the photons carry momentum. When reflected at a wall a photon
will impart impulse to the wall. A photon gas therefore exerts a pressure on a wall just like a



182 CHAPTER 7. THERMAL AND STATISTICAL PHYSICS

gas of particles does. The photon pressure can be found from (7.41) by replacing frv dv with
frν dν, substituting p = hν/c and v = c and summing over all frequencies

Pr =
1

3

∫ ∞

0

hν

c
cfrν(ν) dν =

4π

3c

∫ ∞

0
Bν(T ) dν =

1

3
u. (7.115)

In a volume containing both gas and radiation field, the pressure contributions from the
gas (7.42) and the radiation field (7.115) must be added. It is important to note the widely
different temperature dependence of these pressure contributions. At the high temperatures
of the interior of stars, the radiation field may be a major contributor to the total pressure,
near the cool stellar surface the radiation pressure is insignificant in comparison.

ch
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z
ν

A = 1

θ

φ

Figure 7.12: Geometry for unidirectional intensity

For the isotropic thermal equilibrium radiation field the photon distribution function frνΩ

per unit frequency and per unit solid angle in the direction Ω can be derived from frν ,

frνΩ =
1

4π
frν . (7.116)

We note that frν may be re-derived as a marginal distribution from frνΩ. Integration over
solid angle with dΩ = dcos θ dφ brings in a factor 4π.

We may also establish the expression for the spectral power density per unit solid angle,
that is, the energy transported per unit area, per unit time, per unit frequency and per unit
solid angle, carried by the radiation field as

Iν = hν c frνΩ = Bν(T ). (7.117)

We shall also refer to this quantity as the monochromatic specific intensity of radiation or
simply as the intensity. Each photon of the specified frequency and direction of travel carries
an energy hν with speed c. We notice that (7.117) allows for an alternative interpretation of
Planck’s radiation function Bν(T ).

The amount of energy that is being transported by the equilibrium radiation field per
unit frequency interval and per unit time through a unit area with a given orientation ẑ is
now easily determined. For this the specific intensity multiplied with the directional factor
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cos θ (see figure 7.12) is integrated over solid angles satisfying ẑ ·Ω > 0. We will refer to this
quantity as the monochromatic unidirectional energy flux in the direction ẑ,

F+
ν =

∫ 1

0

∫ 2π

0
cos θ Iν dcos θ dϕ = πBν(T ). (7.118)

The corresponding total unidirectional flux is found by summing the contribution from all
frequencies

F+ =

∫ ∞

0
F+
ν dν =

2π5

15h3c2
T 4 = σT 4 (7.119)

where σ is the Stefan-Boltzmann constant . The numerical value is sigma = 1.56055 ·
1084Wm−2J−4 (or σ = 5.67051 · 10−8Wm−2K−4 with temperature measured in Kelvin). In
thermal equilibrium the equal amount of energy is transported through the given area in the
opposite direction, F−

ν = F+
ν and F− = F+.

Quiz 7.34 : In a photon gas for which the energy and pressure are given as U = V u(T )
and P = 1

3u(T ), show that the relation (7.63) requires that u(T ) ∼ T 4.

Quiz 7.35 : The small frequency approximation, hν/T � 1, of the Planck’s radiation
function Bν(T ) is called the Rayleigh-Jeans approximation. Give the explicit expres-
sion for this approximation and show that if this approximation is taken as generally
valid, it will result in an “ultra-violet catastrophe” – the total energy in the radiation
field becomes infinite.

Quiz 7.36 : Wien’s displacement law gives the location of maximum of the Planck’s
radiation function as a function of frequency ν for a given temperature T . Derive
this law.

Quiz 7.37 : What is the expression for the Planck’ radiation function Bλ as a function
for wavelength λ, that is, the intensity per unit wavelength interval instead of intensity
per frequency interval as given in (7.113)?

Quiz 7.38 : Carry through the arguments leading to (7.119). Verify that the explicit
expression for the Stefan-Boltzmann constant σ and thus show that σ = 1

4ac where
the constant a is defined in (7.114). Express the energy density u and the radiation
pressure Pr in terms of the unidirectional energy flux F+.

Quiz 7.39 : Compare the contributions from electrons, ions and the radiation field to
the total pressure in the interior of the Sun (ρm = 1.5 · 105 kg/m−3, T = 1.5 · 107 K)
and in a white dwarf (ρm = 1010 kg/m−3, T = 108 K)? With a surface temperature
T = 104 K, what will the corresponding comparison near the surface of the star be?
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Chapter 8

Fluid Mechanics

In this chapter we shall establish the equations of motion for fluids and study some of their
basic properties. The discussion will be based on an intuitive, macroscopic approach. This
approach will normally lead to equations of motions suitable for large-scale properties of fluids
systems while some microscopic phenomena are being overlooked.

By a fluid we shall mean any continuous medium in which the atoms or molecules are
allowed to move freely with respect to each other. Fluids thus include liquids, gases and
plasmas. The fluid will be described in terms of quantities like mass density ρm, flow velocity
v, and pressure P . These quantities will be functions of position r and time t, that is, the
fluid will not be assumed to be in any global thermodynamic equilibrium state. The fluid will,
however, be assumed to satisfy local thermal equilibrium. This means that we will assume a
local equation of state for the fluid to exist.

8.1 The Continuity Equation

Consider an arbitrary volume V , fixed with respect to the chosen inertial system, and bounded
by the surfaceA. Let d2A = d2A n̂ be an infinitesimal outward pointing element of this surface
at position r in a fluid where the mass density is ρm and the flow velocity v. Due to the
flow velocity, mass will be transported across the surface A. The amount of mass transported
through the surface element d2A during the time interval dt is equal to the mass ρmv dt ·d2A

contained within a cylinder of base d2A and side v dt. The geometry is illustrated in figure
8.1. Integrating over the closed surface A, the total amount of mass transported out of the
volume V per unit time is given by

∮
A d2A · ρmv. If mass is not created or destroyed in the

fluid, the mass transport rate must be balanced by a corresponding rate of change of the total
mass residing within V ,

d

dt

∫

V
d3r ρm +

∮

A
d2A · ρmv = 0. (8.1)

This is the integral form of the mass continuity equation.

With the integration volume V fixed with respect to the inertial system, the time derivative
in the first term of (8.1) may be taken inside the volume integral. The second term can be
rewritten as a volume integral by making use of Gauss integral theorem (A.27),

∮

A
d2A · ρmv =

∫

V
d3r∇ · (ρmv).

185
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V

ddtvA
A

Figure 8.1: Fluid transport across a closed surface.

Equation (8.1) then takes the form

∫

V
d3r

(
∂ρm
∂t

+∇ · (ρmv)

)
= 0,

a relation which must be satisfied for any choice of the integration volume V . This can be
achieved only if the integrand vanishes identically,

∂ρm
∂t

+∇ · (ρmv) = 0. (8.2)

Equation (8.2) is the differential form of the mass continuity equation.
The individual terms in (8.2) are easily interpreted. The first term describes the local

rate of change of mass per unit volume. From the definition of the divergence operator (2.5),
the second term represents the outward directed mass flux per unit volume. For local mass
conservation, the sum of these two terms must vanish.

The continuity equation determines the local mass density ρm in the fluid as a function of
the flow velocity v. In particular, if the flow velocity v(r, t) is given and the mass density ρm
is specified at time t = 0, then the continuity equation (8.2) determines ρm(r, t) at all later
times.

By expanding the divergence term, the continuity equation (8.2) may be given in the
alternative form

Dρm
Dt
≡
(
∂

∂t
+ v · ∇

)
ρm = −ρm∇ · v. (8.3)

The operator D/Dt defined in (8.3) is called the convective derivative and will be met repeat-
edly in the following. It has an intuitive physical interpretation. The first (local) part of the
operator describes the rate of change as seen by an observer at a fixed location. The second
(directional derivative) part multiplied by dt, describes the change seen by an observer being
subject to an ”instantaneous displacement” v dt. Taken together, the two terms describe the
rate of change seen by an observer convected with the local fluid velocity v.

A flow for which the mass density ρm remains constant as seen by a co-moving observer,
Dρm/Dt = 0, is called an incompressible flow. From (8.3) it follows that such a flow will
satisfy ∇ · v = 0. It should be noted that a fluid participating in an incompressible flow does
not have to be an incompressible fluid.
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Quiz 8.1 : Can you describe a situation for which the continuity equation (8.2) is not
strictly valid.

Quiz 8.2 : Decide if any of the following velocity fields represent an incompressible flow:

i) v =
A

rn
r̂ for n =

1

2
, 1 or 2 ii) v = Ω× r,

where A and Ω are constants.

Quiz 8.3 : Interstellar gas falls radially in towards a star with mass M∗ with velocity
vr(r) given by

1

2
v2
r ≈

GM∗

r
.

The increase in the stellar mass with time is negligible. Determine the mass density
ρm(r) in the gas for a stationary flow situation. The analysis should be carried
through with the help of the continuity equation once in the form (8.2), and once in
the form (8.1). [Hint: in the latter case, choose a volume in the form of a spherical
shell with inner and outer radii r1 and r2.]

Quiz 8.4 : Equation (8.2) is the conservation law for mass density and mass flux. What
is the analogous conservation law for electric charge density ρ and electric current
density j?

Quiz 8.5 : A fluid has flow velocity v(r). A volume V bounded by the surface A is
flowing with the fluid. Show that the rate of change of the volume V is given by

dV

dt
=

∮

A
d2A · v =

∫

V
d3r∇ · v.

Thus argue that

lim
V→0

1

V

dV

dt
= ∇ · v,

that is, ∇ · v represents the local relative change in the volume of any fluid element
per unit time.

8.2 The Momentum Equation

From the continuity equation, the density ρm may be determined once the flow velocity v

is known. To determine the flow velocity, however, another equation is required. Such an
equation can be derived by equating the rate of change of the momentum of a given fluid
element to the total force acting on the element.

Consider again an arbitrary volume V , fixed with respect to the inertial system, and
bounded by the closed surface A. A force F is acting on the fluid contained within this
volume. The momentum

∫
V d3r ρmv of the fluid within V will change with time due to the

action of the force F , but also because the fluid is transporting momentum by flowing through
the chosen volume.
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In complete analogy with the discussion of mass transport across the surface A in section
8.1, the corresponding momentum transport across A is given by

∮
A d2A ·ρmv v. Momentum

balance for the fluid within the volume V is therefore given by

d

dt

∫

V
d3r ρmv +

∮

A
d2A · ρmvv = F . (8.4)

It is again convenient to transform the surface integral into a volume integral. With the help
of the Gauss integral theorem (A.27) and the continuity equation (8.2), the x-component of
the left hand side of (8.4) is easily transformed into

∫

V
d3r

{
∂ρmvx
∂t

+∇ · (ρmvvx)

}
=

∫

V
d3r

{(
∂ρm
∂t

+∇ · (ρmv)

)
vx + ρm

(
∂vx
∂t

+ v · ∇vx
)}

=

∫

V
d3r ρm

Dvx
Dt

.

The y- and z-components transform accordingly. Equation (8.4) therefore reduces to

∫

V
d3r ρm

Dv

Dt
= F . (8.5)

With the proper expression for the total force F acting on the fluid instantaneously con-
tained within the volume V , equation (8.5) (or equivalently (8.4)) is the integral form of the
momentum equation for the fluid.

Quiz 8.6 : Are you able to re-derive (8.5) from the “Newtonian” statement

d

dt

∫

V (t)
d3r ρmv = F

where V (t) is a volume element flowing with the fluid itself?

8.2.1 The ideal fluid

Forces acting on the fluid element may be of two types, a volume force F V acting throughout
the volume, or a surface force F S describing forces acting upon the given fluid element from
the surrounding fluid elements.

The gravitational force is an example of a volume force,

F V = −
∫

V
d3r ρm∇Φg. (8.6)

Here Φg is the gravitational potential with the corresponding gravitational acceleration field
g = −∇Φg. If the contribution to the total gravitational field from the mass of the system
being studied is negligible, the gravitational potential Φg may be considered as an externally
given potential. A self-gravitating system, where the gravitational potential Φg is completely
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determined by the mass distribution ρm(r) itself, represents the opposite extreme. For this
case the gravitational potential is given by

Φg(r) = −G
∫

d3r′ ρm(r′)

|r − r′ | , (8.7)

where G = 6.672 · 10−11 Nm2/kg2 is the gravitational constant. Relation (8.7) represents an
explicit expression for the gravitational potential Φg in terms of the mass density ρm. Even
so, it is often convenient to make use of the equivalent differential relationship

∇2Φg = 4πGρm. (8.8)

This result is simply derived by applying the ∇2-operator to the integral in (8.7) and making
use of the properties of Dirac’s δ-function as given in (A.55)-(A.60).

The pressure force is an example of a surface force,

F S = −
∮

A
d2AP = −

∫

V
d3r∇P. (8.9)

Here P represents the pressure at the boundary A. The negative sign is introduced because the
surface element d2A is pointing outward while the pressure force from the surrounding fluid is
acting in the opposite direction. The expression of the surface force as a volume integral over
the pressure gradient ∇P is a simple application of the generalized Gauss integral theorem
(A.37).

A fluid that in addition to the pressure force (8.9) is only subject to forces per unit mass
derivable from a potential, as exemplified by the gravitational force (8.6), is referred to as an
ideal fluid. The momentum equation (8.5) for the ideal fluid can now be written

∫

V
d3r ρm

Dv

Dt
= −

∫

V
d3r (∇P + ρm∇Φg).

This equation must be valid for any choice of integration volume V and may therefore be
reduced to

ρm
Dv

Dt
= −∇P − ρm∇Φg. (8.10)

This is the differential form of the momentum equation for an ideal fluid.

Real fluids may often to a good approximation be represented as an ideal fluid. Other
times additional forces acting on the fluid have to be taken into account. One example is
the magnetic force acting on electrically conducting fluids. We shall return to a discussion of
this force and its consequences in subsequent sections. Here we shall introduce still another
additional force, the viscous force. This is a force which appears when two adjacent fluid
layers with a relative velocity are exchanging momentum.

Quiz 8.7 : Verify the identity
∮

A
d2AP =

∫

V
d3r∇P

by direct integration. [Hint: Calculate the x-component of the surface force for a
volume V in the form of a regular cube with sides parallel to the coordinate planes.]
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Quiz 8.8 : Make use of (8.2) to show that the LHS of (8.10) may be rewritten in the
form

ρm
Dv

Dt
=
∂ρmv

∂t
+∇ · (ρmvv) (8.11)

8.2.2 The viscous force

Even if neighboring atoms or molecules may move relative to each other in fluids, this does
not mean that a steady state velocity shear may be maintained in the fluid without the action
of external forces. Here we shall see how an empirical expression for the viscous force acting
between neighboring fluid layers can be found.

x

y
xF

Fx

v (y)

dy

x

A

A

Figure 8.2: Simple slab velocity shear geometry

For this purpose consider a uniform fluid slab in the xz-plane and thickness ∆y in the y-
direction as illustrated in figure 8.2. A velocity profile v = vx(y)x̂ with constant velocity shear
dvx(y)/dy can be maintained by pulling the two bounding planes of area ∆A at y = ±∆y/2
with equal and opposite forces ±∆Fx in the x-direction. Experimentally, it is found that the
force per unit area, ∆Fx/∆A, necessary to maintain a stationary flow, increases linearly with
the velocity shear,

∆Fx
∆A = η

dvx
dy

. (8.12)

The constant of proportionality η is called the coefficient of viscosity and is a constant de-
pending on the particular fluid and its temperature. The coefficient of viscosity η is also
called the shear viscosity or the molecular viscosity.

A force per unit area as given by (8.12), must appear at any plane in the fluid parallel to
the two bounding planes. The faster moving fluid on one side of this plane will be trying to
pull the slower fluid on the other side. The slower fluid is at the same time trying to brake
the faster fluid. The expression ∆Fx/∆A has physical dimensions equal to that of pressure.
In contrast to the pressure force acting perpendicular to any bounding surface, the present
force is directed in this plane.

The experimental relation (8.12) may be used to express the viscous surface force acting
on any fluid element. For the instantaneous rectangular shaped element indicated in figure
8.2, the force d2F η acting on the top side surface element d2A = d2A ŷ is given as

d2F η = η d2A ŷ · ∇vx(y)x̂ = η d2A · ∇v. (8.13)
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The right hand expression will be valid also for the bottom side as long as d2A is the corre-
sponding outward pointing surface element.

When arguing for the expression (8.13), a special velocity profile was assumed. The
question is now if this expression is valid also for an arbitrary velocity field. The case of a
rigidly rotating fluid mass shows that this is not so. For the rigidly rotating fluid mass,

v = Ω× r, (8.14)

where the angular velocity Ω is any constant vector, there is no relative motion between
neighboring fluid elements. The viscous shear force on any surface element must therefore
necessarily vanish in this case. But if (8.14) is substituted in (8.13), a non-vanishing result is
found.

The proper expression for the viscous surface force can instead be shown to be

d2F η = η (d2A · ∇v +∇v · d2A− 2

3
∇ · v d2A) + ζ∇ · v d2A. (8.15)

The extra coefficient ζ in (8.15) is known as the bulk viscosity. η and ζ are both non-
negative quantities. The two terms of (8.15) represent the contributions to friction forces from
straining and dilatational motions in the fluid respectively. We note in particular that for
incompressional fluid motions the bulk viscosity term vanishes. The particular combination
of terms given in (8.15) reduces to (8.13) for the simple slab geometry has in addition the
following properties: it vanishes for the rigidly rotating fluid, conserves angular momentum,
and has the form necessary to make sure that the entropy production associated with the
irreversible viscous heating in the fluid always remains non-negative.

The total viscous surface force acting on a given fluid element from the neighboring fluid,
is found by summing individual contributions over the surface A. If we assume η ζ to be
constants and make use of Gauss integral theorem (A.27), the viscous force can be expressed
as a volume force,

F η =

∮

A

[
η

(
d2A · ∇v +∇v · d2A− 2

3
∇ · v d2A

)
+ ζ∇ · v d2A

]
=

∫

V
d3r Fη, (8.16)

where

Fη = η (∇2v +
1

3
∇∇ · v) + ζ∇∇ · v (8.17)

is the viscous force per unit volume.
The viscous force per unit volume Fη should be added to the right hand side of the

momentum equation (8.10). The momentum equation with the viscous force included,

ρm
Dv

Dt
= −∇P − ρm∇Φg + Fη, (8.18)

is known as the Navier-Stoke’s equation.

Quiz 8.9 : Verify that (8.15) reduces to (8.13) for the simple slab geometry and vanishes
for the case of the rigid rotor velocity field (8.14).

Quiz 8.10 : Show that (8.17) follows from (8.15).
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8.3 The Energy Equation

The next task is the derivation of an equation describing the energy balance in the fluid.
In addition to the kinetic energy v2/2 per unit fluid mass associated with the macroscopic
motion of the fluid, the fluid will also possess internal energy. We shall refer to the internal
energy per unit fluid mass as the specific internal energy u. The specific internal energy
may consist of several contributions, thermal energy associated with the thermal motions of
individual atoms in the fluid will always be one. For the moment the detailed form of u is
not needed.

8.3.1 The ideal fluid

We first consider the case of an ideal fluid for which effects due to viscous forces are absent.
We shall, however, allow for energy transport through heat conduction in the fluid. Consider
again a fixed volume element V . The time rate of change of kinetic and internal energy
in this volume, will in addition to the direct transport of such energy out of the volume
through the motion of the fluid itself, be determined by the work done by the fluid against
the pressure forces at the boundary, the work done by volume forces inside the fluid element,
and the heat conduction across the boundary. In analogy with the previous derivation of the
conservation laws for mass and momentum, and with the heat flux given by −λ∇T , where λ
is the coefficient of heat conduction, we may immediately write down the integral form of the
energy equation as

d

dt

∫

V
d3r

(
1

2
ρmv2 + ρmu

)
+

∮

A
d2A · v

(
1

2
ρmv2 + ρmu

)

= −
∮

A
d2A · vP −

∫

V
d3r ρmv · ∇Φg +

∮
d2A · λ∇T . (8.19)

The surface integrals may be transformed into volume integrals with the help of Gauss integral
theorem (A.27). Then, since (8.19) must be valid for any choice of the volume V , it may also
be written

∂

∂t

(
1

2
ρmv2 + ρmu

)
+∇ ·

(
1

2
ρmv2v + ρmuv

)

= −v · ∇P − P∇ · v − ρmv · ∇Φg +∇ · (λ∇T ).

Making use of (8.2) and (8.10), most terms cancel and we are left with the differential form
of the energy equation,

ρm
Du

Dt
= −P∇ · v +∇ · (λ∇T ). (8.20)

The P∇·v term on the right hand side represents the work done by an expanding unit volume
fluid element against the pressure force from the surrounding fluid. This follows easily from
the interpretation of ∇·v as the rate of increase of the unit volume (see quiz 8.5). The second
term describes the effect of heat conduction, that is, how internal energy is transported within
the fluid. Heat conduction may increase or decrease the specific internal energy of a given
fluid element, depending on the local temperature profile. We notice that the gravitational
force does not contribute to the internal energy balance in the fluid.
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8.3.2 Effects of viscous forces

The viscous force d2F η acting at the surface element d2A, as given by (8.15), will contribute
with one extra term

∮
A d2F η · v on the right hand side of the energy equation (8.19). If the

coefficients of shear and bulk viscosities η and ζ may be considered constant throughout the
fluid, this extra term may be written

∮

A
d2F η · v =

∫

V
d3r

[
η∇ ·

(
∇v · v + v · ∇v − 2

3
v∇ · v

)
+ ζ∇ · (v∇ · v)

]

=

∫

V
d3r

[
η

(
(∇2v +

1

3
∇∇ · v) · v +∇v : ∇̃v +∇v : ∇v − 2

3
(∇ · v)2

)
+ ζ(∇ · v)2

]

=

∫

V
d3r (Fη · v +D) .

The viscous force per unit volume Fη was defined in (8.17), while the viscous dissipation rate

D = η

(
2Φ : Φ− 2

3
(∇ · v)2

)
+ ζ(∇ · v)2 (8.21)

is given in terms of the rate of strain increase

Φ =
1

2
(∇v + ∇̃v). (8.22)

The rate of strain increase is a symmetric second order tensor. The transpose and the double
contraction operators “˜” and “ : ” are defined in appendix A. The viscous dissipation rate
is a non-negative quantity. This can be seen by noting that D in Cartesian coordinates may
be written as a sum of explicit non-negative terms

D = 4η (Φ2
xy + Φ2

yz + Φ2
zx) +

2

3
η
(
(Φxx − Φyy)

2 + (Φyy − Φzz)
2 + (Φzz − Φxx)

2
)

+ ζ(∇ · v)2.

For the differential form of the energy equation, only the viscous dissipation rate term
D will survive. That is, when taking the effects of viscous forces into account, the energy
equation (8.20) must be replaced with

ρm
Du

Dt
= −P∇ · v +∇ · (λ∇T ) +D. (8.23)

The last term describes how viscous effects transform macroscopic kinetic energy in the fluid
into internal energy. Because of the non-negative property of the dissipation rate D, viscous
effects will always act to increase the internal energy. In this way viscous effects always lead
to irreversible processes.

8.4 The Closure Problem

The continuity and momentum equations (8.2) and (8.10) (or (8.18)) represent four scalar
equations for five scalar quantities, the density ρm, three components of the flow velocity v

and the pressure P . The system of equations is not yet complete. We shall need at least
one more equation in order to have a self-consistent description of the fluid behavior. The
problem is not solved by adding the energy equation (8.20). This increases the number of
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equations by one, but also adds the internal energy per unit mass u to the list of dependent
variables. To find a way out of this problem, normally referred to as the closure problem,
we will make use of our previous discussion of thermal physics. We assume that the thermal
physics results are still valid locally in the fluid. As thermodynamic system, we consider any
moving fluid element interacting with its neighboring fluid elements.

With this point of view, we may predict the existence of an equation of state for the
fluid, that is, the existence of a functional relationship between the local values of pressure
P , density ρm and temperature T ,

P = P (ρm, T ). (8.24)

If a general expression for the specific internal energy u in terms of density and temperature
can be provided,

u = u(ρm, T ), (8.25)

then a complete set of equations of motion for the fluid have been secured.
In the following we shall consider the case of an ideal mono-atomic gas with equation of

state and specific internal energy given by

P =
ρmT
µmh

and u =
3T

2µmh

. (8.26)

Here µ is the mean molecular weight of the particles in the gas. Elimination of temperature
leads to

u =
P

(γ − 1)ρm
(8.27)

in terms of the ratio γ = 5/3 of the specific heat at constant pressure and constant volume in
the mono-atomic gas. With (8.27) as closure procedure we will now consider some limiting
cases.

8.4.1 Adiabatic process

In an adiabatic process, the heat exchange between a fluid element and its surroundings
vanishes, λ = 0. If the process is also reversible, then the viscous dissipation rate vanishes,
D = 0. Substitution of (8.27) into (8.20) and making use of (8.3) to eliminate ∇ · v on the
right hand side of (8.20) leads to

D

Dt

(
Pρ−γm

)
= 0. (8.28)

We shall refer to (8.28) as the adiabatic law. The result may be compared with the previous
result (7.71) for reversible adiabatic processes. The constancy of PV γ in an adiabatic process
for a moving fluid element with infinitesimal volume varying as V ∼ 1/ρm reduces to the
requirement that the convective derivative of Pρ−γm vanishes. This should not be a surprising
result.

The adiabatic law (8.28) often describes physical processes to a fair degree of accuracy if
these occur over short enough time scales such that heat conduction during the process can be
neglected. This will normally apply to most wave phenomena, but also to some quasi-steady
situations. The adiabatic equation of state, together with the continuity and momentum
equations, will be sufficient in order to secure a complete set of hydrodynamic equations.
That is, with suitable boundary conditions added, the equations (8.2), (8.10) and (8.28) will
allow for the determination of ρm, v and P as functions of space and time.
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8.4.2 Isothermal process

The isothermal process represents the opposite extreme. The process now has to proceed
slowly enough that heat exchange between fluid elements is able to maintain constant tem-
perature throughout the system. A constant temperature T is the trivial solution of (8.20)
in the limit λ→∞.

For a fluid behaving as an ideal gas, a complete set of hydrodynamic equations is obtained
by adding the equation of state

P =
ρmT
µmh

, (8.29)

to the continuity and momentum equations, (8.2) and (8.10). We note for the following
discussion that with temperature T considered constant, (8.29) can in differential form be
written

D

Dt

(
Pρ−1

m

)
= 0. (8.30)

8.4.3 Polytropic processes

The adiabatic and isothermal processes represent the two limiting cases of vanishing and
very large heat conduction. The real situation will normally lie somewhere in between. For
this situation the full energy equation (8.20) will strictly have to be solved together with
the continuity and momentum equations (8.2) and (8.10), and the proper closure procedure
(8.27).

Instead of proceeding with the full energy equation it is often possible to make use of an
ad hoc procedure. If (8.28) and (8.30) represent the two limiting cases, one would expect

D

Dt

(
Pρ−nm

)
= 0, (8.31)

where n is an adjustable constant taking values in the range 1 < n < γ, to approximate
the combined effects of the energy equation (8.20) and the closure procedure (8.27). A fluid
satisfying (8.31) for some choice of n, is referred to as a polytrop. The polytropic model has
been widely used, for instance, in the modeling of stellar interiors.

8.5 Hydrostatic Equilibrium

We now turn to a discussion of some of the consequences of the fluid equations introduced
above. Consider the simple case of a fluid in hydrostatic equilibrium. This is a state in which
the fluid is everywhere at rest v = 0, and where density and pressure are both constant with
respect to time t. For this case, the continuity equation (8.2) is trivially satisfied. Viscous
forces generally vanish, and the momentum equation (8.10) reduces to

∇P = −ρm∇Φg. (8.32)

For a solution of (8.32) to exist, the curl of the right hand side must vanish,

∇ρm ×∇Φg = 0. (8.33)
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In hydrostatic equilibrium, the gradient of the mass density must therefore everywhere be
parallel to the gravitational force field. This is equivalent to the requirement that any con-
stant density surface must everywhere coincide with a corresponding constant gravitational
potential surface.

We shall study consequences of (8.32) for two different situations, one for which the
magnitude of the gravitational acceleration can be considered constant, and one for which the
variation of the gravitational acceleration is important. The former case applies to discussions
of the properties of planetary atmospheres confined to the immediate neighborhood of the
planet. The latter case is relevant to the question of the internal structure of stars and
extended stellar atmospheres.

8.5.1 The barometric formula

For a fluid in a constant gravitational field ∇Φg = gẑ, the result (8.33) requires the mass
density ρm to be a function of z only. It follows from the pressure balance condition (8.32)
that this must also be the case for the pressure P ,

d

dz
P (z) = −ρm(z)g. (8.34)

To proceed, we invoke the equation of state for an ideal gas in the form (8.29). Equation
(8.34) then reduces to an equation for the pressure alone,

dP

dz
= −µmhg

T P. (8.35)

For an isothermal atmosphere in which T is constant, the solution is

P (z) = P0 exp
(
−µmhg

T z
)
. (8.36)

P0 is the pressure at some reference level z = 0. The result, known as the barometric formula,
is illustrated in figure 8.3. The pressure in the isothermal atmosphere decreases exponentially
with height with scale height H = T /µmhg. From the physical point of view, the pressure
at any point in the atmosphere adjusts to withstand the total weight per unit area of the
atmosphere above that point.

P
0

P

H

0
P/e

z

Figure 8.3: Pressure profile of an isothermal atmosphere
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The barometric formula (8.36) is easily generalized to a situation where heat sources or
other energy deposition mechanisms maintain a stationary temperature profile in the atmo-
sphere, T = T (z). The mean molecular weight mass may also be allowed to vary with height.
The solution of the pressure balance equation (8.35) is this time

P (z) = P0 exp

(
−
∫ z

0
dζ

µ(ζ)mhg

T (ζ)

)
. (8.37)

An explicit solution requires the height profile of temperature and mean molecular weight to
be known. Any such profile does not, however, give rise to a physically relevant solution. As
we shall see below, formal solutions of the form (8.37) may be unstable to perturbations and
therefore not physically realistic.

Quiz 8.11 : What is the scale height H for the lower part of the Earths atmosphere?

Quiz 8.12 : From (8.34) show that the pressure in an hydrostatic atmosphere every-
where equals the total weight of the overlying gas per unit area.

Quiz 8.13 : Show that the barometric formula for a spherically symmetric, local atmo-
sphere, in which the gravitational acceleration is radially directed, but of constant
magnitude, is identical to the plane parallel case with r replacing z.

Quiz 8.14 : We consider the possibility of an extended static and isothermal atmosphere
around a star with mass M∗ and radius R∗. Let the atmospheric mass density near
the stellar surface be ρm∗ = ρm(R∗). Neglecting self-gravitational effects, the gravi-
tational potential is given by Φg = −GM∗/r. Show that

ρm(r) = ρm∗ exp

(
−GM∗µmh

T R∗

(
1− R∗

r

))
. (8.38)

What is the limiting density at infinity? Would you consider this type of solution to
be realistic?

Quiz 8.15 : The coefficient of heat conduction λ for an ionized gas is a strongly varying
function of gas temperature T , λ ∼ T 5/2. Make use of the energy equation (8.23)
(neglecting viscous effects) to show that in a static stellar atmosphere, where energy
transport is dominated by heat conduction, the temperature will vary with radial
distance r as T ∼ r−2/7. What is the corresponding mass density ρm(r) in such an
atmosphere?

8.5.2 Static stellar models

Let us now consider the corresponding situation inside a spherically symmetric star of radius
R∗ and mass M∗. The gravitational field inside the star is determined by the mass distribution
inside the star itself. At radius r the gravitational acceleration is given by

g(r) = −GM(r)

r2
r̂, (8.39)
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where

M(r) = 4π

∫ r

0
ρm(r′) r′

2
dr′ (8.40)

is the total stellar mass inside radius r.
With the help of the pressure balance condition (8.32), the required pressure at the center

of the star may now be expressed in terms of the density profile ρm(r),

Pc = G

∫ R∗

0

M(r)ρm(r)

r2
dr. (8.41)

To evaluate Pc it is necessary to know the mass density profile of the star,

ρm(r) = ρmcf(r/R∗)

where ρmc is the central density and the function f(ξ) decreases from one to zero as ξ increases
from zero to one. The detailed form of f(ξ) depends on the equation of state for the stellar
interior and also the temperature profile of the star. The latter in turn depends on the stellar
heat source and the way energy is transported in the star. A discussion of these questions
falls outside the scope of our presentation. We shall see, however, that important scaling
conclusions can be reached even without this detailed knowledge if we assume the normalized
mass density profile to remain largely constant for each main class of stars, for instance,
among the main sequence stars and for the different classes of compact stars (white dwarfs,
neutron stars).

For a given density profile, the central density and pressure can be expressed in terms of
the stellar mass and radius,

M∗ = 4παρmcR
3
∗ (8.42)

Pc = 4πGβρ2
mcR

2
∗, (8.43)

where α and β are approximate constants for each class of stars, expressed in terms of integrals
over the normalized density profile f(ξ),

α =

∫ 1

0
dξ ξ2f(ξ) and β =

∫ 1

0
dξ

f(ξ)

ξ2

∫ ξ

0
dη η2f(η).

For static equilibrium to exist, it is necessary that the combined gas and radiation pressure
at the center of the star can be maintained at the value required by (8.41),

Pc = Pe + Pi + Prad. (8.44)

The evaluation of Pe, Pi and Prad normally requires the central particle densities for electrons
and ions and the temperature to be known.

Main sequence stars

Let us first consider main sequence stars. We know that the gas in the center of such stars can
be approximated as an ideal gas. Let the combined central gas pressure constitute a fraction
δ of the necessary central pressure Pc. We may then write

Pe + Pi =
ρmc
µmh

Tc = δPc
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and

Prad =
1

3
aT 4

c = (1− δ)Pc,

where the constant a is defined in (7.114). Elimination of the central temperature Tc between
these relations gives

Pc =

(
1− δ
δ4

)1/3(3

a

)1/3( 1

µmh

)4/3

ρ4/3
mc .

Together with (8.42) and (8.43) this relation in turn leads to

M2
∗
δ4

1− δ =
3α2

4πG3β3a

(
1

µmh

)4

.

According to our assumptions, the right hand side will remain an approximate constant
among the main sequence stars. It follows that for stars of this type to maintain hydrostatic
equilibrium, the radiation pressure must necessarily play an increasingly important role as
the mass of the star increases. As stars tend to go unstable when the radiation pressure gets
comparable to the gas pressure, the result also limits the maximum mass of any star to less
than about 100M� where M� is the solar mass. This is in accordance with observations.

White dwarfs

Next consider white dwarf stars. At the high central densities of these stars, the electron gas
becomes degenerate. The electron pressure as given by (7.104) may then be the dominating
contributor to the central pressure, and what is even more, the electron pressure may be
calculated without the knowledge of the central temperature,

Pe =
1

20

(
3

π

)2/3 h2

me

(
ρmc
µemh

)5/3

.

The quantity µe is defined such that ρmc/µemh represents the electron density ne at the center
of the star.

Expressing the central density ρmc in terms of the stellar mass and radius according to
(8.42), the pressure balance requirement (8.44) now leads to the surprising result

R∗M
1/3
∗ =

1

20

(
3

π

)2/3 h2

4πGme

1

(µemh)5/3
(4πα)1/3

β
. (8.45)

With the right hand side of (8.45) remaining approximately constant, it is seen that with
increasing stellar mass M∗, the radius R∗ of the compact star must decrease in order to
maintain hydrostatic equilibrium conditions.

With increasing stellar mass the central density of the white dwarf will eventually be high
enough that the electron gas approaches the relativistic degenerate state. In this limit the
electron pressure increases more slowly with increasing density. From (7.105) the electron
pressure approaches the asymptotic form

Pe =
hc

8

(
3

π

)1/3( ρmc
µemh

)4/3

.

This means that the radius R∗ of the star must decrease even faster with increasing mass
M∗ than expressed by (8.45). Eventually, no further equilibrium state can be found. This
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Figure 8.4: Mass - radius relation for white dwarfs

happens at a critical mass, the Chandrasekhar mass MCh ≈ 1.4M�. The resulting stellar
mass - radius relationship is illustrated schematically in figure 8.4.

Neutron stars

The collapse of the star will only stop when the stellar density reaches such extreme values
that electrons are absorbed by the atomic nuclei, transforming protons into neutron with the
emission of escaping neutrinos and dissolving atoms into a gas of free neutrons. The star has
transformed into a neutron star. Like the free electrons, the free neutrons are fermions and
must therefore satisfy the Pauli principle. At high enough densities also the neutron gas will
be degenerate with a neutron pressure

Pn =
1

20

(
3

π

)2/3 h2

mn

(
ρmc
mh

)5/3

,

where mn is the mass of the neutron. A new class of static equilibria may then be found.
The gravitational field around the star is now strong enough to require a general relativity
treatment. The main conclusions for the white dwarf case are, however, still valid. The radius
R∗ of the neutron star will decrease with increasing mass M∗. Eventually, the neutron gas
transform into a relativistic degenerate neutron gas and a new critical mass, the Oppenheimer-
Volkof mass, MOV in the range 1.5 - 2.0 M�, is reached beyond which no static equilibrium
can be found. The neutron star then transforms into a black hole.

Quiz 8.16 : Verify (8.39)-(8.40) by making use of the differential relationship (8.8) be-
tween the gravitational potential Φg and the mass density ρm, the assumed spherical
symmetry and the proper boundary condition for dΦg/dr at r = 0.

Quiz 8.17 : Determine the pressure in the Earth as a function of radius r assuming
the interior as an incompressible fluid with constant density ρm in hydrostatic equi-
librium. Would the pressure at the center increase or decrease if the mass density
increased towards the center?
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8.6 Stability of Static Equilibria

It is now time to return to the important question of the stability properties of the hydrostatic
equilibrium solutions studied above. A simple mechanical analog will clarify the matter
involved. With some care, a ball may be placed on top of a sphere in a constant gravitational
field. This is an equilibrium state for the ball. However, only minor perturbations will make
the ball fall off. With even the slightest displacement of the ball from the top point, the
gravitational force will act to move the ball further away from its equilibrium position. An
equilibrium state with this property is called unstable. Similar situations also exist in the
description of fluids. In particular, under certain conditions this applies to the hydrostatic
equilibrium studied above.

Consider the case of a fluid heated from below, like the air above a hot plate or the
interior of a star outside the fusion burning core. To remove the generated heat by radiation
transport or heat conduction, a decreasing temperature profile with height will result. In such
an environment consider a fluid element at local thermal equilibrium with the surrounding
fluid at some height z. Let the fluid element due to some disturbing action, be moved to
another height z + δz while expanding adiabatically in order to accommodate the changing
surrounding pressure. This means that the mass density of the fluid element will change by
an amount δadρm. The process is illustrated in figure 8.5.

δ
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eqδ ρ
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δP
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δPad

)

z + δz

z

ρ
m

ρ
m

+ ρ
m

, P

+ , P+

τ

, P+( )

( )

(

Figure 8.5: The thermal instability

The relative change in the mass density suffered by the fluid element is easily calculated
from the adiabatic law (8.28),

δadρm
ρm

=
δP

γP
. (8.46)

The corresponding variation in the mass density δeqρm of the equilibrium atmosphere in going
from height z to z + δz follows from the equation of state (8.26),

δeqρm
ρm

=
δ
(
µPT

)

(
µPT

) =
δP

P
− δT
T . (8.47)
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The latter result requires that the variation of the mean molecular weight µ with height z
can be neglected. If δz > 0 and the density of the transported fluid element ρm + δadρm is
less than the density of the surrounding fluid ρm + δeqρm, the fluid element will experience
a buoyancy force that will be acting to drive it further away from its original location. The
equilibrium state is then unstable.

The adiabatic process considered above represents the most critical case. Indeed, if the
fluid element during its motion exchanges heat with its surroundings, the resulting difference
in mass density will be less. As nature generally has the ability of seeking out the most
unstable modes, the condition for the onset of the instability can therefore be formulated as

δP

P
− δT
T =

δeqρm
ρm

>
δadρm
ρm

=
δP

γP
.

The instability is called the thermal instability. In differential form, and taking the barometric
formula (8.37) into account, the criterion for the onset of the instability may be written

dT
dz

<
γ − 1

γ

T
P

dP

dz
= −γ − 1

γ
µmhg. (8.48)

The results of our simple discussion may be verified through a more rigorous stability
analysis. The instability gives rise to the development of a Bérnard convection cell pattern,
leading to an effective convective transport of the excess heat from below. It is seen from
(8.48) that the condition for instability is easier satisfied, the smaller the mean molecular
weight of the fluid. The fluid that is most unstable to the thermal instability is thus the
ionized hydrogen gas. This has important consequences for the internal structure of the Sun
and other stars. Indeed, the thermal instability gives rise to the formation of convection zones
in most stars.

Quiz 8.18 : Derive (8.46) and (8.47) from (8.28) and (8.26).

Quiz 8.19 : From the tabulated values of radius, mass and central temperature, make
an order of magnitude estimate to see whether the thermal instability may be acting
inside the Sun.

8.7 Fluid Flows

Consider the flow velocity v(r, t) of the fluid to be given as a function of space and time. In
section 8.1 it was demonstrated that the divergence of the flow velocity∇·v can be interpreted
geometrically as the local relative expansion of the fluid per unit time. A similar geometric
interpretation can be given to the curl or the vorticity ω ≡ ∇× v of the flow field. Consider
any simply connected curve C in the fluid. A closed curve C is simply connected if it can be
shrunk to a point without engaging any physical obstacle or singularity. The circulation Γ
along the curve C is defined as

Γ ≡
∮

C
d` · v =

∫

A
d2A · ω. (8.49)

The right hand side expression follows from Stokes integral theorem (A.28). The circulation
is seen to indicate the tendency of the flow field to follow the direction of the curve C, that is,
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the tendency of the flow to “curl back” on itself. The vorticity ω is consequently interpreted
as this “curling back” tendency of the flow field per unit area. For a simply connected
region for which the flow velocity vanishes at the boundary, knowledge of the divergence and
the vorticity of the flow field uniquely determines the flow velocity v itself according to the
Helmholtz formula (A.41).

A given fluid particle will as a function of time follow a certain trajectory in space. This
trajectory is called a path-line. In a laboratory experiment, path-lines can be made visible
by adding colored particles to the flow – assuming that the added particles are able to follow
in the motion of the neighboring fluid particles. A streamline, on the other hand, is a curve
that is everywhere parallel to the flow velocity v at a particular time t. For stationary flows,
flows that at any given point do not change with time, streamlines and path-lines coincide.
For unsteady flows this does not hold. Streamlines evolve with time and the two types of
lines generally differ. It will also be convenient to introduce the definition of a vortex line.
A vortex line is a curve that is everywhere parallel to the vorticity ω of the fluid at a given
time t.

The evolution of the flow velocity in the fluid is determined by the momentum equation
(8.10). For a discussion of the physical content of this equation it is often convenient to make
use of a slightly rearranged equation. Thus, dividing through by ρm and making use of the
identity

v · ∇v = ∇v2

2
− v × (∇× v), (8.50)

the momentum equation may be rewritten in the form

∂v

∂t
− v ×∇× v = −∇P

ρm
−∇

(
v2

2
+ Φg

)
. (8.51)

Before turning to a discussion of some consequences of the flow equations, it is convenient
to introduce yet another definition. A fluid for which ∇× (∇P/ρm) vanishes identically, will
be called barytropic. This means that ∇P/ρm can be written as the gradient of a scalar
function h,

∇P
ρm

= ∇h. (8.52)

A fluid for which this condition is not satisfied everywhere, is called baryclinic. A necessary
condition for the fluid to be barytropic is that constant pressure and constant density surfaces
coincide everywhere in the fluid and therefore that the pressure can be expressed as a function
of density alone, P = P (ρm). This also means that the scalar function h may be written
explicitly as

h =

∫ P

0

dP

ρm
. (8.53)

In particular, for an adiabatic flow we have P ∼ ργm. This means that the adiabatic flow is
barytropic and we find

h =
γ

γ − 1

P

ρm
. (8.54)

Once the flow velocity v is known the vorticity ω can be calculated. In the absence of
analytic solutions for v it is useful to establish a separate equation for the evolution of the
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vorticity. Such an equation is easily found by applying the curl operator to each term of the
momentum equation in the form (8.51). The result is

∂ω

∂t
−∇× (v × ω) = −∇×

(∇P
ρm

)
. (8.55)

From (8.55) it may now be concluded that if in a barytropic flow the vorticity vanishes
identically initially, then the vorticity will continue to be identically zero in the flow. This
conclusion explains why fluid flows are traditionally divided into two separate classes. The
flow is classified as potential (irrotational) flow if the vorticity ω vanishes everywhere in the
fluid. In this case the velocity field can be derived from a scalar velocity potential Ψ, v = ∇Ψ.
If on the other hand, the vorticity at any point and time is non-vanishing, the flow is classified
as a vortex flow. The former case leads to considerable simplifications in the theory, but the
latter case is often met with in reality.

Quiz 8.20 : In a stationary flow the fluid velocity is given by

v =

{
Ω× r for r⊥ < a
a2Ω× r/r2⊥ else,

where Ω is constant and r⊥ =|Ω×r | /Ω. Find the vorticity ω for the flow and draw
some examples of streamlines and vortex lines.

Quiz 8.21 : For the stationary flow

v = a2Ω× r/r2⊥

where Ω is constant and r⊥ =|Ω × r | /Ω, calculate the circulation Γ along a circle
centered at the origin and lying in the plane perpendicular to Ω. How does the result
fit with the value of the vorticity ω? Explain!

Quiz 8.22 : Show that the function h defined in (8.53) for the case of an isothermal flow
takes the form

h =
T
m

ln
ρm
ρm0

where ρm0 is an arbitrary reference density. What is the corresponding result for an
incompressible flow?

8.8 Bernoulli’s Theorem

For stationary flows the time derivative term in (8.51) vanishes. If the flow is barytropic, we
see that

v · ∇
(

v2

2
+ h+ Φg

)
= 0.

For stationary flows we remember that a streamline is also the trajectory that a fluid element
will follow during its motion. The last result may therefore be formulated in the following
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way:
For a stationary, barytropic flow in an ideal fluid

v2

2
+ h+ Φg = C, (8.56)

where C is constant along any given streamline. If the flow is also irrotational, C will be
constant for the whole fluid. This result is known as Bernoulli’s theorem.

Compared to the hydrostatic equilibrium case as represented by the barometric formula
(8.36), Bernoulli’s theorem prescribes a completely different relationship between the pressure
and the gravitational field. The pressure, entering through the the function h, now also
depends on the flow velocity v. High flow velocities are associated with decreased values of
the pressure. What this means is that the fluid by increasing its flow velocity is transforming
some of its thermal energy in the form of random thermal motion into a more systematic and
directed flow pattern associated with the flow velocity v.

8.8.1 Stellar winds

As an application of Bernoulli’s theorem, let us consider the problem of the stationary ex-
pansion of hot coronal gas into interstellar space. We assume the expansion to be spheri-
cally symmetric and therefore v = vr r̂. This means that the flow is irrotational and that
v2/2+h+Φg will take the same value everywhere. The gravitational potential for a star with
mass M∗ is Φg = −GM∗/r. In differential form Bernoulli’s theorem (8.56) may be written

vr dvr + C2
s

dρm
ρm

+GM∗
dr

r2
= 0, (8.57)

where we introduced C2
s ≡ dP/dρm. Cs will later be shown to represent the sound speed in

the fluid. The equation of continuity (8.2) for a stationary and spherically symmetric flow
requires ρmvrr

2 to remain constant, or

dρm
ρm

+
dvr
vr

+
2 dr

r
= 0. (8.58)

Elimination of dρm/ρm between (8.57) and (8.58) leads to

(M2 − 1)
dvr
vr

= (1− 1

R)
2 dr

r
, (8.59)

whereM≡ vr/Cs is the Mach number and R = 2C2
s r/GM∗ a normalized radius. The sound

speed Cs appearing in the definitions ofM and R, is itself generally a function of r.
The qualitative properties of (8.59) can be understood by considering the normalized R-

M diagram of figure 8.6. Four regions may be identified. For R < 1 and M < 1 and for
R > 1 and M > 1 it is seen from (8.59) that vr increases with increasing r. The opposite
result applies for R < 1 and M > 1 and for R > 1 and M < 1. These conclusions are
illustrated in figure 8.6 by the direction of the arrows. We see that dvr/dr vanishes at R = 1
while it tends to infinity as M → 1. The point (R = 1,M = 1) is singular in the respect
that the coefficients of both dvr and dr in (8.59) vanish here.

For the hot stellar corona to exist, it is necessary that vr → 0 for small r. At the same
time a stellar wind type solution will require that vr increases or at least remains finite for
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isotherm

Figure 8.6: Stellar wind R-M plane, rising (falling) arrows indicates dvr/dr > (<) 0

large r. The latter condition means that v2
rr and therefore also M2R tend to infinity with

increasing r, irrespective of the particular functional form of Cs. The only possible path for
a solution starting in the (R < 1,M < 1) region and ending in the (R > 1,M > 1) region,
however, goes through the critical point.

For an isothermal flow Cs is a constant, C2
s = T /µmh where µ is the mean molecular

weight of the particles in the gas. For this case (8.59) may be integrated to give

1

2
M2 − lnM =

2

R + lnR2 − 3

2
. (8.60)

The solution is plotted in figure 8.6. The flow makes a subsonic to supersonic transition at
the critical point, increasing asymptotically asM∼ 2(lnR)1/2 for large R.

The isothermal flow assumption is an extreme one, requiring in fact an infinite capacity
heat regulator, for example through heat conduction, able to maintain constant temperature
in the flow. Let us therefore proceed to the opposite case and consider the possibility of
an adiabatic wind solution. For this case Cs decreases with increasing r. This follows from
the fact that P ∼ ργm and therefore C2

s = dP/dρm ∼ ργ−1
m ∼ (vrr

2)1−γ . For the last step
we made use of the equation of continuity (8.2). This means that R ∼ C2

s r ∼ r3−2γv1−γ
r ,

and therefore that R decreases as r increases if γ > 3/2 and vr is non-decreasing. This is
in contradiction with boundary conditions for a wind solution. For a plasma γ > 3/2. A
solution with dvr/dr > 0 and satisfying vr → 0 as r → R∗ would have to remain within the
R < 1,M < 1 domain in the R-M plane. This solution would thus not be able to satisfy the
boundary condition M2R →∞ as r →∞. We must conclude that an adiabatic equation of
state is not reconcilable with the existence of a stellar wind. To drive a wind, energy must be
supplied to the outer corona by some irreversible process. This could, in accordance with the
discussion of section 8.4, be heat conduction, viscous dissipation, or more likely some kind of
wave dissipation. The latter possibility will be treated in section 8.16.
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Quiz 8.23 : Consider an isothermal stellar wind. Argue that the mass loss rate of the
star can be expressed as

dM

dt
= 4πr2cρmcvrc

where subscript c indicates quantities evaluated at the critical point. Write down the
expressions for rc and vrc. Make use of Bernoulli’s theorem (8.56) and the boundary
conditions vr → 0 and ρm → ρm∗ as r → R∗ to show that

ρmc = ρm∗ exp

(
−GM∗µmh

T R∗

(
1− R∗

rc

)
− 1

2

)
. (8.61)

Can you estimate a characteristic lifetime of the Sun due to mass loss in the wind?
By comparing (8.61) with (8.38) argue that the isothermal wind corona is ”almost”
static out to the critical point. How does the limiting density in the isothermal wind
solution at large distances compare with the isothermal static corona model?

8.9 Kelvin’s Circulation Theorem

Let us now return to the more general flow situation for which the vorticity ω does not vanish
identically. The left hand side operator of the vorticity equation (8.55) allows for a simple
geometric interpretation. Consider an arbitrary simply connected material curve C(t) in the
fluid at time t, bounding the open surface A(t). A material curve flows and deforms with the
fluid and may be thought of as being made up of the same fluid particles at all times. The
following mathematical identity is valid

∫

A(t)
d2A ·

[
∂ω

∂t
−∇× (v × ω)

]
=

∫

A(t)
d2A · ∂ω

∂t
+

∮

C(t)
ω · (v × d`)

=
d

dt

∫

A(t)
d2A · ω. (8.62)

The second term of the middle expression results from the application of Stoke’s integral
theorem (A.28). As may be seen from figure 8.7, the factor (v dt × d`)/dt equals the local
rate of change of the integration area. The two terms of the middle expression therefore
represent the total time derivative of the surface integral of the vorticity ω over a time
dependent integration domain, as stated by the right hand side expression. For the subsequent
discussion of magnetic fields in electrically conducting fluids in section 8.14 it is important to
note that nowhere in this derivation did we make use of the particular relationship between
the fluid velocity v and the vorticity ω.

In terms of the circulation Γ defined in (8.49) and the identity (8.62), the vorticity equation
(8.55) may be rewritten as

d

dt
Γ = −

∮

C
d` · ∇P

ρm
. (8.63)

For a barytropic fluid the right hand side of (8.55) vanishes identically, as does the line integral
in (8.63). This result forms the basis for Kelvin’s circulation theorem:
If along the simply connected closed material curve C the fluid is ideal and barytropic, the
circulation Γ around C remains constant,

d

dt
Γ = 0. (8.64)
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Figure 8.7: Surface element traced by material curve

Several important conclusions follow from Kelvin’s theorem. For an ideal, barytropic fluid
the conditions of the theorem will be satisfied for any simply connected material curve. This
means that:
If the flow field in an ideal, barytropic fluid is irrotational initially, it will remain so.

Now, consider an arbitrary vortex tube in a vortex flow. A vortex tube is a cylindrical
volume whose side surface is made up entirely from vortex lines. Let C be any simply
connected closed material curve bounding a surface A lying on the vortex tube at time t.
The geometry is illustrated in figure 8.8a. By definition, ω · dA vanishes over A at time t.
But from Kelvin’s theorem for a ideal, barytropic fluid, the circulation around the curve C
remains constant and therefore vanishes for all times. This means that the material curve C
will continue to lie on a vortex tube and therefore also that the vortex tube is itself convected
by the flow. Going to the limit of an infinitely thin vortex tube, this is equivalent to:
Any vortex line in an ideal, barytropic fluid is convected by the flow.

F

C A

D

E

B
A

b)a)ω ω

d

Figure 8.8: Vortex tubes with material curves

Next, we return to the vortex tube of finite thickness containing the particular material
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curve ABCDEF of figure 8.8b. Let the sides AF and CD coincide. Our material curve is
then equivalent to the sum of two material curves ABC and DEF encircling the vortex tube
at different positions along the tube. From Kelvin’s theorem, it follows that the circulation
around the two material curves ABC and FED must remain identical:
In an ideal, barytropic fluid the circulation around any vortex tube is constant along the tube.

The latter conclusion means that a vortex tube is not allowed to start or end inside
the fluid. Any vortex tube in an ideal, barytropic fluid either ends at a boundary or at a
discontinuity in the fluid, or closes on itself.

Quiz 8.24 : By expanding the second term on the left hand side of (8.55) and making
use of the continuity equation (8.3) show that an alternative form of the vorticity
equation is

D

Dt

(
ω

ρm

)
=

ω

ρm
· ∇v − 1

ρm
∇×

(∇P
ρm

)
. (8.65)

Quiz 8.25 : For any scalar field f prove that

∇ D

Dt
f =

D

Dt
∇f +∇v · ∇f.

Making use of this identity, show through a scalar multiplication of (8.65) with the
gradient of any scalar quantity f conserved by the flow,

Df

Dt
= 0,

that the vorticity equation (8.55) can be written in the alternative form

D

Dt

(
ω

ρm
· ∇f

)
= − 1

ρm
∇×

(∇P
ρm

)
· ∇f. (8.66)

The quantity in the left hand side parenthesis is traditionally referred to as ”potential
vorticity”.

8.10 Rotating Coordinate Frames

The derivation of the equations of motions in the previous paragraphs assumed that all rele-
vant quantities were measured relative to an inertial frame. In a geophysical or astrophysical
context it is often convenient to make use of rotating frames of reference, for example rotating
with a celestial body as illustrated in figure 8.9a. The natural phenomena are of course unaf-
fected by our particular choice of reference frame. We shall, however, see that our description
of the phenomena will be affected by the choice. To an observer in a rotating frame, an
object fixed in an inertial frame will appear to rotate and be accelerating. To this observer,
the object thus seems to be subject to forces not present in the inertial frame. We therefore
next identify the modified equations of motion when written entirely in terms of quantities
directly observed from the rotating frame.

Consider a frame rotating with angular velocity Ω with respect to an inertial frame.
Let V be an arbitrary vector. Observers in the two frames of reference will agree on the
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Figure 8.9: Geometry of rotating frames

instantaneous magnitude and direction of V . If V is fixed with respect to the rotating frame,
the observer in the rotating frame will report no rate of change of V . To the observer in the
inertial frame, however, V will change by an amount

δV I = V Ωsin θ ϕ̂ δt = Ω× V δt

during the time interval δt. The geometry, as seen from the inertial frame, is illustrated in
figure 8.9b. The result is independent of the position of the vector V relative to the axis of
rotation. If V is allowed to change with time also in the rotating frame, changing with an
amount δV R = dV /dt | R δt during the same time interval δt, the observer in the inertial
frame will report δV R as an additional change in A. We did here neglect terms of order
(δt)2. The total rate of change of V in the inertial frame is therefore

dV

dt
|

I
=

dV

dt
|

R
+ Ω× V . (8.67)

The notations | I and |R refer to the the reference frames in which the evaluation is performed.
With V representing the changing position vector r of a given fluid element, the trans-

formation law (8.67) leads to the result

vI = vR + Ω× r, (8.68)

where vI and vR are the velocities of the given fluid element as seen from the two frames.
Application of the transformation law (8.67) to the vector V = vI in turn leads to

dvI

dt
|

I
=

d

dt
(vR + Ω× r) |

R
+ Ω× (vR + Ω× r)

=
dvR

dt
|

R
+ 2Ω× vR + Ω× (Ω× r) . (8.69)

Here we assumed Ω to be constant. We identify (8.69) as the relationship connecting acceler-
ations in the two frames. It is important to note that the three right hand side terms of (8.69)
are expressed entirely in terms of quantities relating to the rotating frame. The first term is
the acceleration as measured in the rotating frame. The second term is the Coriolis acceler-
ation, directed perpendicular to both Ω and vR. The third term represents the centripetal
acceleration, directed radially inward towards the axis of rotation.
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The two time derivative terms in (8.69) represent the total rate of change of the velocity
vector v(t) of a given fluid element, as seen from the two frames. If we replace v(t) with the
velocity fields v(r, t) as measured in the two frames, the time derivative operators have to
be replaced by the corresponding convective derivatives Dv(r, t)/Dt. This means that the
relation (8.69), when applied to the velocity fields v(r, t), takes the form

Dv(r, t)

Dt
|

I
=

(
Dv(r, t)

Dt
+ 2Ω× v(r, t) + Ω× (Ω× r

)
|

R
. (8.70)

We notice that while r = r(t) in (8.69) represents the time varying position of a given fluid
element, r in (8.70) is a general position vector, independent of time t. The origins for both
types of position vectors are located on the rotational axis. It is useful to note that the
centripetal acceleration term in (8.70) can be expressed as the gradient of a scalar centripetal
potential Φc,

Ω× (Ω× r) = ∇Φc with Φc = −1

2
(Ω× r)2. (8.71)

Scalar fields like the mass density ρm, the pressure P or the gravitational potential Φg

at any given time instance take identical values in both frames, their partial derivatives with
respect to space coordinates will also be identical, for example ∇ρm |I = ∇ρm |R . With the
help of (8.70), the momentum equation (8.10) in the rotating frame can therefore be written

ρm
Dv

Dt
= −∇P − ρm∇Φ + 2ρmv ×Ω. (8.72)

Here the potential Φ, in addition to the gravitational potential Φg, also includes the centripetal
potential Φc,

Φ = Φg + Φc. (8.73)

By moving the Coriolis acceleration term of (8.70) to the right hand side of the momentum
equation (8.72), it appears to the observer in the rotating frame as an additional force acting
per unit volume, the Coriolis force

F c = 2ρmv ×Ω. (8.74)

This force is always perpendicular to the velocity and therefore does no work on the fluid. For
an observer aligned with Ω, for instance for an observer located in the Northern hemisphere
of a rotating body, the Coriolis force will tend to deflect moving fluid elements to the right.
In the Southern hemisphere the deflection will be opposite.

We have already claimed that any scalar field s(r, t) will take identical instantaneous
values in the two frames of reference. However, while the spatial derivatives of s(r, t) also
take identical values in the two frames, this does not apply to the time derivatives ∂s(r, t)/∂t.
The notation ∂s(r, t)/∂t means that the position vector r should be kept constant during the
time derivation. But keeping r constant means different things in the two frames. A point
fixed in the rotating frame will be moving in the inertial frame. This leads to the relation

∂s

∂t
|

I
=
∂s

∂t
|

R
− (Ω× r) · ∇s (8.75)

and therefore
Ds

Dt
|

I
=

Ds

Dt
|

R
. (8.76)
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If use is also made of the fact that

∇ · v |
I

= ∇ · v |
R
, (8.77)

it follows that the continuity equation (8.3) and, for instance, the adiabatic law (8.28) both
transform without change of form in going from the inertial frame to the rotating frame.

Quiz 8.26 : Verify (8.71).

Quiz 8.27 : Make use of the relation (8.75) to prove (8.76).

Quiz 8.28 : Verify (8.77).

Quiz 8.29 : Show that in the presence of the Coriolis force, the vorticity equation (8.55)
may be rewritten in the form

∂ω̃

∂t
−∇× (v × ω̃) = −∇×

(∇P
ρm

)

where ω̃ = ω + 2Ω.

Quiz 8.30 : In the presence of the Coriolis force, show that the rate of change of the
circulation Γ around a simply connected closed material curve C (8.63) must be
generalized to

dΓ

dt
= −

∮

C
d` · ∇P

ρm
− 2Ω ·

∮

C
v × d`.

Further show that the last integral in this result represents the rate of change of the
vector area A(t) enclosed by the moving curve C,

∮

C
v × d` =

d

dt
A(t).

Quiz 8.31 : At the North pole of a planet with an ideal atmosphere, a high pressure
region is formed. Show that a stationary, strictly horizontal wind pattern, with
streamlines forming circles centered at the pole and the wind blowing in the clockwise
direction, can be maintained. What is the corresponding flow pattern if the high
pressure region is replaced with a low pressure region? What are the modification to
these solutions if the high or low pressure regions are maintained at other latitudes?

8.11 Magneto-hydrodynamics

In our discussion of fluid mechanics, we have so far assumed the fluid to be electrically neutral.
That is, we did not allow the fluid to become electrically charged, or to be able to carry electric
currents. In astrophysics we often find fluids for which these assumptions are not met. This
is the case for the liquid cores of planets and for the ionized gases of stellar interiors, stellar
and planetary atmospheres and interstellar space. We therefore next turn to the question of
how the macroscopic fluid model will have to be modified in order to include effects due to
the interaction between conducting fluids and electric and magnetic fields.
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The additional force acting per unit volume on a fluid having charge density ρe and
carrying a current density j at a location where the electric and magnetic fields are E and
B, is given by the Lorentz force

Fem = ρeE + j ×B. (8.78)

The electric charge and current densities are related through the equation of charge continuity

∂ρe
∂t

+∇ · j = 0. (8.79)

But ρe and j also act as sources for the electric and magnetic fields through Maxwell’s
equations

∇×E = −∂B

∂t
(8.80)

∇×B = µ0

(
j + ε0

∂E

∂t

)
(8.81)

∇ ·B = 0 (8.82)

∇ ·E =
ρe
ε0

(8.83)

The electric current density j in the moving frame is often determined by the electric
conductivity σ of the fluid and the effective electric field seen by an observer moving with the
fluid,

j = σ(E + v ×B). (8.84)

We shall refer to this relation as Ohm’s law.
With the addition of Maxwell’s equations, we are left with a more complicated set of

equations for the conducting fluid. Instead of dealing with five hydrodynamic variables ρm, v

and P , we are now also facing a larger number of electromagnetic variables. Important sim-
plifications are, however, possible under certain conditions. First of all, we will demonstrate
that the first term of the Lorentz force (8.78) may be neglected in most situations of interest.

To this end consider the simple case of a homogeneous fluid at rest. When substituting
(8.84) and (8.83) into (8.79), we find

∂ρe
∂t

= −σ∇ ·E = − σ
ε0
ρe.

This result shows that the charge density in the fluid will decay exponentially with time, with
a typical decay time τρ = ε0/σ. For good conductors this decay time is very short. Values of
the decay time for some relevant examples are listed in table 8.1.

Conducting fluids thus have the ability to react very quickly to any charge unbalance
that may arise. In most situations of practical interest we may therefore safely assume the
conducting fluid to maintain local charge neutrality to a high degree of accuracy at all times.
This property of the conducting fluid is referred to as quasi-neutrality. This is also the
argument needed for neglecting the electric field term of the Lorentz force. We shall later
discuss the decay of electric current density in conducting fluids. Contrary to the case of
charge density, it will be found that the decay times for electric currents in astrophysically
interesting situations can be very long. There is thus no similar argument to neglect also the
magnetic field part of the Lorentz force.
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Conductivity Decay time
System σ [mho m−1] τρ [s]

Earth’s core 105 10−16

Ionosphere 10 10−12

Solar atmosphere 103 10−14

Solar corona 106 10−17

Table 8.1: Typical conductivities and charge decay times

With the assumption of quasi-neutrality and the neglect of the charge density in the
fluid, we shall at the same time have to disregard the equation of charge continuity (8.79) and
Gauss law (8.83). Another approximation will also act to simplify our conducting fluid model.
The ε0∂E/∂t term of Maxwell’s law (8.81) is called the displacement current. This term is
necessary for any discussion of electromagnetic wave phenomena. At low enough frequencies,
however, the displacement current can be neglected compared to the conduction current j.
When discussing typical fluid behavior, this approximation is usually well satisfied. Thus,
for the conducting fluid model we shall replace Maxwell’s law (8.81) by the corresponding
Ampére’s law

∇×B = µ0j. (8.85)

With these simplifying assumptions, the equations of motion for a conducting fluid and
its interaction with electric and magnetic fields are reduced to

Dρm
Dt

= −ρm∇ · v (8.86)

ρm
Dv

Dt
= −∇P − ρm∇Φg + j ×B (8.87)

j = σ(E + v ×B) (8.88)

∇×E = −∂B

∂t
(8.89)

∇×B = µ0j (8.90)

∇ ·B = 0. (8.91)

To these equations we again have to add a proper closure procedure. For an adiabatic process
this would be the adiabatic law

D

Dt
(Pρ−γm ) = 0. (8.92)

The use of the adiabatic law (8.92) restricts the processes to be studied to take place rapidly
enough to allow heat conduction effects to be neglected. Still, the process must be slow enough
so that electromagnetic effects are unimportant. In the more general case, this equation would
be replaced with the proper equation of state together with a generalized version of the energy
equation in which also Joule heating effects are taken into account.

The set of equations (8.86) - (8.92) is known as the magneto-hydrodynamic (MHD) model.
The model constitutes a relationship between 14 different physical quantities ρm, v, P , B, E

and j. Some of these quantities may easily be eliminated, for instance j and E. Due to the
approximations made, the model suffers from minor inconsistencies. Still, the MHD model
has been used with success in a large number of situations.
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Viscous forces and heat conduction were neglected (Fη = 0 and λ = 0) in (8.86) - (8.92).
If in addition the electric conductivity of the fluid tends to infinity (σ = ∞), the model
reduces to the ideal magneto-hydrodynamic model. In this approximation Ohm’s law (8.88)
reduces to the requirement that the electric field seen by an observer flowing with the fluid
vanishes,

E + v ×B = 0. (8.93)

We shall now turn to a discussion of some of the consequences of the MHD model.

8.12 Magnetic Pressure and Tension Forces

In (8.87) the magnetic force was expressed in terms of the electric current density and the
magnetic field. These two quantities are not unrelated. As seen from (8.90) the current density
acts as source for the magnetic field. Often a spatially varying magnetic field indicates the
presence of a local current density.

It is sometimes convenient to express the magnetic force in terms of the magnetic field
alone. This is easily achieved by the substitution of Ampére’s law (8.90) into the force
expression

j ×B =
1

µ0
(∇×B)×B =

1

µ0
B · ∇B −∇B2

2µ0
. (8.94)

The last term is of the same form as the pressure force. The expression Pm = B2/2µ0 is
therefore called the magnetic pressure. The first term can be rearranged and given a precise
physical interpretation. Introducing B = B b̂ where b̂ is a unit vector along B, we may write

1

µ0
B · ∇B =

B2

µ0
b̂ · ∇b̂ + b̂b̂ · ∇ B2

2µ0
. (8.95)

But, as seen from figure 8.10, we have

b̂ · ∇b̂ =
n̂

R
, (8.96)

where R is the local radius of curvature of the magnetic field line and n̂ is a unit vector
pointing toward the local center of curvature. In particular, n̂ and b̂ are orthogonal vectors.

Combining these expressions, we have

j ×B =
B2

µ0
b̂ · ∇b̂−∇⊥

B2

2µ0
, (8.97)

where the subscript ⊥ indicates that only the components of the gradient operator perpen-
dicular to B are to be retained. The expression (8.97) shows that the magnetic force may
be considered made up from two parts. The last term is the magnetic pressure force always
acting perpendicular to the magnetic field. The first term represents a magnetic tension force,
also acting perpendicular to the magnetic field. The magnetic tension force may be visualized
by considering magnetic field lines as stretched elastic strings. In this picture the conducting
fluid is pushed sideways by the curved magnetic field line tending to straighten up, like an
arrow on the bowstring. The contents of these different force concepts will be illustrated
further in the subsequent discussion.
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Figure 8.10: Field line geometry

8.13 Magneto-hydrostatic Equilibria

We have previously studied static equilibrium states in non-conducting fluids. The magnetic
force leads to the possibility of new classes of static equilibrium states in the conducting fluid.
Neglecting effects of gravitational forces, the momentum equation (8.87) reduces to

∇P = j ×B. (8.98)

With the proper choice of magnetic field geometry, a pressure maximum may be maintained
in the fluid. In particular, constant pressure surfaces will be spanned by a web of crossing
current and magnetic field lines as depicted in figure 8.11,

j · ∇P = 0 and B · ∇P = 0.

In terms of the magnetic pressure and tension forces, the equilibrium condition (8.98) takes
the form

∇⊥

(
P +

B2

2µ0

)
=

B2

µ0
b̂ · ∇b̂.

In regions with straight magnetic field lines, the magnetic tension force vanishes, b̂ · ∇b̂ = 0,
and the sum of fluid and magnetic pressures will be constant. In regions with curved magnetic
fields the sum of the two pressures will not be constant.

Let us consider a simple example. In an otherwise homogeneous fluid a circular cross sec-
tion current channel is maintained along a constant external magnetic field B0. We introduce
a coordinate system with the z axis along the center of the current channel. Let the current
channel have constant current density j = j0ẑ inside the radius a. The situation is illustrated
in figure 8.12. The current will produce an additional azimuthal magnetic field

Bϕ =





µoj0
2 ρ ϕ̂ for ρ < a

µoj0a
2

2ρ ϕ̂ for ρ > a.
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const

P

P=

B

j

Figure 8.11: P -surface spanned by j and B lines

Combined with the original current j this field generates a magnetic force

j ×Bϕ = −µ0j
2
0

2
ρρ̂

acting back on the fluid for ρ < a. To establish a static equilibrium state, the force balance
condition (8.98) requires the pressure in the fluid to vary according to

P (ρ) = P0 +
µ0j

2
0

4
(a2 − ρ2),

where P0 is the fluid pressure outside the current channel. The fluid pressure and the az-
imuthal magnetic field strength are both plotted in the figure 8.12.

B0P

ρa

j

j

P

B

Bϕ

ϕ

Figure 8.12: Linear Pinch

In this example the magnetic force inside the current channel is divided equally between
the magnetic pressure force and the magnetic tension force,

−∇⊥

B2
ϕ

2µ0
=
B2
ϕ

µ0
b̂ · ∇b̂ = −µ0j

2
0

4
ρρ̂.

Outside the current channel the total magnetic force vanishes. Here the magnetic pressure
and tension forces are equal but of opposite direction. The tendency of the curved magnetic
field line to straighten up is counteracted by an outward decreasing magnetic pressure.
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The static MHD equilibria are of the greatest interest in the controlled fusion program. In
this application, the nested pressure surfaces are bent into toroidal shape in the TOKAMAK
device. One of the major problems in this research has been to find stable equilibria. In
the stellar interiors and atmospheres, current carrying magnetic loops play important roles in
the theory of magnetic flux-tube buoyancy, sun-spot formation, solar prominences and flares,
and in dynamo theories for the generation and maintenance of stellar and planetary magnetic
fields.

Quiz 8.32 : In a static equilibrium state a current sheath maintains the magnetic field

B =





B0 ẑ, x < −d
1
2d

(B0(d− x) +B1(d+ x)) ẑ, −d < x < d

B1 ẑ, x > d

where B1 > B0. For x < −d the fluid pressure is P = P0. Determine the current
density j and the pressure P as functions of x. What are the magnetic pressure and
tension forces acting on the fluid in this case?

8.14 Frozen Fields and Field Diffusion

The elimination of E from (8.88) and (8.89) leads to an equation for the evolution of the
magnetic field in the form

∂B

∂t
−∇× (v ×B) = −∇× j

σ
. (8.99)

The left hand side expression is seen to be identical in form to that of the vorticity equation
(8.55). To go from (8.55) to (8.99) we only have to replace the vorticity ω by the magnetic
field B. Even the right hand sides of these equations are of similar form. We may therefore
copy our previous discussion of Kelvin’s theorem for fluid flows in section 8.9 to the present
magnetic field problem in electrically conducting fluids. Instead of (8.63) giving the time
development of the circulation Γ, we here find a relation for the time variation of the magnetic
flux

Φ =

∫

A(t)
d2A ·B

through the open surface A(t) bounded by a simply connected material curve C(t) in the
form

d

dt
Φ = −

∮

C(t)
d` · j

σ
. (8.100)

In analogy with the discussion of Kelvin’s theorem and its consequences, we may now formu-
late Alfvén’s frozen field theorem:
In a perfectly conducting fluid (σ = ∞), the magnetic flux contained within any simply con-
nected material curve C remains constant.

In complete analogy with the discussion following Kelvin’s theorem in section 8.9, if follows
from Alfvén’s frozen field theorem that magnetic flux tubes are convected by the perfectly
conducting fluid. A flux tube is a cylindrical volume in the fluid whose side surface is made
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entirely from magnetic field lines at any given time t. Fluid particles that at any instance
lie on the walls of a flux tube will continue to form the wall of a magnetic flux tube. This
means that the magnetic field lines may be visualized as frozen to the fluid. Fluid elements
lying along a magnetic field line at a given time will continue to lie along a magnetic field
line at later times. Furthermore, the magnetic flux Φ contained within any given flux tube is
constant along the tube.

In a fluid with finite electrical conductivity σ, the magnetic field and the fluid tend to
diffuse with respect to each other. This is readily seen from (8.100). Any flux tube with
cross section A with a larger magnetic flux density than the surrounding region requires an
azimuthal current to be flowing at its bounding surface. With the surface A directed along
the magnetic field, this current density j will be directed along the positive direction of the
material curve C. The situation is illustrated in figure 8.13. The line integral on the right
hand side of (8.100) will thus be positive, leading to a decrease in the magnetic flux within the
same curve. Any local enhancement in the magnetic field thus tends to be destroyed through
the diffusion of magnetic field lines relative to the conducting fluid. For a local magnetic
depletion, the current density will be reversed. Through magnetic diffusion local minima in
magnetic flux density tend to be filled.

C

A

B

j

Figure 8.13: Magnetic field diffusion

Quiz 8.33 : A magnetic field directed along the z axis has a local enhancement near
the axis. The field is given by B(ρ) = (B0 + B1(ρ))ẑ where dB1/dρ < 0 and ρ
represents the distance from the axis. What is the current density j necessary to
produce the enhancement? Show that for a contour C encircling the z axis in the
positive direction, the right hand side of (8.100) is negative.

8.15 The Virial Theorem

Kelvin’s circulation theorem and Alfvén’s frozen field theorem are both examples of far-
reaching conclusions being arrived at without actually having to solve the equations of motion
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explicitely. The virial theorem represents a similar case. For its derivation it is advantageous
to rewrite the momentum equation (8.87) for an ideal and conducting fluid in the form

∂

∂t
(ρmv) = ∇ · T − ρm∇Φg (8.101)

where the stress tensor T includes kinetic, thermal and magnetic effects

T = −ρmvv − (P +
B2

2µ0
)I +

1

µ0
BB. (8.102)

We have here made use of (8.11) and (8.94). We note that T is a symmetric tensor.
Let us now consider an isolated fluid system, that is a fluid system bounded by a (fixed)

surface A where the mass density ρm, and therefore also the pressure P , vanishes identically.
For this system we define the scalar moment of inertia, I =

∫
d3r ρmr2. The corresponding

time derivative is

dI

dt
=

∫
d3r

∂ρm
∂t

r2 = −
∫

d3r∇ · (ρmv)r2 = 2

∫
d3r ρmv · r. (8.103)

Thus, we also find

1

2

d2I

dt2
=

∫
d3r

∂

∂t
(ρmv) · r =

∫
d3r ((∇ · T ) · r − ρm∇Φg · r) . (8.104)

Through a partial integration, and assuming a surface integral to vanish, the first term
on the right hand side of (8.104) is given by

∫
d3r (∇ · T ) · r = −

∫
d3r T : I = 2(K + Θ) +M (8.105)

where

K =

∫
d3r

1

2
ρmv2, Θ =

3

2

∫
d3r P and M =

1

2µ0

∫
d3r B2

are the kinetic, the thermal and the magnetic energy of the system. We note that K, Φ and
M are all positive definite quantities.

With the help of (8.7) the last term on the right hand side of (8.104) can be written in
the form

∫
d3r ρm∇Φg · r = G

∫
d3r d3r′ ρm(r)ρm(r′)

(r − r′) · r + (r′ − r) · r′

2 |r − r′ |3

=
G

2

∫
d3r d3r′ ρm(r)ρm(r′)

|r − r′ | = −1

2

∫
d3r ρm(r)Φg(r) = −Vg. (8.106)

Here Vg represents the self-gravitational potential energy of the system and is a negative
definite quantity.

The virial theorem can now be written in the simple form

1

2

d2I

dt2
= 2K + 2Θ +M + Vg. (8.107)

The virial theorem allows for important physical insight. First of all, without a self-gravitational
field the right hand side of (8.107) is positive definite. That means that d2I/dt2 is positive
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and therefore that dI/dt will be steadily increasing with time. At least in the long run this
means that also I will be increasing with time. A stable self-confining magnetohydrody-
namic static equilibrium is therefore not possible. This conclusion will only be reversed if the
self-gravitational field of the system is strong enough that the negative contribution from Vg
in (8.107) balances the positive contributions from K, Θ and M . In particular, for a non-
conducting fluid, and therefore no coupling to any magnetic field, we recover the well-known
result that in a static equilibrium of a gravitational system the sum of kinetic and thermal
energies equals one half the absolute value of the gravitational energy.

8.16 Linear MHD Waves

An important property of all continuous media is their ability to support waves of different
kinds. A wave is a particular perturbation in the properties of the medium that is allowed
to propagate away from its point of origin. The wave carries energy with it. If the wave is
generated in one part of the medium and absorbed in another, the wave represent a mechanism
in which energy is redistributed in the medium. Under some conditions waves damp out as
they propagate. Under other situations they may grow in amplitude, eventually leading to
shock phenomena or to a generally turbulent state of the medium.

As an introduction to the theory of waves and their properties, we shall consider waves of
small amplitude in a perfectly conducting ideal fluid as described by the ideal MHD model.
Since the validity of then MHD model is limited to situations where the displacement current
can be neglected in comparison to conduction currents, the results we are to derive applies
for low-frequency waves. We consider the simplest possible case in which the fluid before
the introduction of the wave is in a uniform and static equilibrium state. The effects of any
gravitational field will be neglected, but the fluid will be assumed permeated by a uniform
magnetic field. The equilibrium values of density, velocity, pressure and magnetic field will be
denoted by ρ0, v0 = 0, P0 and B0, respectively. We allow for small space and time dependent
perturbations in these quantities,

ρm = ρ0 + ρ1 (8.108)

v = v1 (8.109)

P = P0 + P1 (8.110)

B = B0 + B1. (8.111)

Equations for the perturbations ρ1, v1, P1 and B1 are derived by substituting these expres-
sions into the model equations (8.86)-(8.92). Considerable simplifications arise if we assume
the amplitudes of the perturbations to be small enough that all terms quadratic in these
quantities may be neglected. The resulting linearized set of equations is

∂ρ1

∂t
= −ρ0∇ · v1 (8.112)

ρ0
∂v1

∂t
= −∇P1 +

1

µ0
(∇×B1)×B0 (8.113)

∂P1

∂t
= C2

s

∂ρ1

∂t
(8.114)

∂B1

∂t
= B0 · ∇v1 −∇ · v1 B0, (8.115)
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where Cs =
√
γP0/ρ0 is the previously defined sound speed.

Let us first consider the simple case where the magnetic field B0 is absent. This could
correspond to an electrically conducting fluid with a vanishing magnetic field, or to a non-
conducting fluid that does not couple to electric or magnetic fields. Eliminating v1 and P1

from (8.112)-(8.114) we arrive at the wave equation for the density perturbation ρ1,

∂2ρ1

∂t2
= −∇ · ρ0

∂v1

∂t
= ∇2P1 = C2

s∇2ρ1 (8.116)

A general solution depending on only one spatial coordinate, for instance z, is given by
ρ1(z, t) = f(z ± Cst) where f is any twice differentiable function. This means that an
arbitrarily specified density pulse will propagate in the given direction with the sound speed
Cs without changing its shape. With ρ1 given the associated perturbations in v1 and P1 can
be found from (8.113)-(8.114).

In the following we shall be satisfied by looking for solutions of the linearized equations
in the form of plane waves, that is, perturbations in ρ1, v1, P1 and B1, varying in space and
time as

cos(k · r − ωt) = Re exp(ιk · r − ιωt). (8.117)

This type of solution will always be possible since (8.112)-(8.115) is a set of linear and homo-
geneous partial differential equations in the perturbed quantities with constant coefficients.
We note that on the basis of the Fourier transform theory outlined in table 2.1, any wave form
may be synthesized from plane wave solutions. We note furthermore that any perturbation
of the plane wave type will propagate in the direction of the wave vector k with phase speed
vph = ω/ |k |.

Allowing for a possible constant internal phase difference between the perturbed quanti-
ties, we include a complex amplitude factor and write for the complex form of the velocity
perturbation

v1 = δv exp(ιk · r − ιωt), (8.118)

with similar expressions for the other quantities. The complex notation for the perturbations
is convenient in that the operators ∂/∂t and ∇ appearing in the linearized equations may be
replaced with the algebraic factors −ιω and ιk.

In particular for the simple sound wave case, in the complex plane wave notation the wave
equation (8.116) reduces to

(ω2 − C2
sk

2)ρ1 = 0.

Non-trivial plane wave solutions are thus only possible if the dispersion relation

ω2 = C2
sk

2 (8.119)

is satisfied. This is a general property of plane wave solutions, for a given wave vector k,
non-trivial solutions are only possible for particular values of the angular frequency ω. The
form of the dispersion relation will differ from one type of wave to another, but there will
always be dispersion relation. The phase speed of the present acoustic wave vph = ω/k = Cs
is seen to be independent of the wave vector k. This means that plane waves that propagate
in the same direction with different wave numbers k and therefore different ω all propagate
together. This is also a necessary condition for the acoustic pulse to retain its shape during
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the propagation. Waves with this property are said to be dispersion-less. The energy in the
wave is transported with group velocity vgr = ∂ω/∂k = Csk̂. For the acoustic wave the

group velocity is identical to the phase velocity vphk̂. This is not a general property of linear
waves, as will be seen below. Finally, with ρ1 given the corresponding velocity perturbation
can be found from (8.113)

v1 =
Cs
ρ0

k̂ρ1.

The material motion in the fluid induced by the wave is thus in the direction of the wave
propagation. This means that k·v1 6= 0 and therefore that∇·v1 6= 0. The fluid flow associated
with the acoustic wave is a compressible flow. The wave is thus called a compressible wave.

Let us next turn to a discussion of the full set of linearized MHD equations (8.112)-(8.115).
Let us first demonstrate that an incompressible wave solution does exist, that is a solution
for which ∇ · v1 = 0 or k · v1 = 0. From (8.112), (8.114) and (8.115) it follows that

ρ1 = P1 = 0 (8.120)

B1 = −B0 · k
ω

v1. (8.121)

The linearized momentum equation (8.113) then reduces to

ω2v1 =
B0 · k
µ0ρ0

(k × v1)×B0. (8.122)

The right hand side vector is perpendicular to B0. This must also be the case for the left
hand side vector, leading to the requirement on the velocity amplitude vector

b̂ · δv = 0. (8.123)

The incompressibility condition is equivalent with the requirement

k · δv = 0. (8.124)

Figure 8.14: The Alfvén wave
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With the latter two conditions satisfied, equation (8.122) will have non-trivial solutions
provided the angular frequency ω and the wave vector k satisfy the dispersion relation

ω2 = V 2
A(b̂ · k)2 = V 2

Ak
2 cos2 θ, (8.125)

where VA = B0/
√
µ0ρ0 is the Alfvén speed and θ is the angle between B0 and k. The solution

found is called an Alfvén wave (or sometimes the shear Alfvén wave). The polarization of
the wave, here defined as the direction of amplitude vector δv of the velocity perturbation, is
perpendicular to both B0 and k. The wave appears as a propagating periodic buckling of the
magnetic field. This is depicted in figure 8.14. The wave vector is lying in the xz-plane, the
magnetic field perturbation and the corresponding fluid velocity perturbation in the yz-plane.
We note that the relation between the magnetic field and fluid velocity perturbations (8.121)
is such as to satisfy the frozen field theorem. The fluid and the magnetic field move together.

From the dispersion relation (8.125), it is seen that for a given angle θ the frequency of the
wave increases linearly with the wave number k. This means that the phase speed vph = ω/k
for a given direction of propagation is independent of the wave number k. The Alfvén wave is
therefore a dispersion-less wave. For this case the dispersion relation (8.125) can conveniently
be represented in graphical form by plotting the phase speed as a function of the direction of
the wave vector k. Such a plot is called a phase velocity surface. The corresponding phase
velocity surface is a surface of revolution with the equilibrium magnetic field direction as
the axis of symmetry. For the rotationally symmetric case it is sufficient to plot one section
through this surface. The result for the Alfvén wave is given in figure 8.15, curves marked A.
Part a) of the figure corresponds to the case where VA > Cs, part b) to the case Va < Cs. In
the figure, the polarization direction of the mode is also indicated. As already remarked, δv
is perpendicular to the plane containing k and B0.

Figure 8.15: Section through the phase velocity surface for the Alfvén, the fast and the slow
magneto-sonic waves for a) Va > Cs and b) VA < Cs. Only one quadrant of the section is
plotted.

Waves transport energy through the medium. The velocity of energy propagation is given
by the group velocity

vgr =
∂

∂k
ω(k) = k̂

∂ω(k, θ)

∂k
+ θ̂

1

k

∂ω(k, θ)

∂θ
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where ω(k) is the dispersion relation of the wave mode. For the Alfvén wave, the ∂ω/∂θ term
is generally non-vanishing. The wave therefore carries energy in a direction different from the
direction of the phase velocity as given by the wave vector k. For the Alfvén wave, the group
velocity is indeed always directed along the equilibrium magnetic field B0.

The Alfvén wave is but one of three different solutions of the linearized equations (8.112)
- (8.115). To find the remaining wave modes we must abandon the simplifying condition
∇ · v1 = 0. For the general solution equations (8.112), (8.114) and (8.115) read

ρ1 =
ρ0

ω
k · v1, (8.126)

P1 = C2
sρ1, (8.127)

B1 =
1

ω
(B0k · v1 −B0 · kv1). (8.128)

When substituted in the corresponding linearized momentum equation (8.113) an equation
for the velocity perturbation δv results

ω2δv = (C2
s + V 2

A)k k · δv + V 2
A

[
(k · b̂)2δv − b̂ k · b̂ k · δv − k k · b̂ b̂ · δv

]
. (8.129)

Equation (8.129) is a linear and homogeneous system of equations in the three components
of δv. If the z axis is chosen parallel to b̂ and in addition the x axis is oriented such that the
xz-plane contains the k vector, the equation can be written in matrix form as

A ·



δvx
δvy
δvz


 =




0
0
0


 (8.130)

with

A =



ω2 − V 2

Ak
2 − C2

sk
2 sin2 θ 0 −C2

sk
2 sin θ cos θ

0 ω2 − V 2
Ak

2 cos2 θ 0
−C2

sk
2 sin θ cos θ 0 ω2 − C2

sk
2 cos2 θ


 .

A necessary and sufficient condition for the existence of non-trivial solutions is that the
determinant of the system matrix A vanishes. This leads to three different solutions for ω
and δv, for each choice of the wave vector k, namely

ω2

k2
= V 2

A cos2 θ (8.131)

with

δv ∼ (0, 1, 0), (8.132)

or
ω2

k2
=

1

2
(C2

s + V 2
A)± 1

2

√
(C2

s + V 2
A)2 − 4C2

sV
2
A cos2 θ (8.133)

with

δv ∼ (sin θ cos θ, 0,
1

2
(1− V 2

A

C2
s

)− sin2 θ ± 1

2

√
(1 +

V 2
A

C2
s

)2 − 4
V 2
A

C2
s

cos2 θ ). (8.134)
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The first of these wave modes, (8.131) - (8.132), is the previously studied Alfvén wave.
The other two modes, (8.133) - (8.134), generally have a component of δv along k and are thus
examples of compressive waves, ∇ · v1 6= 0. They are called the fast and the slow magneto-
sonic modes. Also these modes are dispersion-less. The phase velocities and corresponding
polarization of these modes have already been given in figure 8.15. Note that the result will
be different depending on which of the velocities Cs and VA is the larger one. For propagation

perpendicular to b̂, the phase velocity of the fast mode is always given by
√
C2
s + V 2

A, while

for parallel propagation the velocity is max(Cs, Va). Generally we find

vSph ≤ min(Cs, VA) ≤ max(Cs, VA) ≤ vFph.

Also for the fast and slow modes, the direction of the group velocity vgr will generally be
different from the direction of the corresponding phase velocity. In fact, the wave vector k

divides the angle between the group velocity and the normal to the phase velocity surface.
The construction is illustrated in figure 8.15a. Note that the construction only gives the
direction of the group velocity, not its magnitude.

An alternative to plotting the phase velocity surface for displaying the properties of the
different wave modes is to plot the corresponding refractive index surface, N = c/vph as a
function of wave vector direction. For the refractive index surface the direction of the group
velocity coincides with the surface normal.

Quiz 8.34 : For the Alfvén wave show that:
i) vph(θ) is represented by a half circle in the xz-plane with center at x = 0, z = VA/2
and radius VA/2,
ii) the magnetic field perturbation associated with the Alfvén mode is always per-
pendicular to the equilibrium magnetic field, δB · b̂ = 0,
iii) the group velocity is directed along the magnetic field, and
iv) the wave vector k cuts the angle between the group velocity and the normal to
the phase velocity surface in two equal halves.

Quiz 8.35 : In the absence of an equilibrium magnetic field B0, show that the linearized
equations (8.112) - (8.115) allow for only one wave mode, a sound wave satisfying
δv ‖ k and ω2/k2 = C2

s . What is the shape of the phase velocity surface? What is
the group velocity? With k = kẑ plot ρ1, v1z and P1 as functions of z for a given
time t. Is the sound wave an incompressible or compressible wave?

Quiz 8.36 : A spectral line is formed in a local non-magnetized region in which a sound
wave is propagating towards the observer. The line producing region is stationary
with respect to the observer, yet a slighted blue-shifted spectral line is reported.
What is the relationship between the wave induced flow velocity and the density per-
turbation in the medium? How will the local contribution to the spectral line depend
on the local density perturbation? Are you able to give a qualitative explanation of
the reported blue-shift?

Quiz 8.37 : Show that the polarization of the fast and slow modes are always orthogonal,
δvF · δvS = 0 for any given direction of k.
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Quiz 8.38 : Sketch the shape of the refractive index surfaces for the three MHD wave
modes for the case VA > Cs. By comparing with figure 8.15a, does the group velocity
vg for a given wave vector k seem to coincide with the corresponding refractive index
surface normal n̂? Are you able to prove that this is actually correct?

8.17 Shocks

The equations of motion for fluid systems are in the form of partial differential equations. We
normally expect the solutions of these equations to be continuous funtions in space and time.
The equations do, however, also allow for discontinuous solutions. We shall refer to these
discontinuities as shocks. The equations of motion pose constraints as to the allowed form of
these discontinuities and their velocity. These constraints are known as the Rankine-Hugoniot
relations. We next derive and discuss these constraints.

Consider a general conservation law for a field quantity Q and its corresponding flux F

written in conservative form
∂Q

∂t
+∇ · F = 0. (8.135)

The continuity equation, the momentum equation and the energy conservation equation for
an ideal non-conducting fluid can all be written in this form,

∂ρm
∂t

+∇ · (ρmv) = 0 (8.136)

∂

∂t
(ρmv) +∇ · (ρmvv + P1) = 0 (8.137)

∂

∂t

(
ρm(

1

2
v2 + u)

)
+∇ ·

(
ρm(

1

2
v2 + u)v + Pv

)
= 0. (8.138)

Let us now assume a discontinuity in Q to exist, moving with local speedD in the direction
n̂. Let the discontinuity locally be enclosed in a coin-shaped volume with areaA and thickness
h, oriented with and moving with the discontinuity as indicated in figure 8.16. Integrating
each term of (8.135) over the coin-shaped volume and taking the limit as the coin thickness
h tends to zero, the integral form of the conservation law (8.135) reduces to

−D [Q] + n̂ · [F ] = 0. (8.139)

Here [Q] ≡ Q1 −Q0 and Q0,1 represent the limiting values of the field quantity Q on the two
sides of the discontinuity. We see that (8.139) represents a relation between allowed steps in
the quantity Q and its corresponding flux F across the discontinuity moving with speed D
in direction n̂.

Using the result (8.139) the continuity equation (8.136) leads to the relation

[ρm(vn −D)] = 0, (8.140)

where vn = n̂ · v is the normal component of the velocity v.

The momentum equation (8.137) leads to

[ρm(vn −D)v] + [P ] n̂ = 0.
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Figure 8.16: Shock discontinuity (dashed line) moving with velocity D and co-moving coin-
shaped volume with side A and height h

This means that the tangential part of the velocity must remain continuous across the dis-
continuity,

[vt] = 0. (8.141)

In addition we find
[P ] = −[ρm(vn −D)vn] = −[ρm(vn −D)2]. (8.142)

From the energy conservation equation (8.138) we derive the constraint

[ρm(vn −D)(
1

2
v2 + u)] + [Pvn] = 0

or

[u] = −1

2
[v2
n]−

[Pvn]

ρm0(vn0 −D)
.) (8.143)

By noting that
1

2
[v2
n] =

1

2
[(vn −D)2] +D [vn −D]

and

[Pvn]

ρm0(vn0 −D)
=

P1vn1

ρm1(vn1 −D)
− P0vn0

ρm0(vn0 −D)

=
P1

ρm1
− P0

ρm0
+D

[P ]

ρm0(vn0 −D)
= [

P

ρm
]−D [vn −D]

the result may be written in the form

[u+
P

ρm
+

1

2
(vn −D)2] = 0. (8.144)

The quantity h ≡ u+P/ρm is the specific enthalpy and is equivalent to the total heat content
per unit mass of the system.

The constraints (8.140), (8.142) and (8.144), together with (8.141) are known as the
Rankine-Hugoniot relations. Together with the proper equation of state, these relations de-
termine allowed steps in ρm, v, P and u across any hydrodynamic shock as functions of the
shock speed D.
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An alternative and often useful form of the Rankine-Hugoniot relations are expressed in
terms of the spesific volume V ≡ ρ−1

m . From (8.140) we note that

D [ρm] = [ρmvn] = vn0 [ρm] + ρm1 [vn]

and therefore

[vn] = ρm0(D − vn0)
[ρm]

ρm1ρm0
= −ρm0(D − vn0) [V], (8.145)

and

[P ] = ρm0(D − vn0) [vn] = −ρ2
m0(D − vn0)

2 [V] (8.146)

We also note from (8.145) and (8.142) that

[vn]
2 = −[P ][V] (8.147)

and thus

D = vn0 ± V0

√
− [P ]

[V]
. (8.148)

Finally, with the help of (8.151) and (8.152) the energy equation (8.143) may be rewritten

[u] = −vn0 [vn]−
1

2
[vn]

2 +
vn0 [P ] + P1[vn]

ρm0(D − vn0)

=
1

2
[P ][V]− P1[V] = −1

2
(P0 + P1) [V]. (8.149)

Figure 8.17:

Let us now consider the case of a simple shock in an ideal gas. From (8.146) we notice
that there is a linear relationship between P1 and V1 for given values of P0 and V0. For the
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ideal gas the internal energy can be expressed as u = PV/(γ − 1), valid on both sides of the
shock front. Substituting this relationship for u0 and u1 in (8.149) gives

[u] =
1

γ − 1
(P1V1 − P0V0) =

1

2
(P1 + P0)(V0 − V1),

or

S ≡ P1

P0
=

(γ + 1)V0 − (γ − 1)V1

(γ + 1)V1 − (γ − 1)V0
. (8.150)

The quantity S is the shock strength. The relation (8.150) is the Hugoniot in the PV-plane.
It is plotted in figure 8.17 together with the relation (8.146) (solid line bd). In the figure
the adiabat, that is the P,V states reachable from P0,V0 through an (isentropic) adiabatic
compression, is also plotted (dash-dotted curve).

Figure 8.17 allows for a simple physical interpretation. For simplicity let the gas ahead of
the shock be at rest, v0 = 0. The specific kinetic energy acquired in the shock compression
is then according to (8.147) given by

1

2
v2
1 =

1

2
(P1 − P0)(V0 − V1)

and corresponds to the triangular area bcd in the figure.

The corresponding total specific energy acquired is

1

2
v2
1 + [u] =

1

2
(P1 − P0)(V0 − V1) +

1

2
(P1 + P0)(V0 − V1) = P1(V0 − V1).

Geometrically, this is represented by the rectangular area acdf. Thus, the area of the polygon
abdf equals the increase in the specific internal energy of the gas during the shock compression.

Now consider the isentropic compression from state P0,V0 to state Ps,V1. The work done
in this process equals the area abef. To reach the final shocked state d the material must be
heated. The necessary heat needed equals the area bde. This area also determine the entropy
increase of the material due to the shock compression.

For a conducting fluid described by the ideal MHD equations some additional terms will
appear in the conservation laws and the corresponding Rankine-Hugoniot relations will take
a slightly more complex form. Let us here consider the simpler hydrodynamic model with an
ideal gas equation of state.

Quiz 8.39 : Show that (8.139) follows from (8.135) by integrating over the coin-shaped
volume indicated in figure 8.16 and letting h→ 0.

Quiz 8.40 : With [Q] ≡ Q1 −Q0 show that

[AB] = A0 [B] +B1 [A] (8.151)

[A2] = 2A0 [A] + [A]2. (8.152)
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Quiz 8.41 : With v0 = 0 show that

ρm1

ρm0
=
S(γ + 1) + (γ − 1)

S(γ − 1) + (γ + 1)
(8.153)

vn1 = (S − 1)

√
2P0V0

S(γ + 1) + (γ − 1)
(8.154)

D =

√
P0V0

2
(S(γ + 1) + (γ − 1)) (8.155)

c1 = c0

√
S(S(γ − 1) + (γ + 1))

S(γ + 1) + (γ − 1)
(8.156)

where S is the shock strength and c =
√
γPV is the sound speed. What is the

maximum compression ratio ρm1/ρm0 attainable in any simple shock?

8.18 Characteristic Numbers

The hydrodynamic or magneto-hydrodynamic set of equations are from a mathematical point
of view rather complicated models. There is an eminent need to work with simplified models.
This is also often justified. The equations may in given situations contain terms which remain
small, but even so complicates an analysis considerably. What is therefore needed is a simple
order-of-magnitude method for judging the importance of the different terms in the equations.
To this end we introduce the notion of characteristic scales and characteristic numbers.

A characteristic length L for a variable φ(r, t) is a distance over which φ varies significantly.
More precisely, we define the scale length as a typical value of | φ/∇φ | and express this
statement mathematically as

L ∼ |φ /∇φ | . (8.157)

The characteristic length scales for two different variables may generally be different. A
characteristic time scale τ is defined similarly,

τ ∼ |φ / ∂φ/∂t | . (8.158)

A number of characteristic numbers may be formed as dimensionless ratios of different
terms of the model equations. In table 8.2 the more common characteristic numbers have
been listed. In the right hand expressions for some of these numbers the characteristic scale
lengths for different quantities have been assumed equal.

The first five numbers relate to the properties of the momentum equation. The Reynolds
number represents the ratio of the spatial, non-linear part of the inertial term and the viscous
forces. The Alfvén number is the ratio of the magnetic force and the non-linear part of the
inertial term. This number reduces to the square of the ratio of the Alfvén and the flow
speed. The Froude number is the ratio of the non-linear part of the inertial term and the
gravitational force, while the Strouhal number is the ratio of the temporal and the spatial
part of the inertial term.

The magnetic Reynolds number determines whether the magnetic field will be frozen to
or diffuse through the conducting fluid.
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Reynolds number:

Re ∼ |ρmv · ∇v |
|η∇2v | ∼ ρmvL

η

Alfvén number:

A ∼ |j ×B |
|ρmv · ∇v | ∼

B2

µ0ρmv2

Hartmann number:

H ∼ |j ×B |
|η∇2v | ∼

B2L

µ0ηv

Froude number:

Fr ∼ |ρmv · ∇v |
|ρmg | ∼ v2

Lg

Strouhal number:

Sh ∼ |ρm∂v/∂t |
|ρmv · ∇v | ∼

L

vT

Magnetic Reynolds number:

Rm ∼ |∇ × (v ×B) |
|∇ × (j/σ)) | ∼ µ0σvL

Prantl number:

Pr ∼ |D/(ρmv2/2) |
|∇ · (∇T )/u | ∼ ηCV

Richardson number:

Ri ∼ |g ∂ρm/∂z |
|ρm(∂U/∂z)2 | ∼

gL

v2

Table 8.2: Common characteristic numbers

The Prantl number is the ratio of the relative rate at which macroscopic kinetic energy
is transformed into internal energy in the fluid and the rate at which internal energy is
transported within the fluid. The explicit expression for D is given in (8.148) and CV is the
specific heat capacity at constant volume defined in (7.65).

The Richardson number applies for stratified, inhomogeneous flows and measures the ratio
of the gravitational stability of the fluid to the free energy in the fluid associated with sheared
flow available to drive the Kelvin-Helmholtz instability.



Chapter 9

Radiation Transport

9.1 Specific Intensity of Radiation

In section 7.15 the monochromatic specific intensity of a radiation field under thermal equilib-
rium conditions was defined. We now want to enter a discussion of radiation transport under
more general conditions, situations for which the conditions of homogeneity or isotropy for
example do not hold. For this case the definition of specific intensity need to be generalized
slightly. We thus define the monochromatic specific intensity of radiation Iν in terms of the
amount of energy d6Pν transported by the radiation field through the surface element d2A at
r, within the solid angle element d2Ω centered on the direction ŝ and in the angular frequency
interval dν during the time interval dt,

d6Pν ≡ Iν(r, ŝ, ν) d2A · ŝ dt d2Ωdν. (9.1)

The geometry is indicated in figure 9.1. The intensity now depends on location, direction,
frequency and generally also time. When the specific intensity is independent of the direction
ŝ, the radiation field is said to be isotropic. If the intensity is independent of position r the
radiation field is homogeneous.

Figure 9.1: Geometry for specific intensity

From the specific intensity several useful quantities may be derived. The monochromatic

233
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mean intensity is defined as the intensity averaged over all directions,

Jν ≡
1

4π

∫
Iν d2Ω =

1

4π

∫ 2π

0

∫ 1

−1
Iν dcos θ dϕ. (9.2)

For an isotropic radiation field we have Jν = Iν .
The monochromatic net energy flux Fν is defined as

Fν(r, n̂) ≡
∫
Iν cos θ d2Ω =

∫ 2π

0

∫ 1

−1
Iν cos θ dcos θ dϕ. (9.3)

Fν(r, n̂) represents the net flow of energy per unit frequency interval and per unit time
through a unit area with normal n̂ located at r. Flow of energy in direction n̂ contributes
positively, flow of energy in the opposite direction contributes negatively. It is often convenient
to write the net flow of energy as the difference between the unidirectional energy flux in each
direction

Fν = F+
ν −F−

ν =

∫ 2π

0

∫ 1

0
Iν cos θ dcos θ dϕ+

∫ 2π

0

∫ 0

−1
Iν cos θ dcos θ dϕ. (9.4)

For an isotropic radiation field we have F+
ν = F−

ν = πIν and therefore Fν = 0.
The monochromatic radiative energy density uν is given by

uν =
1

c

∫
Iν d2Ω. (9.5)

This result is valid i vacuum where each photon is traveling with the speed of light. Finally,
again for the radiation field in vacuum, the monochromatic radiation pressure Pν is given by

Pν =
1

c

∫
Iν cos2 θ d2Ω. (9.6)

Radiation pressure is completely analogous to gas pressure. If the radiation field is isotropic,
the radiation pressure is a scalar. In the presence of a gradient in the radiation pressure, the
radiation pressure will exert a net force on any material present.

The intensity as defined through (9.1) represents the monochromatic intensity, that is the
intensity per unit frequency. By integrating over all frequencies the total intensity results,

I ≡
∫ ∞

0
Iν dν.

The total version of all the derived quantities discussed above are defined correspondingly.

9.2 Transport of radiation

As we have seen, from the knowledge of the specific intensity Iν most quantities of interest
for the radiation field may be calculated. Our next task will be to determine how the specific
intensity varies with location. To understand the variations in the radiation field we need
to take into account different effects. In a material medium the radiation will interact with
individual atoms or molecules. The medium may act as an additional source of radiation
energy. The medium may also act as a sink of radiation energy. The medium may act to
scatter the radiation energy from one direction of travel into another direction. But the
medium may also induce refractive effects on the radiation. We shall start by considering two
simple examples.
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9.2.1 Radiation from an extended source in vacuum

Let us consider the simple case of the radiation field in vacuum from an extended source, a
star with a projected area A as indicated in figure (9.2). We assume that at a distance r1 the
radiation from the star through a unit area fills the solid angle ∆Ω1 = A/r21 uniformly. The
energy flux through the unit area is given by

Fν(r1) = Iν(r1)∆Ω1,

where Iν(r1) is the intensity at radius r1. The total monochromatic energy flux through a
spherical shell of radius r1 is therefore 4πr21Fν(r1) = 4πAIν(r1). The corresponding flux
through a spherical shell of radius r2 where the intensity is Iν(r2) is given by 4πr22Fν(r2) =
4πAIν(r2). If no energy is created or lost between radii r1 and r2, these quantities must be
equal. But this means that we have arrived at the conclusion that intensity is independent of
the distance from the star,

Iν(r2) = Iν(r1). (9.7)

At first sight this result may come as a surprise: the specific intensity of radiation from the
Sun is the same at the distance of Pluto as it is at the Earth!

Figure 9.2: Intensity along rays

The result (9.7) was derived for electromagnetic radiation propagating in vacuum and for
which the simple dispersion relation ω = ck holds, that is, the refractive index

N ≡ ck

ω
= 1. (9.8)

In the next example we investigate how the simple result (9.7) must be generalized for a
radiation field passing through a material medium taking refractive effects into account.

9.2.2 Refractive index for non-magnetized ionized media

The common astrophysical medium is an ionized gas, or plasma, with free electron density
ne(r). The electric field E of an electromagnetic wave will set the free electrons into an
oscillating motion and thus also generate an electric current density j. This induced current
density will in turn act back and modify the incident wave. For a quantitative analysis of this
effect let us assume the electromagnetic wave to be harmonically varying in space and time
with angular frequency and wave vector ω and k,

E = E0 exp(ιk · r − ιωt).
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This electric field will give rise to an oscillating velocity v of an electron at r given by

−ιωmv = −eE.

Here we neglected the effect of the small additional Lorentz force due to the magnetic field
associated with the wave. We also assumed the amplitude of the oscillating electron motion
to be small compared with the wavelength of the incident wave. With n electrons per unit
volume participating in this oscillatory motion, an electric conduction current density

j = −env = ι
nee

2

mω

is generated. There will also be a contribution to the current density from ions, this con-
tribution is for our applications small due to the much larger ion mass. Substituting this
current density into the Maxwell equations (2.1)-(2.4) and making use of the rule (2.29),
these equations take the form

k ·E = k ·B = 0,

k ×E = ωB

ιk ×B = µ0(j − ιωε0E) = −ι ω
c2

(
1−

ω2
p

ω2

)
E.

Here we introduced the angular plasma frequency ωp defined by

ω2
p ≡

nee
2

mε0
. (9.9)

For a non-trivial solution of these equations the wave number k must be related to the
angular frequency ω by the dispersion relation

k2 =
ω2

c2

(
1−

ω2
p

ω2

)
. (9.10)

The refractive index N for the ionized gas is therefore given by

N 2 =
c2k2

ω2
= 1−

ω2
p

ω2
. (9.11)

The result is plotted in figure 9.3a. The refractive index is less than unity and real for ω > ωp.
For ω < ωp the refractive index takes imaginary values. This means that electromagnetic
waves may only propagate in the plasma at frequencies exceeding the plasma frequency. The
phase velocity vp = ω/k of the wave always exceeds the velocity of light in vacuum. The group
velocity vg = ∂ω/∂k is, however, less than c and tends to zero as the frequency approaches
the plasma frequency.

Consider now a plane-stratified ionized medium for which the electron density decreases
with increasing z as illustrated in figure 9.3b. Let a ray of electromagnetic radiation fill
the small solid angle element ∆Ω1 = πθ2

1 centered on the positive z-axis at level z1 where
the refractive index is N1. As the ray propagates to level z2 where the refractive index has
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Figure 9.3: Refractive index of the non-magnetized ionized gas

changed to the value N2, the ray will be subject to Snell’s law, requiring that the relation
N1 sin θ1 = N2 sin θ2 is satisfied. For small θ this can be approximated by

N1 θ1 = N2 θ2. (9.12)

This means that off-vertical rays will be slightly refracted as illustrated in figure 9.3c. The
refractional effect is important when the wave frequency is comparable to the plasma fre-
quency.

If the wave propagates without energy loss or gain, then Iν(z1)∆Ω1 = Iν(z2)∆Ω2. But
from (9.12) it then also follows that

Iν(z1)
N 2(z1)

=
Iν(z2)
N 2(z2)

,

that is, the intensity of the beam and the refractive index of the medium are related to each
other in a simple fashion. Formulated in an alternative way, the refractive index modulates
the intensity in the beam. In the next section we will show that this simple result has a more
general validity.

Refraction is but one of many effects that will determine the propagation of radiation
fields in the presence of matter. The induced acceleration of free electrons by the electric
field of the waves will also lead to generation of radiation traveling in different directions
(Thompson scattering). Photons may suffer collisions with electrons and be deflected with
a corresponding change in energy (Compton scattering). More importantly, photons may
be absorbed by atoms or molecules, the excess energy later to be re-emitted in arbitrary
direction and possibly at different frequency in a spontaneous emission transition or as a copy
of a triggering photon in a stimulated emission process. A study of radiative transport aims
at explaining and predicting the cumulative effect of all these different processes.

Quiz 9.1 : Comment on the claim: “The specific intensity resulting from a radiating
point source is singular”.

Quiz 9.2 : Two identical photometers are placed at the distances of the Earth and Pluto.
Will they measure the identical intensity of radiation from the Sun? Discuss.

Quiz 9.3 : The frequency spectrum of the radiation from stars consists of a continuous
part corresponding to the effective radiation from a black body at a certain temper-
ature, but superimposed a large number of emission or absorption lines. Going from
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longer to shorter wavelengths, the continuous spectra typically reveal a significant
step-like reduction at about λ3650. This drop in the continuous spectrum is referred
to as the Balmer jump. Explain.

It is claimed that the size of this jump may be used to infer the temperature of the
stellar atmosphere. Comment.

[Hint: What is the minimum photon energy needed in order to ionize HI, starting
from the n = 2 energy level.]

Quiz 9.4 : Calculate the group velocity vg resulting from the dispersion relation (9.10)
and show that vpvg = c2 for electromagnetic waves propagating in an ionized non-
magnetized gas.

9.3 The Ray Equations

We now turn to the more quantitative discussion of refractive effects for the transport of
radiation in media, for the time being neglecting absorption and emission processes. We
limit our discussion to radiation transport in a time stationary medium. The medium will be
allowed to be inhomogeneous, but the length scales for spatial variations in the medium will
be assumed to be long compared to the wave lengths of interest.

Electromagnetic waves in such a medium are governed by a local dispersion relation

ω = ω(k, r). (9.13)

As the wave propagates through the medium, the frequency of the wave remains constant,
while the wave vector k changes with position r. The corresponding changes in wave vector
and position are found by forming the total time derivative of the dispersion relation (9.13)

0 =
dω

dt
=
∂ω

∂k

dk

dt
+
∂ω

∂r

dr

dt
,

that is,

dr

dt
=
∂ω

∂k
(9.14)

dk

dt
= −∂ω

∂r
. (9.15)

We must here interpret r and k as the instantaneous central location and wave vector of a
propagating wave packet. In particular, we have identified the propagation velocity of the
wave packet with the group velocity vg = ∂ω/∂k, that is, the velocity at which energy is
transported in the wave. The result (9.14)-(9.15) is referred to as the ray equations and forms
the basis of geometric optics.

A remarkable property of the ray equations (9.14)-(9.15) is that they represent an in-
compressible flow in the six dimensional (r,k)-space. That is, the divergence of the six
dimensional velocity (dr/dt,dk/dt) = (∂ω/∂k,−∂ω/∂r) vanishes identically,

∂

∂r
· dr

dt
+

∂

∂k
· dk

dt
= 0. (9.16)
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Figure 9.4: Incompressible flow through the ray equations

Physically, this result means that any 6-dimensional volume element dr dk in (r,k)-space
remains constant as transformed by the ray equations. Mathematically this may be reformu-
lated in the following way: any infinitesimal six dimensional volume element d3r d3k centered
at (r,k) at time t transforms into the volume element d3r′ d3k′ centered at (r′,k′) at time t′

and such that

d3r′ d3k′ ≡ J d3r d3k = d3r d3k (9.17)

since the Jacobian

J ≡ ∂(r′,k′)

∂(r,k)
= 1, (9.18)

due to the property (9.16) (see quiz 9.5). This incompressibility property is illustrated
schematically in figure 9.4.

To study one effect induced through the constraint given by the ray equations, let us
assume that the medium is isotropic, that is, the dispersion relation (9.13) is independent of
the direction of the wave vector k, ω = ω(k). With this assumption the group velocity vg is
parallel with k.

The energy carried by waves that passes through an arbitrary surface element d2A at
position r with k-vectors in

d3k = k2dk d2Ωk =
ω2

c2
N 2 ∂k

∂ω
dω d2Ωk (9.19)

and within a fixed time interval dt will be located within the volume element

d3r = d2A · vgdt. (9.20)

Here the solid angle element d2Ωk is centered on k, which under the assumption of isotropy
is also the local direction ŝ of the ray. According to (9.17) this means that

d3r d3k =
ω2

c2
N 2(r, ω) d2A · ŝ dt dω d2Ωk = constant along the ray. (9.21)

For this result we noted that vg ∂k/∂ω = ŝ.

The amount of energy d6Pν that is transported by the radiation field along a ray in
direction ŝ through the given surface element d2A at position r, within the solid angle element
d2Ωk centered on ŝ, in the frequency interval dν centered at ν during the time interval dt,
was defined by (9.1). If the radiation travels unscattered and without energy gain or loss
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through the background medium, then d6Pν must remain constant as transformed along the
ray, that is,

d6Pν ≡ Iν(r, ŝ, ν) d2A · ŝ dt dν d2Ω = constant along the ray. (9.22)

If we now compare (9.21) and (9.22) it then follows that also the ratio

Iν
N 2

= constant along the ray. (9.23)

Astrophysical plasmas are usually permeated by static magnetic fields. Under such condi-
tions the assumption of isotropy may not be valid, the direction of energy transport as given
by the group velocity vg is not generally parallel with the wave vector k. For such conditions
the above analysis will have to be slightly generalized. The net result is that the refractive
index N in (9.23) must be replaced with the somewhat more complex expression for the ray
refractive index Nr. We shall not need this generalization for the following discussion.

In dilute media like stellar atmospheres and at high enough frequencies the refractive
index N is close to unity. The factor N 2 in (9.23) is therefore often omitted in the literature.
This omission is equivalent to an expectation that each ray travels along straight lines.

Quiz 9.5 : For t′ = t + dt, where dt is infinitesimal, the solution of the ray equations
(9.14)-(9.15) can be written

r′ = r +
∂ω

∂k
dt

k′ = k − ∂ω

∂r
dt.

Show that J = 1 +O((dt)2) and therefore that (9.18) is satisfied.

9.4 The Radiative Transport Equation

In the previous section we argued that in a time stationary and ideal refractive medium the
quantity I/N 2 will remain constant as transported along the ray. In mathematical terms this
result is most conveniently formulated in the form of the differential equation

ŝ · ∇
( Iν
N 2

)
≡ d

ds

( Iν
N 2

)
= 0. (9.24)

Here ŝ is a unit vector that varies along the ray according to the requirements of (9.14) and
s is to be interpreted as measuring the arc length along the ray.

Several effects, however, enter to modify our idealized result. Due to the interaction with
the medium through which the radiation travels, energy may be scattered out of the ray,
energy may be absorbed by the medium, or the medium may have the ability to emit or
redirect energy into the ray. By introducing proper medium dependent coefficients these
effects may be included into the idealized result. Thus, we let the monochromatic emissivity
jν represent the local contribution to the specific intensity Iν in the form of photons that are
added to the beam per unit arc element along the ray.
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Likewise, it is reasonable to assume that the amount of energy that is scattered out the
beam or absorbed by the medium per unit arc element along the ray must be proportional
to the energy available in the beam, that is, in the form −ανIν . The coefficient αν is the
monochromatic linear extinction coefficient . This coefficient is sometimes written in alterna-
tive forms, for instance

αν ≡ κνρm (9.25)

where ρm is the mass density of the medium. The coefficient κν is the opacity or monochro-
matic mass extinction coefficient of the medium.

With these two contributions added, the resulting radiative transport equation now reads

N 2 d

ds

( Iν
N 2

)
= jν − ανIν . (9.26)

Below we will return to giving these coefficients physical content based on our discussion in
the previous chapters. First, we shall assume these coefficients to be known in order to make
some acquaintance with the general properties of the equation.

Figure 9.5: Geometric and optical path lengths along ray

For convenience we define two important quantities. The monochromatic source function

Sν ≡
1

N 2

jν
αν

(9.27)

will play an important role in the analysis of the emission from the medium. The other
quantity is the differential monochromatic optical path length dτν related to the differential
arc length ds by

dτν ≡ αν(s) ds. (9.28)

After traversing an arc length s along the ray, the corresponding increase in monochromatic
optical path length

τν(s) ≡
∫ s

0
αν(s

′) ds′, (9.29)

is a measure of the total extinction suffered by the beam along that ray segment. The optical
path length τν(s) represents an alternative way of measuring lengths s in the medium. The
geometry is illustrated in figure 9.5. As is evident from the definition (9.28), the optical
path length are increasing following the direction of the beam through the medium. In terms
of source function and optical path length the radiative transport equation (9.26) takes the
formally simple form

d

dτν

( Iν
N 2

)
= Sν −

Iν
N 2

. (9.30)
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In a case of pure extinction (jν = 0), the source function Sν vanishes and (9.30) has the
solution Iν

N 2
(τν(s)) =

Iν
N 2

(0) exp(−τν(s)). (9.31)

Thus τν(s) is the exponential decay parameter which determines how much intensity is left in
the beam after traversing a distance s in the medium. The medium traversed will be called
optically thick if τν(s) > 1 and optically thin if τν(s) < 1.

The above result allows for an alternative physical interpretation of the extinction coeffi-
cient αν . According to (9.31), the probability that an incident photon will survive an optical
path length τν before being removed from the beam is proportional to exp(−τν). The mean
free optical path length for the photon is therefore

〈 τν 〉 ≡
∫∞
0 τν exp(−τν) dτν∫∞

0 exp(−τν) dτν
= 1.

The corresponding mean free path length is

lν =
〈 τν 〉
αν

=
1

αν
.

The inverse linear extinction coefficient αν thus represents the average distance a photon
with the specified frequency will survive in the medium before it suffers a destruction or
modification process.

In the presence of emission activities in the medium we shall need the general solution of
(9.30)

Iν
N 2

(τν) =
Iν
N 2

(0) exp(−τν) +

∫ τν

0
Sν(tν) exp(−τν + tν) dtν . (9.32)

Substitution of (9.32) into (9.30) will indeed show that this is the proper general solution – it
contains a general solution of the corresponding homogeneous differential equation plus one
particular integral as required by general solutions of first order differential equations.

The simplest possible application of the general solution (9.32) is represented by a homo-
geneous medium in which N 2, jν and αν are all constants. In this case the beam will suffer no
refraction. This means that the rays are straight and τν(s) = αν s. For frequencies well above
characteristic frequencies of the medium, such as the plasma or electron gyro frequencies,
the refractive index is also close to unity and may therefore be discarded. The solution then
reduces to the simple form

Iν(τν) = Iν(0) exp(−τν) + Sν (1− exp(−τν)) . (9.33)

Solutions for different values of Iν(0) compared to Sν are illustrated in figure 9.6. For an
initial intensity Iν(0) less than the source function Sν the intensity will increase along the ray,
and vice versa. After passing an optically thin medium, τν � 1, the incident intensity still
shines through. The medium is not able to modify the incident radiation significantly. In the
opposite limit, after traversing an optically thick medium, τν � 1, the resulting intensity only
depends on the source function of the medium. The incident intensity is completely extinct,
being scattered out of the beam or absorbed by the medium.

At this point some general comments on the radiative transport equation and its prop-
erties will be appropriate. In our discussion of radiation processes up to this point we have



9.5. EMISSIVITY AND EXTINCTION COEFFICIENT 243

Figure 9.6: Solution of the radiative transport equation for homogeneous media

been dealing with microscopic descriptions. We have been discussing properties relating to
individual charged particles, atoms or molecules. The radiative transport equation in contrast
deals with macroscopic properties of the radiation field, it is the collective result of many indi-
vidual microscopic processes that is at focus. Up to this point our discussion has been based
on physical models derived from first principles. Apart for the refractive part, the radiative
transport equation was argued for in an ad hoc manner. The different microscopic processes
contributing are bundled together through the emissivity jν and the extinction coefficients
αν . Only to the extent that the microscopic processes can be given an adequate description
through these coefficients, will we expect the radiative transport equation to be useful. A
full discussion of all of these aspects falls well outside our present scope. We shall be content
with a simplified discussion of some selected aspects. Still, useful physical insights are to be
expected.

9.5 Emissivity and Extinction Coefficient

Thermal equilibrium conditions, implying requirements of homogeneity, isotropy and station-
arity, are not strictly met with in astrophysics. Even so, thermal equilibrium requirements
often form a useful reference basis. Let us therefore first discuss implications of thermal
equilibrium requirements for the emissivity and the extinction coefficient.

9.5.1 Radiation and Matter in Thermal Equilibrium

In chapter 7 the properties of a photon gas in thermal equilibrium (TE) at a given temperature
T = κT was studied. It was shown in (7.117) that the spectral intensity Iν of the radiation
field for this case is given by Planck’s radiation function Bν ,

Iν = Bν(T ) ≡ 2h

c2
ν3

exp(hνT )− 1
. (9.34)
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In a medium with refractive index N we should here replace Iν with Iν/N 2 in (9.34).
Under TE conditions the specific intensity for any given frequency only depends on the

temperature and for instance not on position. The radiative transfer equation (9.26) for this
case reduces to

N 2 d

ds

( Iν
N 2

)
= jν − ανIν = 0,

or
Ite

ν

N 2
=

jte

ν

N 2αte

ν

≡ Ste

ν = Bν(T ).

For TE conditions there must thus exist a simple functional relationship between the emis-
sivity jν and the extinction coefficient αν ,

jte

ν = N 2αte

ν Bν(T ), (9.35)

valid for all frequencies ν, be it at the center of a line or in the continuous part of the spectrum.

9.5.2 Local Thermal Equilibrium (LTE)

For TE it is required that matter and radiation field are at mutual equilibrium under one con-
stant temperature. A necessary consequence is that the radiation field can not be responsible
for any net energy transport in the medium. For an astrophysical setting this is an unac-
ceptable constraint. A less strict requirement is to assume that matter through the action of
collisions is maintained at equilibrium conditions corresponding to a local, but slowly varying
temperature T (r). This assumption will be referred to as local thermal equilibrium (LTE)
and implies that the Maxwell, Boltzmann and Saha distributions (7.34), (7.21) and (7.89),
evaluated at the local kinetic temperature, are still assumed to be good approximations to
velocity, excitation and ionization distributions in the medium. It seems natural that for
this assumption to be valid the mean free collision lengths for particles in the medium must
be short compared to the typical scale lengths for temperature variations. This means that
individual electrons, ions and atoms through the action of mutual collisions remain spatially
localized and thus may also be allowed to establish equilibrium distributions corresponding
to the local temperature.

The radiative energy distribution under LTE is, however, allowed to deviate from TE
conditions. Even with mean free paths short compared with typical scale lengths of the
medium, the specific intensity may thus deviate significantly from isotropy. This will allow
for net radiative energy flux in stellar interiors. Near the stellar surface the deviations from
isotropy will be more severe, the specific intensity taking a near hemi-spherical form with
essential negligible intensity directed back into the star. In these regions the LTE assumption
may at best be questionable. This leads to the need to look for non-LTE solutions where
the state of matter and radiation must be solved for in a mutually consistent manner. A
discussion of these topics is clearly outside our present scope.

With this introductory remarks let us then approach the question of giving physical con-
tent to the emissivity and extinction coefficient.

9.5.3 Contributions to Emissivity and Extinction Coefficient

The contributions from microscopic effect to the extinction coefficient may conveniently be
divided into two different types, contributions of destructive type and contributions of scat-
tering type. For the first type photons are removed from the beam by being absorbed by
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atoms, in the latter type individual photons are lost from the beam by being scattered out
of it. The two types of contributions will be denoted with superscripts a and s respectively,
αν = αaν +αsν . The similar division will be made for the emissivity, jν = jaν + jsν . In figure 9.7
the individual processes contributing to αaν , α

s
ν , j

a
ν and jsν are illustrated schematically.

Figure 9.7: Contributors to a- and s-processes

In section 4.9 transition rates for microscopic radiative absorption and emission processes
between a radiation field and a single atom was derived. The absorption and stimulated
transition rates, (4.80) and (4.81), both depend on the specific intensity of the radiation field.
The form of the loss term in the radiative transport equation ανIν , is therefore well suited
to incorporate the combined effect of these two processes. What is needed is to multiply
the expressions for the individual transition rates with the number of atoms per unit volume
available in the relevant atomic states, the number of atoms in the lower energy state nl for
the absorption process, the number of atoms in the upper energy state nu for the stimulated
emission process. In the LTE approximation these quantities are determined through the
Boltzmann distribution (7.21). The expressions for the transition rates (4.80) and (4.81)
both refer to the total transition rate within a given spectral line. To incorporate also the
different line broadening effects (natural, Doppler, Stark, pressure) it is also necessary to
include an additional line profile factor ψ(ν − ν0) where ν0 indicates the line center. The line
profile factor will be normalized,

∫
ψ(ν − ν0) dν = 1. The contribution to the loss term in

(9.30) from a given bound-bound transition is thus

αaνIν = (nl w
abs
ul − nuwst.e

lu )ψ(ν − ν0) = nl w
abs
ul ψ(ν − ν0) (1− exp(−hν/T )).

The corresponding spontaneous emission rate (4.86) similarly contributes to the emissivity
term,

jaν = hν nuw
sp.e
lu ψ(ν − ν0)

1

4π
.

Here the factor hν is the energy supplied to the radiation field from each spontaneous tran-
sition. The last factor 4π is necessary to get the emissivity per unit solid angle. In these
expressions the line profile factor was assumed to be identical for all three contributions to
αaν and jnu

a. This is referred to as the complete redistribution assumption.

The bound-bound transitions contribute to a more or less narrow spectral line features.
Radiative bound-free transitions represent another type of contribution to the emissivity and
extinction coefficient. These processes include photo-ionization and photo-recombination, the
former being a process where a photon removes an electron in a certain energy state from the
atom. These processes have a frequency dependence distinctly different from bound-bound
processes. For the ionization a minimum threshold frequency is required. There is, however,
no upper limit for the photon frequency, excess energy will appear as kinetic energy for the
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ejected electron. Typically it is found that the transition rate for bound-free transitions
decreases as ν−3 for frequencies abovethe threshold value. A large number of such bound-free
transitions will contribute to the continuous emissivity and extinction coefficient in stellar
atmospheres. For contribution from H I we thus talk about the Lyman jump, the Balmer
jump and so on, depending on from what energy level the ionization takes place. Bound-free
transitions in the negative hydrogen ion H− are a significant contributor to the continuous
extinction coefficients in the visual and infrared spectral ranges in stellar atmospheres with
negligible hydrogen ionization.

For the processes discussed above the contributions to the extinction coefficient and emis-
sivity are intimately related to the properties of matter through the distributions of velocities,
excitation and ionization. In the LTE approximation we therefore expect the corresponding
source function to be well approximated by the local Planck function,

Saν =
jaν
N 2αaν

≈ Bν(T (r)). (9.36)

This will not be so for scattering contributions.

One of the most important scattering processes and the only one to be mentioned here is
Thompson scattering. This is a free-free radiative process in which electrons are accelerated
by the electric fields of the incident radiation. The accelerated electrons subsequently act as
sources of radiation in accordance with the discussion of chapter 3, drawing energy from the
incident radiation field. The contribution from Thompson scattering to the extinction coeffi-
cient is independent of frequency and will be the dominating source of continuous extinction
in the atmospheres of hot stars where hydrogen is ionized.

A photon that is scattered out of a given beam is not lost. It will reappear, if we disregard
Doppler effects, with the same frequency but now traveling in a different direction. And
photons scattered out of other beams may be redirected into the beam considered. The
photon supply available for the scattering emissivity is the local mean intensity Jν . We thus
expect a relation between the scattering parts of the emissivity and extinction coefficient of
the form

jsν = N 2αsνJν . (9.37)

With these approximations the combined source function can now be written in the form

Sν =
jaν + jsν

N 2(αaν + αsν)
= (1− εν)Jν + ενBν , (9.38)

where we introduced the photon destruction probability per extinction

εν ≡
αaν

αaν + αsν
. (9.39)

We notice that εν will take values in the range (0, 1). The presence of the scattering contri-
bution in (9.38) makes an explicit solution of the radiative transport equation (9.30) more
complicated since the source function is now a functional of the specific intensity Iν itself. We
shall not enter into any discussion of this effect except for noting that simplifications should
result if the destructive processes dominate, εν ≈ 1, or the mean intensity is maintained close
to the Planck function, Jν ≈ Bν .

With this introduction to the connections between microscopic processes and the emissiv-
ity and extinction coefficients in mind, let us again return to study additional consequences
of the radiative transport equation (9.30).
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9.6 Plane-parallel Medium

In realistic situations the assumption of a homogeneous medium must often be abandoned.
It is therefore useful next to consider an inhomogeneous, but plane-parallel medium, where
N 2, jν and αν are only allowed to vary in one direction, the z-direction. This model will
be relevant for radiative transport in stars and stellar atmospheres given that the linear
extinction coefficient is large enough that optical thickness is acquired over distances much
shorter than stellar dimensions. For this model it is customary to perform the analysis in
terms of the monochromatic radial optical depth τ ′ν(z) as measured from the observer (located
outside the medium) and backward along an emergent ray directed along the z-axis, instead
of the corresponding optical thickness τν(z) defined in (9.29). For simplicity we assume the
refractive index to be unity and therefore also that ray paths are straight lines. The geometry
is illustrated in figure 9.8. The radial optical depth at a certain level z in the medium is
defined as

τ ′ν(z) ≡ −
∫ z

∞
αν(z

′) dz′ =

∫ ∞

z
αν(z

′) dz′.

The optical depth is generally defined analogous to optical path length, except that it is
counted positive from the observer and backward along a given ray. The radial optical depth
is related to the monochromatic optical depth τ ′νµ(z) for an oblique ray, propagating at an
angle θ with the z-axis. Due to the longer path length in the medium the optical depth at
level z for the oblique ray is given by

τ ′νµ(z) = τν(z)/µ (9.40)

where µ = cos θ.

Figure 9.8: Geometry for straight rays in plane-parallel medium

For the following discussion we shall make a number of simplifying assumptions. We
have already assumed that the refractive index is close to unity and therefore that each
individual ray travel along straight lines. We further assume that the intensity distribution is
independent of the azimuthal angle ϕ, that is, the radiation field will be assumed to exhibit
axisymmetry around the z-axis. The source function at a given z will formally be considered
a function of z through the radial optical depth τ ′ν(z). We shall furthermore find it useful to
distinguish the spectral intensity for rays propagating with a component of the wave vector
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along the positive z-axis from that of rays propagating with a component of the wave vector
along the negative z-axis,

Iν(τ ′ν(z), µ) =

{
I+
ν (τ ′ν(z), µ) for µ > 0
I−ν (τ ′ν(z), µ) for µ < 0.

As boundary conditions we assume that I−ν (τ ′ν = 0, µ) = 0 and that I+
ν (t, µ) exp(−(t −

τ ′ν(z))/µ)→ 0 as t→∞. The boundary conditions imply that there is no radiation falling on
the medium from the outside along the negative z-axis, while the medium is optically thick
enough that no radiation is “shining through” in the positive z-direction.

With these assumptions the formal solution (9.32) reduces to

I+
ν (τ ′ν(z), µ) =

∫ ∞

τ ′ν(z)
Sν(t

′) exp(− t
′ − τ ′ν
µ

)
dt′

µ
for µ > 0 (9.41)

I−ν (τ ′ν(z), µ) =

∫ τ ′ν(z)

0
Sν(t

′) exp(− t
′ − τ ′ν
µ

)
dt′

|µ | for µ < 0. (9.42)

The plane-parallel medium solutions (9.41) and (9.42) are only formal solutions. There is still
an integration over the source function to be performed.

9.6.1 Interior approximation

Deep inside the plane-parallel medium the mean free path lengths of photons are expected to
be short compared to the typical scale lengths for variations in the source function. In this
case the source function in the remaining integral may be expanded in a Taylor series

Sν(t
′) = Sν(τ

′
ν(z)) + (t′ − τ ′ν(z))

dSν(τ
′
ν(z))

dτ ′ν
+ · · · .

In the deep interior the short mean free collision lengths will maintain LTE conditions. The
source function is therefore expected to be well represented with the Planck function, Sν = Bν .
The integrals may now be performed with the result

Iν(τ ′ν(z), µ) = Bν(τ
′
ν(z)) + µ

dBν(τ
′
ν(z))

dτ ′ν
+ · · · (9.43)

valid for all directions −1 ≤ µ ≤ 1. The corresponding mean intensity and net radiative
energy flux are

Jν(τ ′ν(z)) = Bν(τ
′
ν(z)) (9.44)

Fν(τ ′ν(z)) =
4π

3

dBν(τ
′
ν(z))

dτ ′ν
. (9.45)

The total net radiative energy flux, found by integrating over all frequencies, is conveniently
written in terms of the Rosseland mean extinction coefficient αR. For this we note that

F(z) ≡
∫ ∞

0
Fν(z) dν

≈ −4π

3

∫ ∞

0

1

αν

dBν
dT

dT

dz
dν

= −16σT 3

3αR

dT

dz
, (9.46)



9.6. PLANE-PARALLEL MEDIUM 249

where we defined

1

αR
≡

∫ ∞

0

1

αν

dBν
dT

dν
∫ ∞

0

dBν
dT

dν

. (9.47)

We see that the inverse Rosseland mean extinction coefficient is the frequency average of the
inverse extinction coefficient with the normalized dBν/dT as weighting function. The inverse
weighting means that spectral intervals with small extinction play important roles in the total
energy transport in the medium, acting as efficient radiation energy drainage channels. The
result (9.46) takes the form of a “heat conduction” equation with a temperature dependent
“heat conduction coefficient”. The result is important in that it demonstrates the importance
of small deviations from isotropy of the radiation field for the energy transport from the energy
producing star interiors to their surface layers from where radiation may escape into space.

9.6.2 Surface approximation

Near the surface of the plane-parallel medium a similar power series expansion of the source
function is convenient (Taylor series around τ ′ν = 0),

Sν(τ
′
ν) = a0 + a1τ

′
ν + a2τ

′ 2
ν + · · · . (9.48)

For an observer located at τ ′ν = 0, the emerging specific intensity is then

I+
ν (τ ′ν = 0, µ) = a0 + a1µ+ 2a2µ

2 + · · · ≈ Sν(τ ′ν = µ). (9.49)

The latter approximation is known as the Eddington-Barbier approximation . The approxi-
mation is exact if Sν(τ

′
ν) varies linearly with τ ′ν . According to this approximation the observed

intensity in the direction µ equals the source function of the medium at a radial optical depth
equal to τ ′ν = µ.

The corresponding mean intensity and unidirectional radiative energy flux are

Jν(τ ′ν = 0) =
1

2
(a0 +

1

2
a1 + · · · ) ≈ 1

2
Sν(τ

′
ν =

1

2
) (9.50)

F+
ν (τ ′ν = 0) = π(a0 +

2

3
a1 + · · · ) ≈ πSν(τ ′ν =

2

3
). (9.51)

The result (9.49) has a natural physical interpretation. At a radial optical depth τ ′ν = 1
the mean free optical length is equal to the remaining optical distance out of the plane-
parallel medium for a radially directed photon. Thus a photon traveling radially outward at
this depth has a high probability of escaping the medium. For obliquely traveling photons
the corresponding optical depth is τ ′νµ = µ−1.

Quiz 9.6 : Verify (9.46), in particular, show that

∫ ∞

0

dBν
dT

dν =
8π4κ4T 3

15c2h3
=

4

π
σT 3.
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Quiz 9.7 : To realize the importance of the inverse weighting procedure in the definition
of the Rosseland mean extinction coefficient (9.47), we consider the simplified model
where dBν/dT is constant over a finite frequency range (and vanishes outside). Let
αν = 1 over 90 % of this frequency range and αν = .1 over the remaining range.
What is the value of αR? Discuss.

Quiz 9.8 : Verify (9.50) and (9.51).

9.7 Line Formation for Optically Thick Medium

In our discussion so far we have considered a monochromatic case. Let us now discuss the
formation of spectral lines as a function of frequency in an optically thick, plane-parallel
medium. We assume the extinction coefficient αν , plotted in the upper left part of figure
9.9, to be a slowly varying function of frequency as a result of continuous processes in the
medium, but superimposed a narrow structure due to one bound-bound transition. The value
near the line centre α`ν may easily exceed the corresponding continuum value αcν by a factor
10-1000. In addition, αν may be a rapidly varying function of altitude. For simplicity we
will, however, here assume that the extinction coefficient does not vary with position in the
medium. With this assumption the radial optical depth τ ′ν(z) as a function of position z will
be a straight line for each given frequency, but different lines for different frequencies. In the
upper right part of figure 9.9 the results for two particular frequencies, one at the center of
the line ν0, and one just to the right of the line ν1 is given. In the lower right part of figure
9.9 the source function Sν(z) as a function of position is given. For simplicity we assume that
the source function is independent of frequency, at least within the small frequency interval of
interest. We have furthermore assumed the source function Sν(T (z)) to be increasing linearly
with depth (−z) in the medium. This means that the Eddington-Barbier approximation is
exact for the case considered. The particular shape of the source function is the result of an
increasing temperature profile with depth in the medium as illustrated by the dash-dotted
curve in the the lower right panel.

In the lower left part of figure 9.9 the resulting spectral intensities of the radiation from the
medium for normal (µ = 1, full line) and oblique propagation (µ = .5, dashed line) are given.
The derivation is illustrated graphically in the figure for two particular frequencies, ν0 and ν1,
and for the case of normal propagation. For a given frequency ν the value of αν determines
the proper radial optical depth curve τ ′(z). The position z where this curve takes the unity
value will determine the relevant value of the source function Sν(z) to be substituted in the
Eddington-Barbier approximation (9.49) to give the resulting intensity I+

ν (ν) = Sν(z). The
same construction applies for the oblique case, the only difference is that the relevant position
z for the source function is where the radial optical depth curve takes the value µ = cos θ.
The result for µ = .5 is dotted in the figure.

The situation depicted in figure 9.9 represents a rather idealized case, yet it illustrates
some general properties of the line formation process. We notice for instance that the wings
and the core of the line are formed at different depths in the atmosphere, the core at the higher
altitude. This property remains valid even if a z-dependence of αν is taken into account, and
therefore that the straight lines of the upper right panel are replaced by slightly curved lines.

In the example considered in figure 9.9 the result is an absorption line spectrum. The ab-
sorption character is produced by the particular form of the source function chosen, the source
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Figure 9.9: Line formation in optically thick, plane-parallel medium

function increasing with increasing depth in the medium. For a case where this function de-
creases with depth, an emission line spectrum would result. With a temperature minimum in
the line forming altitude range, as is the case near the photosphere-chromosphere interphase,
a line profile with depressed shoulders but enhanced central core can be expected – at least
as long as the source function Sν can be approximated by the Planck radiation function Bν .
With increasing altitude in the stellar atmosphere this assumption may not hold.

Quiz 9.9 : The intensity of the Sun in the visible spectral region decreases from the
middle of the solar disk to the limb. What does this tell us about the variation in
the source function with height in the solar atmosphere?
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Chapter 10

Dimensional analysis

The principle of relativity requires the laws of physics to be form invariant (that is, to take
the same appearance) whatever the choice of reference (or inertial) system. This requirement
must be satisfied whether we are dealing with Galilean relativity or the special or general
relativity according to Einstein.

Dimensional analysis represents an analog to the principle of relativity, requiring the laws
of physics also to exhibit form invariance with respect to the choice of system of units. The
form of the laws of physics cannot depend on the choice of 1 m as the unit of length instead
of for instance 2 m. In this chapter we shall outline the contents of this statement and also
demonstrate that dimensional analysis can be a powerful tool in science and technology.

Dimensional analysis can be used in two different ways. The passive use consists in con-
trolling that any given relation between physical quantities has correct physical dimensions.
This means that any two terms that are to be added or set equal to each other, should have
identical physical dimensions. This simple statement is known as the principle of homogene-
ity. This principle represents a powerful method for discovering errors at an early stage in
any derivation and constitutes a strongly recommended daily routine for any scientist!

The active application of dimensional analysis involves seeking possible relations that may
exist between physical quantities Qi, i = 1, · · · , q. This means that dimensional analysis
can be used to find possible forms that a physical law may take, even in situations where
certain aspects of the problem are not yet understood. This will be demonstrated in the
following examples. First, however, we need to derive the consequences of the principle of
form invariance of the laws of physics with respect to the choice of basic units.

10.1 The Π-Theorem

We are familiar with the fact that every physical quantity Qi has a certain physical dimension.
By this we mean that the given quantity can be written in the form

Qi = {Qi} [Qi] (10.1)

where {Qi} is a dimensionless constant or variable and [Qi] represents the physical dimension
of the quantity Qi. [Ai] can always be expressed in terms of a set of basic units [Aj ], j =
1, · · · , n,

[Qi] = [A1]
bi1 · · · [An]bin . (10.2)

253
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In the MKSA (SI) system the basic units are length [L] measured in meter (m), mass [M ] in
kilogram (kg), time [T ] in second (s) and electric current [I] in ampére (A). All other physical
dimensions can be expressed in terms of these four basic units. The physical dimension for
force (N) is thus [M ][L][T ]−2. In the following we shall refer to the vector

bi = [bi1, · · · , bin]

formed from the exponents appearing in (10.2) as the dimensional vector of the quantity Qi.
A quantity whose dimensional vector is null will be called dimensionless.

A physical law is a relation involving a number of physical quantities, Qi, i = 1, · · · , q.
The relation may be in the form of a function or differential equation. We write this relation
formally as

F (Q1, · · · , Qq) = 0. (10.3)

According to the homogeneity principle this relation must also be expressible in the equivalent
form in terms of the corresponding dimensionless quantities {Qi}, i = 1, · · · , q, that is,

F ({Q1}, · · · , {Qq}) = 0. (10.4)

This is equivalent to the requirement that the dimensional factors in (10.3) must appear in
such a way as to form a common factor – or in subgroups such as to cancel each other. This
observation in turn means that (10.3) must also be of such a form that it can be rewritten as
a relation

G(Π1,Π2, · · · ) = 0 (10.5)

between a number of dimensionless products Πj formed from the original quantities Qi.

To illustrate these points, consider as an example the mathematical pendulum of length
` = {`}[L] in a location with gravitational acceleration g = {g}[L][T ]−2. The differential
equation for the angular excursion θ = {θ} is

`
d2θ

dt2
= −g sin θ or {`}d

2{θ}
d{t}2 = −{g} sin{θ}.

The right hand equation follows as [L][T ]−2 is seen to be a common factor to both sides of
the equation of motion. In terms of dimensionless products, the equation can be written in
the form

d2θ

dΠ2
= − sin θ with Π =

√
g

`
t.

The oscillation period T of the pendulum can most generally be shown to be given by

g

`
T 2 = 8πK(Θ/2) or

{g}
{`} {T}

2 = 8πK({Θ}/2). (10.6)

Here Θ is the maximum angular excursion of the pendulum and K is the complete elliptical
integral of first order. (For small x we have K(x) ≈ π/2.) Thus, we see that both the
differential equation and the expression for the oscillation period T satisfy the principle of
homogeneity.

To complete the discussion of dimensional analysis it remains to find the number of di-
mensional products that (10.5) may contain, together with a general method for deriving
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the actual form of these products. The problem of identifying independent dimensionless
products is equivalent to finding exponent vectors z = [z1, · · · , zq] such that

[Q1]
z1 · · · [Qq]zq = 1 (dimensionless!).

Expressing the different [Qi] in terms of the basic units [Aj ], j = 1, · · · , n, this requirement
takes the form

[A1]
z1b11+···+zqbq1 · · · [An]z1b1n+···+zqbqn = 1.

This means that finding dimensionless products is equivalent to finding solutions z of the
system of equations

z1b1j + · · ·+ zqbqj = 0 for j = 1, · · · , n
or in compact notation

z ·B = 0. (10.7)

The matrix

B =



b11 · · · b1n
...

...
bq1 · · · bqn


 (10.8)

is called the dimensional matrix for the set of physical quantities Qi, i = 1, · · · , q. It is
seen that B is formed from the dimensional vectors bi of the set, each vector representing
one row of the matrix. The number of independent dimensionless products is equal to the
number independent non-trivial solutions of (10.7), namely q−r where r = rang(B). rang(B)
indicates the number of the equations (10.7) that are linearly independent. It is equal to
the dimension of the largest square sub-matrix with non-vanishing determinant that can be
formed from B.

The main result of our discussion is summarized in the so-called Π-theorem:
Any physical law F (Qi, · · · , Qq) = 0 relating physical quantities Q1, · · · , Qq with correspond-
ing dimensional matrix B of rang r can be written as a relation

G(Π1, · · · ,Πq−r) = 0 (10.9)

between a set of q − r independent dimensionless products Π1, · · · ,Πq−r formed from the
physical quantities involved.

The Π-theorem leads to the following conclusions. If q − r = 0, no dimensionless product
can be found. This means that some quantity, relevant for the problem studied, is missing
from the set Q1, · · · , Qq. The list of physical quantities should be extended and the analysis
repeated. In particular, the number of physical quantities in any physical law must exceed the
number of basic units necessary to express the physical dimensions of the quantities involved.

If q − r > 0 and all relevant quantities are included among the set Q1, · · · , Qq, then the
physical law will be writable in the general form (10.9). Two important special cases should
be mentioned. First, in the case that q−r = 1, only one dimensionless product can be formed.
The relation (10.9) then reduces to the simple form

Π1 = C (10.10)
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where C is an unknown constant. Second, in the case that q−r = 2, two independent products
can be formed. The relation (10.9) this time can be written in the form

Π1 = f(Π2) (10.11)

where f is an unknown function.
The value of the constant C, the form of the function f , or in the general case, the function

G, cannot be found from the dimensional analysis alone. The role of dimensional analysis and
the Π-theorem is to tell how many dimensionless products should be sought for and to limit
possible functional relationships that may exist between such products. This is not in itself a
small achievement on behalf of dimensional analysis. In an experimental situation there is an
enormous difference between determining the one function of one variable in (10.11) instead
of start looking for a general functional relationship between a larger number of variables.

For the success of dimensional analysis, it is crucial that the initial set of physical quantities
Q1, · · · , Qq includes all quantities relevant for the problem at hand. A too large set of physical
quantities leads to unnecessary general forms of (10.9). A missing quantity is sometimes
indicated as a problem in finding dimensionless products. An irrelevant quantity substituted
for a relevant one will lead to wrong conclusions. Dimensional analysis must therefore be
treated with proper care.

Before turning to applications of these results let us verify our introductory statement
that dimensional analysis can be viewed as an analog to the principle of relativity, namely
that the laws of physics should exhibit form invariance with respect to the choice of system
of units. To this end let us now perform an arbitrary stretching of the basic units

[Aj ] = αj [Aj ] for j = 1, . . . , n

where the stretching parameters αj can take any positive value. This implies that the value
of the dimensionless quantities {Qi} also changes

{Qi} = α−bi1
1 α−bi2

2 · · ·α−bin
n {Qi}.

If we now introduce the notation

x =




ln{Q1}
...

ln{Qq}


 , and y =




lnα1
...

lnαn


 ,

the transformation equation for the dimensionless quantities can be expressed in the linear
form

x = x−B · y.
If the physical law (10.4) is to take the same form irrespective of the choice of basic units,

this must be so also for our modified basic units. That is, we must require

F ({Q1}, · · · , {Qq}) = 0. (10.12)

Stated differently, the function Ψ(x) ≡ F ({Q1}, · · · , {Qq}) must satisfy the requirement

Ψ(x) = Ψ(x) for any choice of y. (10.13)
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In the language of linear algebra, this means that Ψ(x) can only depend on the projection
xU of x into a subspace U being perpendicular to the subspace spanned by B · y as y is
allowed to take any value. The dimension of the subspace U is given by dim(U) = q−r where
r = rang(B). The subspace U will therefore be spanned by a set of q− r linearly independent
basic vectors. Each of these basic vectors corresponds to a certain linear combination of
ln{Q1}, · · · , ln{Qq},

z1 ln{Q1}+ · · ·+ zq ln{Qq} = ln ({Q1}z1 · · · {Qq}zq) .

But a product of dimensionless quantities {Qi} will be independent of any stretching of basic
units only when the product of the corresponding physical quantities Qi is dimensionless. In
this way the present line of reasoning again leads to our previous result as summarized in the
Π-theorem.

10.2 Simple Applications

Some examples will demonstrate the strength and the shortcomings of the Π-theorem and
the method of identifying dimensionless products.

Example 1: The mathematical pendulum.

Let us first return to the mathematical pendulum example, this time pretending that
we known neither the differential equation describing the behavior of the pendulum, nor its
solution. We want to find the possible forms that an expression for the oscillation period T
may take. Let us assume that T can be expressed in terms of the mass of the pendulum
m, the length `, the acceleration of gravity g and the maximum amplitude Θ – or a suitable
subset of these quantities.

These q = 5 physical quantities are all expressible in terms of n = 3 basic units: [L], [M ]
and [T ]. The dimensional matrix for the set m, `, g, Θ and T takes the form

B =




0 1 0
1 0 0
1 0 −2
0 0 0
0 0 1



.

Since r = rang(B) = 3, we shall need q− r = 2 dimensionless products Πk. It is immediately
seen that m cannot form part of any such product. There is no way in which the dimension of
m can be compensated in any product with the other variables in the set. Furthermore, one of
our quantities, Θ, is already dimensionless and thus represents by itself a valid dimensionless
product. A possible choice of products is therefore

Π1 =
T 2g

`
and Π2 = Θ.

Assuming that all relevant physical quantities were included in our list, any physically allowed
relationship between these quantities must be expressible in the form Π1 = f(Π2), or explicitly

T 2 =
`

g
f (Θ) .
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The result is seen to be in agreement with the mathematical solution of the pendulum problem
(10.6). The form of the unknown function f(Θ) can not be determined with the help of
dimensional analysis. From an experimental point of view the important point is that even
if the mathematical solution is not available, dimensional analysis tells that an empirical
determination of the oscillation period T reduces to the experimental determination of one
single function f of the single variable Θ.

In this example dimensionless products could be found by simple inspection. According
to the more systematic method, we have to seek exponent vectors z satisfying the set of
equations

z1 = 0

z2 + z3 = 0

−2z3 + z5 = 0.

Because Θ is already dimensionless, z4 will be subject to no requirements. Two possible
exponent vectors are therefore z1 = [0,−1, 1, 0, 2] and z2 = [0, 0, 0, 1, 0] as remarked above.

Example 2. Planetary motion.

As a second example, consider a planet of mass Mp orbiting a star with mass Ms. We
want to find possible relations between the universal constant of gravitation G, Mp, Ms, the
distance R between the two bodies and the orbital period T . Basic units are again [L], [M ]
and [T ], while the dimensional matrix is

B =




3 −1 −2
0 1 0
0 1 0
1 0 0
0 0 1



.

Since r = rang(B) = 3, two independent dimensionless products can be formed, for example

Π1 =
T 2GMs

R3
and Π2 =

Mp

Ms
.

This means that if all relevant quantities were included, the orbital period shall have to be
expressible in the form

T 2 =
R3

GMs
f

(
Mp

Ms

)
(10.14)

where f is an unknown function. This is as far as dimensional analysis goes. By combining
the result from dimensional analysis with obvious symmetry requirements, we may proceed
a little further. Thus, even if the mass of the star and the mass of the planet may be vastly
different, there are reasons to believe that the two masses should appear in a symmetric
manner. We would expect the formula for the orbital period to be valid also in the case
that the two masses were equal. A symmetric formula can only be achieved if the unknown
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function has the particular form f(x) = C(1 + x)/x, where C is a constant. The formula for
the orbital period now reduces to

T 2 = C
R3

Gµ
(10.15)

where µ = MsMp/(Ms +Mp) is the reduced mass.

Quiz 10.1 : Bolometric luminosity L∗ for a star with radius R expresses the energy
radiated by the star per unit time. If L∗R

−2 only depends on the surface temperature
θ = κT , the speed of light c and Planck’s constant h, what is then the possible relation
between these quantities?

Quiz 10.2 : According to the Rydberg formula the energy levels of hydrogen-like atoms
are given by

Wn = −RhcZ2/n2

where Z is the charge number of the nucleus and n is the principal quantum number.
Make use of dimensional analysis to derive possible expressions for the constant Rc
in terms of e, h, the masses M and m of the nucleus and the electron and the vacuum
permittivity ε0 .

Quiz 10.3 : It is claimed that a light ray passing a star with mass M at minimum
distance r will suffer a deviation d (measured in radians). The situation is illustrated
in figure 10.1. Discuss the following two statements:
a) d can be expressed as a function of M , r and G.
b) d can be expressed as a function of M , r, G and c.
Here G is the universal gravitational constant and c is the speed of light. What is
your expression for the deviation d?

Figure 10.1: Deviation of a light ray by a mass
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Appendix A

Vector Calculus and the ∇ operator

One must learn by doing the thing;
for though you think you know it,
you have no certainty until you try.

Sophocles

A large fraction of physical laws involves scalar or vector fields and derivatives of these
fields. Spatial derivatives normally appear in the form of the ∇ operator. To understand the
contents of these laws or to make use of these laws in solving physical problems, it is necessary
to be familiar with basic properties of this operator. In the following review of such properties,
we assume the underlying space to be three dimensional and Euclidean, that is, the length of
a vector r as expressed in Cartesian components (x, y, z) is given by |r |=

√
x2 + y2 + z2.

A.1 The grad, div and curl Operators

Let Φ(r) be a continuous and differentiable scalar function (scalar field). The equation Φ(r) =
Φ0, where Φ0 is a constant, represents a constant Φ surface. The directional derivative of Φ
at a given point r and along an arbitrary unit vector ˆ̀ is defined by

∂Φ

∂`
≡ lim

`→0

1

`

[
Φ(r + ` ˆ̀)− Φ(r)

]
. (A.1)

The directional derivative vanishes for directions in the constant Φ surface containing the
point r. The directional derivative takes its maximum value

∂Φ

∂n
= max

ˆ`

∂Φ

∂`

for the direction ˆ̀ = n̂ where n̂ is the unit normal vector to the constant Φ surface, pointing
towards increasing values of Φ(r). The gradient of Φ is defined as

gradΦ ≡ ∂Φ

∂n
n̂. (A.2)

The quantities entering the definitions (A.1) and (A.2) are illustrated in figure A.1. The
gradient of Φ is itself a vector function, at every point in space where the derivatives of Φ is
defined. As a vector the gradient is represented by a magnitude and a direction.
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Figure A.1: Directional derivatives and gradients

Let F (r) be a continuous and differentiable vector function (vector field). The divergence
of F (r) at a given point r is defined by

divF ≡ lim
V→0

1

V

∮

A
d2A · F . (A.3)

Here A is the closed surface bounding the infinitesimal volume V centered at r. The infinites-
imal surface element d2A is directed out of V . The geometry is illustrated in figure A.2a. By
its definition the divergence of F represents the outward directed flux

∮
A d2A ·F of the vector

field F per unit volume V . The divergence of F is a scalar function.

a) b)

d

V

C d

n

l

AA

A

Figure A.2: Geometry of divergence and curl

The curl of the continuous and differentiable vector function F (r), in contrast, is itself a
vector function. The component (projection) of this vector function in an arbitrary direction
n̂ at a given point r is defined by

n̂ · curlF ≡ lim
A→0

1

A

∮

C
d` · F . (A.4)

Here C is the directed contour bounding the infinitesimal surface A, centered at r, and with
unit normal vector n̂. The directions of C and the surface A are chosen according to the
right-hand rule illustrated in figure A.2b. By its definition n̂ · curlF measures the tendency
of the field F to rotate along the contour C. For this reason curlF is also referred to as the
rotation of F , or as the circulation

∮
C d` · F of the vector field F per unit area A.
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Quiz A.1 : Verify that
∂Φ

∂`
= ˆ̀ · gradΦ =

∂Φ

∂n
ˆ̀ · n̂. (A.5)

A.2 Orthogonal Curvilinear Coordinates

A given scalar or vector field may be expressed in any suitable coordinate system. By their
definitions the results of applying the grad, divergence or curl operators to the given field
must necessarily be independent of the particular coordinate system employed. The explicit
expression for these operators, however, do depend on the choice of coordinate system.

To derive these expressions it is convenient to introduce a general right-handed orthogonal
curvilinear coordinate system with coordinates (q1, q2, q3). These coordinates are associated
with corresponding scale factors (Q1, Q2, Q3) and unit vectors û1, û2 and û3. The scale
factor Qi is defined such that Qidqi represents the length of the infinitesimal translation
qi → qi + dqi, keeping the remaining coordinates constant. The direction of this translation
is given by ûi. The scale factors and the unit vectors are generally functions of position, the
unit vectors remaining mutually orthogonal everywhere, û3 = û1 × û2. The geometry of the
curvilinear coordinates are illustrated in figure A.3.

21 3
Q  dq2 2

Q  dq33

Q  dq1 1

(q  , q  , q  )

u

3

2

1

u

u

Figure A.3: Curvilinear coordinates

Three simple examples will illustrate the above notation. For a Cartesian coordinate sys-
tem an arbitrary position vector r is determined by specifying the three coordinates (x, y, z).
The unit vectors x̂, ŷ and ẑ are constant vectors and the scale factors are all equal to unity,
Qx = Qy = Qz = 1.

In a cylindrical coordinate system the position vector r is specified by giving coordinates
(ρ, ϕ, z) as indicated in figure A.4a. Expressions for the unit vectors ρ̂, ϕ̂ and ẑ in terms of
the Cartesian unit vectors x̂, ŷ and ẑ, the scale factors (Qρ, Qϕ, Qz) and the derivatives of
the unit vectors with respect to the cylindrical coordinates are summarized in table A.1.

x̂ ŷ ẑ Q ∂/∂ρ ∂/∂ϕ ∂/∂z

ρ̂ cosϕ sinϕ 0 1 0 ϕ̂ 0
ϕ̂ − sinϕ cosϕ 0 ρ 0 −ρ̂ 0
ẑ 0 0 1 1 0 0 0

Table A.1: Cylindrical coordinates
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Figure A.4: Cylindrical and spherical coordinates

In a spherical coordinate system the position vector r is specified by giving coordinates
(r, θ, ϕ) as indicated in figure A.4b. Expressions for the unit vectors ρ̂, ϕ̂ and ẑ and the scale
factors (Qr, Qθ, Qϕ) and the derivatives of the unit vectors are summarized in table A.2.

x̂ ŷ ẑ Q ∂/∂r ∂/∂θ ∂/∂ϕ

r̂ sin θ cosϕ sin θ sinϕ cos θ 1 0 θ̂ ϕ̂ sin θ

θ̂ cos θ cosϕ cos θ sinϕ − sin θ r 0 −r̂ ϕ̂ cos θ

ϕ̂ − sinϕ cosϕ 0 r sin θ 0 0 −r̂ sin θ − θ̂ cos θ

Table A.2: Spherical coordinates

The explicit expressions for the grad, div and curl operators are now easily calculated. By
definition we have

lim
dq1→0

1

Q1 dq1
[Φ(r +Q1 dq1 û1)− Φ(r)] =

1

Q1

∂Φ

∂q1

and therefore also

û1 · grad Φ =
1

Q1

∂Φ

∂q1
, (A.6)

with similar expressions for the other components of the grad operator.

To derive the expression for the div operator it is convenient to choose an infinitesimal
volume d3V limited by constant coordinate surfaces as illustrated in figure A.5. From the
figure we find

d3V = Q1Q2Q3 dq1 dq2 dq3

and
∮

A
d2A · F = [(F1Q2Q3)(q1 + dq1)− (F1Q2Q3)(q1)] dq2 dq3 + · · ·

=

[
∂

∂q1
(F1Q2Q3) + · · ·

]
dq1 dq2 dq3.
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In the middle expression the contributions to the surface integral from the two constant q1
surfaces at q1 and q1 + dq1 are given, the former surface oriented in the −û1-direction. The
contribution from the remaining sides are found by cyclic permutation of indices. According
to definition (A.3) we therefore find

divF =
1

Q1Q2Q3

[
∂

∂q1
(F1Q2Q3) +

∂

∂q2
(F2Q3Q1) +

∂

∂q3
(F3Q1Q2)

]
. (A.7)

1 1

Q  dq2 2

Q  dq3 3

Q  dq

u

1u

- 1

Figure A.5: Geometry for divergence operator

The expression for the curl operator is found in the similar way. With surfaces A1 chosen
as indicated in figure A.6 we may write

d2A1 = Q2Q3 dq2 dq3

and therefore
∮

C1

d` · F = [(F3Q3)(q2 + dq2)− (F3Q3)(q2)] dq3

− [(F2Q2)(q3 + dq3)− (F2Q2)(q3)] dq2

=

[
∂

∂q2
(F3Q3)−

∂

∂q3
(F2Q2)

]
dq2 dq3.

According to definition (A.4) we now find

û1 · curlF =
1

Q2Q3

[
∂

∂q2
(F3Q3)−

∂

∂q3
(F2Q2)

]
. (A.8)

The remaining components in the û2 and û3 directions are found by cyclic permutation of
indices.

By combining the above expressions we further derive

div grad Φ =
1

Q1Q2Q3

[
∂

∂q1

(
Q2Q3

Q1

∂Φ

∂q1

)
+

∂

∂q2

(
Q3Q1

Q2

∂Φ

∂q2

)
+

∂

∂q3

(
Q1Q2

Q3

∂Φ

∂q3

)]
. (A.9)
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Figure A.6: Geometry for curl operator

Finally, for arbitrary fields Φ and F the identities,

curl gradΦ = 0 (A.10)

div curlF = 0, (A.11)

may easily be verified.

Quiz A.2 : Verify (A.10) and (A.11).

Quiz A.3 : Verify that the general expression for the curl operator can formally be
written as the determinant

curlF =

∣∣∣∣∣∣∣∣∣∣∣

û1

Q2Q3

û2

Q3Q1

û3

Q1Q2

∂

∂q1

∂

∂q2

∂

∂q3
Q1F1 Q2F2 Q3F3

∣∣∣∣∣∣∣∣∣∣∣

.

A.2.1 Cartesian coordinates

For Cartesian coordinates the above formulas simplify considerably:

gradΦ = x̂
∂Φ

∂x
+ ŷ

∂Φ

∂y
+ ẑ

∂Φ

∂z

divF =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

curlF = x̂

(
∂Fz
∂y
− ∂Fy

∂z

)
+ ŷ

(
∂Fx
∂z
− ∂Fz

∂x

)
+ ẑ

(
∂Fy
∂x
− ∂Fx

∂y

)

div gradΦ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
.
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A.2.2 Cylinder coordinates

For cylindrical coordinates the corresponding results are:

grad Φ = ρ̂
∂Φ

∂ρ
+

ϕ̂

ρ

∂Φ

∂ϕ
+ ẑ

∂Φ

∂z

divF =
1

ρ

∂

∂ρ
(ρFρ) +

1

ρ

∂Fϕ
∂ϕ

+
∂Fz
∂z

curlF = ρ̂

(
1

ρ

∂Fz
∂ϕ
− ∂Fϕ

∂z

)
+ ϕ̂

(
∂Fρ
∂z
− ∂Fz

∂ρ

)
+

ẑ

ρ

(
∂

∂ρ
(ρFϕ)− ∂Fρ

∂ϕ

)

div gradΦ =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂ϕ2
+
∂2Φ

∂z2
.

A.2.3 Spherical coordinates

For spherical coordinates the formulas are:

gradΦ = r̂
∂Φ

∂r
+

θ̂

r

∂Φ

∂θ
+

ϕ̂

r sin θ

∂Φ

∂ϕ

divF =
1

r2
∂

∂r
(r2Fr) +

1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fϕ
∂ϕ

curlF =
r̂

r sin θ

[
∂

∂θ
(sin θFϕ)− ∂Fθ

∂ϕ

]
+

θ̂

r

[
1

sin θ

∂Fr
∂ϕ
− ∂

∂r
(rFϕ)

]

+
ϕ̂

r

[
∂

∂r
(rFθ)−

∂Fr
∂θ

]

div gradΦ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂ϕ2
.

A.3 Introduction of the ∇ operator

Going back to the case of the Cartesian coordinates it is seen that the grad, div and curl
operators may all be expressed in terms of a single vector operator

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (A.12)

With the interpretations x̂∂/∂x · F = x̂ · ∂F /∂x and x̂∂/∂x× F = x̂× ∂F /∂x, we find

gradΦ = ∇Φ, (A.13)

divF = ∇ · F , (A.14)

curlF = ∇× F . (A.15)

div gradΦ = ∇ · ∇Φ = ∇2Φ (A.16)

This is a convenient and compact notation that is used for any choice of coordinate system.
This notation will allow general vector operator manipulations in coordinate-free form to
be performed easily. When particular coordinates must eventually be introduced, however,
care must be exercised to substitute the proper expressions for the different combinations of
∇-operators and fields.
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Quiz A.4 : With the ∇ operator defined as

∇ =
∑

i

ûi

Qi

∂

∂qi

verify (A.14) and (A.15) in cylindrical coordinates. [Remember that the unit vectors
ûi are themselves functions of position, use tables (A.1) and (A.2)].

A.4 General ∇ operator Relations

For general ∇-operator calculus it is essential to observe that the ∇ operator is at the same
time a vector and a differential operator. The basic rules of vector algebra and differential
calculus, exemplified by

a× b = −b× a (A.17)

a · (b× c) = b · (c× a) = c · (a× b) (A.18)

a× (b× c) = (a · c)b− (a · b)c (A.19)

and
∂

∂x
(fg) =

∂f

∂x
g + f

∂g

∂x
,

must therefore be satisfied concurrently.

One example will demonstrate the basic technique. We want to expand the expression
∇× (F ×G) where F and G are both vector fields. The differential part of the ∇-operator
must once be applied to F and once to G. As a reminder we write

∇× (F ×G) = ∇× (F̌ ×G) +∇× (F × Ǧ).

The -̌sign indicates where the differentiation is to be applied. We next turn to the vector
part of the ∇-operator. We therefore apply the rule for expanding the double cross product
(A.19) — middle vector times the scalar product of the other vectors minus the other vector
in parenthesis times the scalar product of the other vectors — to each term, making sure to
chose an ordering of factors in each expression such that it is evident where the ∇-operator
is to be applied. The result is

∇× (F ×G) = (G · ∇)F −G(∇ · F ) + F (∇ ·G)− (F · ∇)G.

Notice that for instance the first and third term on the right-hand side are identical from a
vector algebra point of view. By rearranging the ordering of the factors the ∇-operator in
the first term is acting on F , and in the third term on G.

The directional derivative in the first term on the right-hand side must be identified as

G · ∇ =
∑

i

Gi
Qi

∂

∂qi
(A.20)

in general curvilinear coordinates. When this operator is applied to F =
∑

i Fiûi it must,
however, be remembered that the unit vectors ûi are themselves functions of position. In
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tables A.1 and A.2 the derivatives of the unit vectors are given for cylindrical and spherical
coordinates.

Making use of the techniques exemplified above the following expressions may be verified

∇(ΦΨ) = Ψ∇Φ + Φ∇Ψ (A.21)

∇ · (ΦF ) = Φ∇ · F + F · ∇Φ (A.22)

∇× (ΦF ) = Φ∇× F +∇Φ× F (A.23)

∇(F ·G) = G× (∇× F ) + (G · ∇)F + F × (∇×G) + (F · ∇)G (A.24)

∇ · (F ×G) = G · ∇ × F − F · ∇ ×G (A.25)

∇× (F ×G) = (G · ∇)F −G∇ · F + F ∇ ·G− (F · ∇)G. (A.26)

Quiz A.5 : Verify that (A.21) – (A.26) are indeed correct.

Quiz A.6 : Find the unit normal vector n̂ to the surface z = f(x, y).

Quiz A.7 : Show that

∇ · r = 3, ∇× r = 0 ∇ · r̂ =
2

r
and F · ∇r = F .

Quiz A.8 : Show that if a is a constant vector then

∇× (a× r) = 2a.

Quiz A.9 : Show that

F · ∇F =
1

2
∇F 2 − F ×∇× F

and
∇2F = ∇∇ · F −∇×∇× F .

A.5 Integral Theorems

From the definition of the divergence operator (A.3) a very useful integral theorem may be de-
rived. Consider an arbitrary finite volume V bounded by the surface A with outward directed
unit normal. Let V be divided into infinitesimal volumes Vi, i = 1, · · · with corresponding
bounding surfaces Si. From (A.3) we may now write

∑

i

Vi(∇ · F )i =
∑

i

∮

Ai

d2A · F .

The contributions to the surface integrals from the adjoining surfaces of any two neighboring
elementary volumes, as illustrated in figure A.7a, are equal and opposite and therefore cancel.
The right-hand side sum of surface integrals thus reduces to the corresponding surface integral
over A. The left-hand sum is the volume integral over the total volume V . The result

∫

V
d3r∇ · F =

∮

A
d2A · F (A.27)
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Figure A.7: Illustrating Gauss and Stoke integral theorems

is known as the Gauss integral theorem.

A similar integral theorem applies to the curl operator. This time consider an arbitrary
surface A bounded by the contour C. The directions of A and C should be related through
the right-hand rule as discussed in relation to (A.4). Let A be divided into infinitesimal
elementary surfaces Si, i = 1, · · · with corresponding bounding contours Ci. According to
the definition of the curl operator (A.4) we may now write

∑

i

d2Ai · (∇× F )i =
∑

i

∮

Ci

d` · F .

The contributions to the contour integrals from the adjoining parts of the contours of any two
neighboring elementary surfaces cancel. This fact is illustrated in figure A.7. The right-hand
side sum of contour integrals thus reduces to the corresponding contour integral around C.
The left-hand side sum is the surface integral over the total surface A. The result

∫

A
d2A · ∇ × F =

∮

C
d` · F (A.28)

is called the Stoke integral theorem.

Quiz A.10 : Show that
1

3

∮

A
d2A · r = V.

Can you give a geometrical interpretation for this result?

Quiz A.11 : Show that ∮

C
d` · F = 0 if F = ∇Φ.

Quiz A.12 : Let F = (yx̂−xŷ)/(x2 + y2). Calculate ∇×F . Calculate
∮
C F ·d`, where

C is a circle in the (x, y)-plane with center at the origin. Is the Stoke integral theorem
satisfied? Explain.

Quiz A.13 : Show that

∮

A
d2A · (Φ∇Ψ) =

∫

V
d3r

[
Φ∇2Ψ + (∇Φ) · (∇Ψ)

]
(A.29)
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and ∮

A
d2A · (Φ∇Ψ−Ψ∇Φ) =

∫

V
d3r (Φ∇2Ψ−Ψ∇2Φ). (A.30)

The results (A.29) and (A.30) are known as the first and second form of the Green
theorem.

A.6 Generalizations

The different combinations of ∇-operators and scalar and vector fields studied so far have
always resulted in another scalar or vector field. This is not always so. As an example again
consider the first term on the right-hand side of (A.26) as discussed above. This term can be
written in two different but equivalent ways

(G · ∇)F or G · (∇F ).

In the first form the directional derivative is a scalar operator. When applied to the vector
field F , the result is another vector field. In the second form we encounter the scalar product
between the vector field G and the new type of entity ∇F .

The scalar and vector fields are themselves special cases of the more general concept of
a tensor field. A scalar field is a tensor field of rang zero. A vector field is a tensor field of
rang one. The vector field is characterized by a magnitude and a direction at every position
r. A tensor field of rang two, also called a dyadic field, is characterized by a magnitude and
two directions at every position. The entity ∇F is an example of a dyadic field for which
we shall introduce the general notation Φ, Ψ, · · · . Higher order tensor fields are defined in
similar fashion. For a general tensor field we introduce the notation F , G, · · · .

For a given orthonormal basis vector set {û1, û2, û3} the most general representation of a
vector field is F =

∑
i Fiûi. The jth component of the vector is found as Fj = F ·ûj = ûj ·F .

The vector F may be uniquely identified as a column or row matrix

F =





F1

F2

F3



 or F = {F1, F2, F3}.

In matrix form the scalar product of two vectors F and G is represented by

F ·G = {F1, F2, F3}





G1

G2

G3



 .

The most general representation of a dyadic field is the nonion form

Φ =
∑

i,j

Φijûiûj . (A.31)

Here ûiûj represents the tensor or outer product of the unit vectors ûi and ûj . In this product
the former factor ûi is the antecedent, the latter factor ûj the consequent. The transpose or
the conjugate of the product ûiûj is defined as

˜̂uiûj = ûjûi.
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The ij–th component of the dyadic Φ is found as

Φij = ûi ·Φ · ûj = ûjûi : Φ = Φ : ûjûi

where we applied the tensor algebra rules

a · (bc) = (a · b)c (A.32)

(bc) · d = (c · d)b (A.33)

(ab) · (cd) = (b · c)(ad) (A.34)

and the definition
(ab) : (cd) = (b · c)(a · d). (A.35)

In matrix form the tensor product of two vectors F and G is defined by

FG =





F1

F2

F3



 {G1, G2, G3}.

The general dyadic Φ is identified as the square matrix

Φ =





Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33



 .

The scalar product of the dyadic Φ with the vector F reduces in matrix form to the matrix
product of a square matrix with a column matrix

Φ · F =





Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33









F1

F2

F3



 .

If the order of the dyadic and vector is reversed it is necessary to make use of the transposed
form for the vector

F ·Φ = {F1, F2, F3}





Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33



 .

The special dyadic
I = û1û1 + û2û2 + û3û3

is the idemfactor or the identical dyadic with the properties

I · r = r · I = r

Φ · I = I ·Φ = Φ.

The rules for applying the ∇-operator to scalar and vector fields developed above are
also valid in the more general case, provided the tensor algebra rules are observed. Thus, an
alternative form to (A.24) is now

∇(F ·G) = (∇F ) ·G + (∇G) · F (A.36)
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The Gauss and Stoke integral theorems (A.27) and (A.28) are easily generalized to general
tensor fields F . The generalized Gauss integral theorem reads

∫

V
d3r∇ ∗ F =

∮

A
d2A ∗ F (A.37)

while the corresponding generalized Stoke integral theorem takes the form
∫

A
(d2A×∇) ∗ F =

∮

C
d` ∗ F . (A.38)

In these formulas the binary operator ’∗’ may represent a scalar product ’·’, a vector product
’×’ if the tensor F has at least rang one, or a tensor product. The formulas (A.37) and
(A.38) are easily proved making use of Cartesian coordinates by either direct integration or
by reduction to the standard forms (A.27) or (A.28) through scalar multiplications with the
Cartesian unit vectors x̂, ŷ and ẑ.

Quiz A.14 : What is the matrix representation of the identical dyadic I?

Quiz A.15 : In analogy with (A.33) how would you define I ×r? What is the rang and
the matrix representation of the new tensor?

Quiz A.16 : Show that
Φ ·Ψ = Ψ̃ ·Φ = Ψ · Φ̃.

Quiz A.17 : Show that
∇ · (ΦI) = ∇Φ.

Quiz A.18 : Evaluate the expression F · ∇F for the case that F = F (ρ) where ρ is the
distance from a symmetry axis

•• by transforming the given expression into a form containing only standard grad,
div or curl expressions.

• by evaluating (F · ∇)F directly using table A.1.

• by evaluating F · (∇F ) directly again making use of table A.1.

Do you get the same answer?

Quiz A.19 : For an arbitrary closed, plane curve C with unit normal vector n̂, show
that ∮

C
r × d` = 2A n̂

where A is the area of the surface inside C, both by making use of the generalized
Stoke integral theorem and from direct geometrical considerations.

Quiz A.20 : Prove by direct computation that the following special cases of (A.37) and
(A.38), ∫

V
d3r∇Φ =

∮

A
d2AΦ

and ∫

A
d2A×∇Φ =

∮

C
d`Φ,

are indeed valid.
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A.7 The Inverse Problem

So far we have been discussing the rules for applying the ∇-operator to different scalar, vector
and tensor fields. Let us now consider the inverse problem, that is, can the original field be
re-derived if the expressions for the gradient, the divergence or the curl of the field are known
over the volume V together with suitable boundary conditions imposed at the boundary
surface A?

The simplest case is represented by the gradient ∇Φ of the scalar field Φ. With ∇Φ(r)
given in any point r in the volume V , the definition of the directional derivative (A.1),
expressed in terms of the gradient operator (A.5), immediately leads to

Φ(r) = Φ(r0) +

∫

Γ
d`′ · ∇Φ(r′). (A.39)

Here Γ is any integration path inside V going from any given point r0 on the boundary A
where the scalar field takes the value Φ(r0) to the arbitrary point r. In particular, it is
sufficient for a complete determination of Φ(r), in addition to knowing the gradient of Φ in
any point of the volume V , to know the value of Φ in one point at the surface A. Specification
of Φ in two points at the surface A generally leads to an inconsistent problem.

σV
V

A

σ
r

d

σd

σ

A

A

A

Figure A.8: Geometry for inverse problem

Similarly, any vector field F (r) can be reconstructed uniquely from the values of the
divergence and the curl of the field. Thus, let the divergence and the curl of the vector field
F be specified inside the volume V together with the value of the field itself at the surface
A. Let r be an arbitrary point inside V and let Vσ denote an infinitesimal sphere of radius
σ centered on r and with surface Aσ, as illustrated in figure A.8. With r′ in V − Vσ now
consider the identity

∇′ · (∇′ψF − ψ∇′F ) = ∇′2ψF − ψ∇′2F (A.40)

where F = F (r′). With ψ = 1/ |r − r′ | and therefore ∇′2ψ = 0 and ∇′ψ = −∇ψ, the right
hand side can be written

−∇
( ∇′ · F
|r − r′ |

)
+∇×

(∇′ × F

|r − r′ |

)
+∇′ ×

(∇′ × F

|r − r′ |

)
−∇′

( ∇′ · F
|r − r′ |

)
.

Integrating (A.40) over the volume V − Vσ with this particular choice of ψ, making use of
the generalized Gauss integral theorem (A.37) and letting σ → 0, the only non-vanishing
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contribution from the surface Aσ comes from the first term on the left hand side of (A.40)
and equals 4πF (r). The result of the integration is therefore

F (r) = −∇ 1

4π

∫

V
d3r′ ∇′ · F (r′)

|r − r′ | +∇× 1

4π

∫

V
d3r′ ∇′ × F (r′)

|r − r′ | + B(r) (A.41)

where the contributions from the surface A can be written in the form

B(r) =
1

4π

∮

A
d2A′ ×

(
∇′ 1

|r − r′ | × F (r′)

)
− 1

4π

∮

A
d2A′ ∇′ 1

|r − r′ | · F (r′).

The identity (A.41) is sometimes referred to as the Helmholtz formula. If the volume
V extends to infinity where the vector field is known to vanish, the contributions from the
surface term B(r) vanish. The vector field F can then be written as a sum of a laminar and
a solenoidal part

F = −∇Φ +∇×H.

The laminar scalar potential

Φ(r) =
1

4π

∫

V
d3r′ ∇′ · F (r′)

|r − r′ |

and the solenoidal vector potential

H(r) =
1

4π

∫

V
d3r′ ∇′ × F (r′)

|r − r′ |

only depends on the divergence or the curl of the vector field, respectively.

Quiz A.21 : Do you from (A.41) recognize the Coulomb law of electrostatics

E = − 1

4πε0

∫

V
d3r′ ρ(r′)

r − r′

|r − r′ |3

and the Ampére law of magneto-statics

B =
µ0

4π

∫

V
d3r′ j(r′)× r − r′

|r − r′ |3 ?

Quiz A.22 : For a vector field F (r) vanishing at infinity, ”prove” (A.41) by calculating
the divergence and curl of the right hand side.

A.8 The Dirac δ–function

Consider the complex harmonic segment of length τ ,

fτ (t) =

{
exp(−ιω0t) for t ∈ [−τ

2
,
τ

2
]

0 elsewhere.
(A.42)
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The Fourier transform (see table 2.1) of f(t) is

f̃τ (ω) =
τ

2π

sin(ω − ω0)
τ

2

(ω − ω0)
τ

2

(A.43)

and has the following properties:
∫ ∞

−∞
f̃τ (ω) dω = 1, (A.44)

lim
τ→∞

f̃τ (ω) = 0 for ω 6= ω0. (A.45)

It is further evident for any function g(ω) varying slowly compared to f̃τ (ω) that

lim
τ→∞

∫ ∞

−∞
g(ω)f̃τ (ω) dω = g(ω0). (A.46)

The Dirac δ-function δ(ω − ω0) is a (generalized) function having the limiting properties
seen for f̃τ , that is:

∫ ∞

−∞
δ(ω − ω0) dω = 1, (A.47)

δ(ω − ω0) = 0 for ω 6= ω0, (A.48)
∫ ∞

−∞
g(ω) δ(ω − ω0) dω = g(ω0). (A.49)

The δ-function may be represented mathematically in many different ways, for instance

δ(ω − ω0) = lim
τ→∞

1

2π

∫ τ/2

−τ/2
exp(ι(ω − ω0)t) dt =

1

2π

∫ ∞

−∞
exp(ι(ω − ω0)t) dt. (A.50)

Some care must be exercised when performing integrals containing δ-functions with more
complicated arguments. The standard procedure in these cases is to change the integration
variable to the argument of the δ-function, thus

∫
g(ω) δ(f(ω)) dω =

∫
g(ω)

J(ω)
δ(f) df =

∑

i

g(ωi)

J(ωi)

∣∣∣∣
f(ωi)=0

(A.51)

where J is the absolute value of the derivative of f with respect to ω, appearing in the variable
change from ω to f(ω)

df = J(ω) dω =

∣∣∣∣
df(ω)

dω

∣∣∣∣ dω, (A.52)

and the summation in (A.51) is taken over all solutions ωi of f(ω) = 0 within the integration
range.

The δ-function defined in (A.47)-(A.49) is one-dimensional, it depends on one single vari-
able. Multi-dimensional δ-functions, depending on several independent variables, are similarly
useful. An important example is considered below.
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A simple calculation will show that

∇2 1

r
= 0 for r 6= 0. (A.53)

For r = 0 the expression is strictly speaking not defined. At the same time,

∮

A
d2A · ∇1

r
= −4π (A.54)

for any surface A enclosing the origin. If we apply Gauss integral theorem (A.27) to (A.54),
the surface integral is transformed into a volume integral for which the integrand according
to (A.53) vanishes identically for r 6= 0, yet the integral takes a non-vanishing value. This
dilemma can be amended by realizing that

δ(r − r0) = − 1

4π
∇2 1

|r − r0 |
(A.55)

is a three-dimensional δ-function satisfying the requirements

∫

V
δ(r − r0) d3r = 1 if r0 ∈ V (A.56)

δ(r − r0) = 0 for r 6= r0 (A.57)∫

V
g(r) δ(r − r0) d3r = g(r0) if r0 ∈ V. (A.58)

For the evaluation of integrals containing multi-dimensional δ-functions of more complex
arguments again a change of integration variables is required. This time the Jacobian, the
absolute value of the determinant formed from all partial derivatives between the two sets of
integration variables, will appear

∫

V
g(r) δ(f(r)) d3r =

∫
g(r)

J(r)
δ(f) d3f =

∑

i

g(ri)

J(ri)

∣∣∣∣∣
f(ri)=0 and ri∈V

(A.59)

with

J(r) =
∂(f(r))

∂(r)
=

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∂fx
∂x

∂fx
∂y

∂fx
∂z

∂fy
∂x

∂fy
∂y

∂fy
∂z

∂fz
∂x

∂fz
∂y

∂fz
∂z

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

. (A.60)

In (A.60) the explicit form for the Jacobi determinant was written in terms of cartesian
coordinates, r = (x, y, z).

Quiz A.23 : Show that
∫∞
−∞ f(x) δ(x2 − 1) dx = 1

2(f(−1) + f(1)). What is the corre-

sponding value of
∫∞
−∞ f(x) δ(x3 − 1) dx?
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Appendix B

Physical Constants

Fundamental and derived constants (1986–standard)

Speed of light (in vacuum) c = 2.997 924 58 · 108 m/s
Permeability of vacuum µ0 = 4π · 10−7 H/m
Permittivity of vacuum, 1/µ0c

2 ε0 = 8.854 187 817 · 10−12 F/m
Gravitational constant G = 6.672 59(85) · 10−11 N m2/kg2

Planck constant h = 6.626 075 5(40) · 10−34 J s
h/2π h̄ = 1.054 572 66(63) · 10−34 J s

Elementary charge e = 1.602 177 33(49) · 10−19 C
Electron mass me = 9.109 389 7(54) · 10−31 kg
Proton mass mp = 1.672 623 1(10) · 10−27 kg
Neutron mass mn = 1.674 928 6(10) · 10−27 kg
Atomic mass unit, m(12C)/12 mu = 1.660 540 2(10) · 10−27 kg
Boltzmann constant κB = 1.380 658(12) · 10−23 J/K

Fine–structure constant, α =
e2

4πε0h̄
α = 7.297 353 08(33) · 10−3

inverse fine–structure constant α−1 = 137.035 989 5(61)

Rydberg constant, R∞ =
mc2

2hc
· α2 R∞ = 10 973 731.534(13) m−1

Bohr radius, aB =
4πε0h̄

2

me2
aB = 0.529 177 249(24) · 10−10 m

Stefan–Boltzmann constant, σ =
2π5

15h3c2
σ = 1.56055 · 1084 W m−2 J−4

(or σ = 5.67051 · 10−8 W m−2 K−4)

279
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Selected astronomical constants

Solar mass M� = 1.99 · 1030 kg
Solar radius R� = 6.96 · 108 m
Solar central temperature T�c = 13.6 · 106 K
Solar surface temperature T�s = 5760 K

Astronomical unit AU = 1.496 · 1011 m
Parsec pc = 3.09 · 1016 m



Index

absorption, 77
absorption line, 83
accessible state, 147
acoustic wave, 218
adiabatic law, 190
adiabatic process, 163, 190
Alfvén number, 228
Alfvén speed, 219
Alfvén wave, 219
Ampère law, 19
angular plasma frequency, 232
angular quantum number, 61
angular velocity, 205
angular momentum, 64
angular quantum number, 64
angular velocity, 187
anharmonic oscillator, 135
antecedent, 267
apocentrum, 4
azimuthal quantum number, 57, 64

Baker equation, 8
band head, 138
barometric formula, 192
baryclinic, 199
barytropic, 199
Bernoulli’s theorem, 200
binding

covalent or homo-polar, 126
ionic or hetero-polar, 126

Bohr radius, 61, 98
Boltzmann distribution, 150
Boltzmann factor, 150
Boltzmann relation, 158
Boltzmann’s constant, 148
Born-Oppenheimer approximation, 127
boson, 175
Bremsstrahlung, 42

Cartesian coordinates, 262

causality principle, 36

central field Hamiltonian, 104

central field approximation, 104

centripetal acceleration, 206

centripetal potential, 207

characteristic number, 227

characteristic scale, 227

charge density, 18

chemical potential, 165

circulation, 198, 258

Clebsch-Gordan coefficients, 72

closed system, 147

closure problem, 190

coefficient of heat conduction, 188

coefficient of viscosity, 186

coherence length, 28

coherence time, 28

collision broadening, 99

compressible wave, 218

consequent, 267

constant of motion, 53

continuous spectrum, 99

convective derivative, 182

Coriolis acceleration, 206

Coriolis force, 207

curl, 258

current density, 18

curvilinear coordinates, 259

cyclotron radiation, 42

cylinder coordinates, 263

de Moivre identity, 24

degenerate gas, 172

degree of ionization, 167

detailed balance

principle of, 77

diffusive contact, 165

dimensional analysis, 249

dimensional matrix, 251
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dimensional vector, 250

Dirac δ-function, 272

directional derivative, 257
directrix distance, 4

dispersion relation, 22, 218, 219

dispersion-less, 218, 220

displacement current, 20
dissociation energy, 128, 130

distribution function, 143

divergence, 258

Doppler effect, 85
dyadic field, 267

eccentric circle, 6

eccentricity, 4

eccetric anomaly, 5
Eddington-Barbier approximation, 245

effective potential, 104

Ehrenfest’s theorem, 56

eigenfunction, 56
eigenvalue, 56

electric conductivity, 209

electric dipole approximation, 76, 77, 115

electric field, 18
electric field intensity, 18

electric quadrupole approximation, 81, 115

electron configuration, 73, 106, 112

electron correlation, 104

electron orbital, 105
electron wave equation, 127

electron wave function, 127

ellipticity, 25

emission line, 84
energy degeneracy, 62

energy density

time averaged, 22

electric, 21
magnetic, 21

energy equation, 188

energy flux, 21

time averaged, 23

entropy, 148
equation of state, 155

excited state, 73

extensive variable, 162

Faraday law, 19

fast magneto-sonic wave, 221

Fermi momentum, 172

Fermi-Dirac distribution, 172
fermion, 171

fine structure constant, 60

flux, 258

flux tube, 214
focus, 4

forbidden line, 81

Fourier transform, 29

Franck-Condon principle, 137
frequency

angular, 22

frequency spectrum, 41

Froude number, 228

frozen field, 214
fundamental statistical assumption, 147

Gauss law

magnetic field, 19
Gauss integral theorem, 266

Gauss integral theorem, 20

generalized, 269

Gauss law
electric field, 19

geometric optics, 234

Gibbs distribution, 171

Gibbs factor, 171

gradient, 257
gravitational constant, 185

gravitational potential, 184

Grotrian diagram, 81, 116

ground state, 73
group velocity, 23, 220

gyro-magnetic ratio, 68, 70

Hamilton’s equations, 53
Hamiltonian, 53

harmonic oscillator, 129

Hartmann number, 228

heat, 160

heat capacity, 161
Helmholtz formula, 271

Helmholtz free energy, 163

Hermite differential equation, 129

Hermite polynomial, 129
hetero-nuclear molecule, 126
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homo-nuclear molecule, 126

Hugoniot, 226

Hund’s rules, 109

Hund’s rules, 142

hydrostatic equilibrium, 191

ideal fluid, 185

idemfactor, 268

identical dyadic, 268

inclination, 9

incompressible flow, 182

incompressible fluid, 182

incompressible wave, 219

intensive variable, 162

inter-combination line, 115

internal energy, 155

inverted multiplet, 110, 111

irreversible process, 160

isothermal process, 191

isotope effect, 66

j-j coupling, 109

Jacobi integral, 12

Kayser, 51

Kelvin’s circulation theorem, 203

Kepler equation, 5

Kepler equation, 7

L-S coupling, 109

Laguerre function, 61

Laguerre equation, 60

Laguerre polynomial, 60

Lamb shift, 91

Landé g-factor, 120

Landé g-factor, 92

Landé’s interval rule, 110

Larmor frequency, 68, 92

law of mass action, 167

Legendre equation, 59

Legendre polynomial, 59

Legendre transformation, 163

Lienard-Wiechert potentials, 38

linearized equations, 217

Lorentz force, 208

Lorentz gauge, 36

Lorentz spectral line profile, 85

Mach number, 201
magnetic pressure, 211
magnetic dipole approximation, 81, 115
magnetic dipole moment, 67
magnetic field, 18
magnetic flux density, 18
magnetic pressure force, 212
magnetic Reynolds number, 228
magnetic tension force, 212
magneto-hydrodynamics, 210
mass continuity equation, 181, 182
mass density, 156
material curve, 203
Maxwell equations, 18
Maxwell law, 19
Maxwell’s momentum distribution, 153
Maxwell’s velocity distribution, 153
mean anomaly, 5, 7
mean free geometric path length, 238
mean free optical path length, 238
mean molecular weight, 156
mean motion, 6, 7
mean value, 144
measurable, 54
meta-stable state, 82
molecular band, 134
molecular viscosity, 186
momentum equation, 184
momentum equation, 185
momentum operator, 54
monochromatic emissivity, 236
monochromatic linear extinction coefficient,

237
monochromatic mass extinction coefficient, 237
monochromatic optical path length, 237
monochromatic optical thickness, 237
monochromatic radial optical depth, 243
monochromatic source function, 237
Morse potential, 128
multiplet, 112
multiplicity, 112, 147, 158

natural lifetime, 82
Navier-Stoke’s equation, 187
nodal line, 8
non-rigid rotor, 135
nonion form, 267
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normal multiplet, 111

normal multiplet, 110

normal Zeeman effect, 120
normalized angular momentum, 3

normalized energy, 3

nuclear azimuthal quantum number, 128

nuclear Landé factor, 100
nuclear orbital quantum number, 128

nuclear orbital angular momentum, 128

nuclear wave equation, 127

nuclear wave function, 127

Ohm’s law, 209

opacity, 237

operator

adjoint, 56
Hermitian, 56

optically thick, 238

optically thin, 238

orbital, 150
orbital period, 6

outer product, 267

parity, 73, 104
Parseval’s theorem, 30

particle density, 152

partition function, 150, 171

normalized, 158

Paschen-Back effect, 94
path-line, 199

Pauli exclusion principle, 171

Pauli principle, 104, 107, 126

pericentrum, 4
pericentrum argument, 9

pericentrum distance, 4

pericentrum passage, 6

pericentrum vector, 3
permeability, 18

permittivity, 18

phase, 22

phase speed, 22, 220

phase velocity surface, 220
photon destruction probability, 242

Pi-theorem, 251

Planck constant, 34

Planck radiation function, 177
Planck radiation law, 177

plane wave, 218

polarization, 219

circular, 25
complete, 32

degree of, 32

elliptical, 25

left-handed, 25
linear or plane, 25

partial, 32

random, 32

right-handed, 25
polarization vector, 24

polytrop, 191

positive definite, 143

potential flow, 200

Poynting theorem, 20
Poynting vector, 21

Prantl number, 228

pressure, 154

pressure broadening, 99
principal quantum number, 61

principal quantum number, 64

principle of homogeneity, 249

probability density, 54, 143
marginal, 144

quantum concentration, 151

quantum concentration, 174

quantum mechanics, 52
quasi-neutrality, 209

radiation diagram, 46

radiation fields, 39
radiation pressure, 194

radiative transport equation, 237

radius of curvature, 211

Rankine-Hugoniot relations, 223, 224
rate of strain increase, 189

ray equations, 234

realization, 143

reduced mass, 3, 66

refractive index, 231
refractive index surface, 222

repetence, 51

resonance line, 83, 119

retarded potentials, 36
reversible process, 160
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Reynolds number, 228
Richardson number, 228
right ascension, 9
rigid rotor, 129
Rosseland mean extinction coefficient, 244
rotating frame, 205
rotational constant, 130
rotational energy, 130
rotational transition, 132
Rydberg constant, 51, 61

Sackur-Tetrode formula, 164
Saha equation, 167
scalar field, 267
scalar product, 56
Schrödinger equation, 74
Schrödinger equation, 54, 57
selection rules, 80, 97

rotational transitions, 132
vibrational-rotational transitions, 132

semi-major axis, 5
semi-minor axis, 5
shear viscosity, 186
shell, 106
shock strength, 226
simultaneously measurable, 54
Slater determinant, 107
slow magneto-sonic wave, 221
sound speed, 201, 217
sound wave, 222
specific energy, 162
specific enthalpy, 224
specific intensity, 178, 229
specific internal energy, 188
specific volume, 162
spectral branch, 134
spectral level, 73, 112
spectral power density, 33
spectral term, 73, 81, 112
speed of light, 18
spesific volume, 224
spherical coordinates, 263
spherical harmonics, 60
spin angular momentum, 68
spontaneous emission, 77
standard deviation, 145
Stark effect, 98

state space, 143
stationary flow, 200
statistically independent, 145
statistically uncorrelated, 145
Stefan-Boltzmann constant, 179
stimulated emission, 77
Stirling’s approximation, 151
stochastic variable, 143
Stoke integral theorem

generalized, 269
Stoke integral theorem, 20
Stoke parameter, 25
streamline, 199
Strouhal number, 228
subshell, 106
subsonic, 202
supersonic, 202
surface force, 184

temperature, 148
tensor field, 267
tensor product, 267
thermal instability, 198
thermal broadening, 99
thermal contact, 147
thermal equilibrium, 148
Thompson scattering, 42
total angular momentum, 72
total atomic angular momentum, 100
transition

allowed, 80
bound-bound, 78
bound-free, 79
free-free, 79
photo-ionization, 78
radiative recombination, 79

transition rate, 75
transition, forbidden, 80
true anomaly, 4, 6–8

unidirectional energy flux, 179

variance, 145
vector field, 267
velocity potential, 200
vibrational energy, 129
vibrational quantum number, 129
vibrational rest energy, 130
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vibrational-rotational transition, 132
virial theorem, 15, 215
viscous dissipation rate, 189
viscous force, 186, 187
Voigt spectral line profile, 86
volume force, 184
vortex flow, 200
vortex line, 199
vortex tube, 204
vorticity, 198

wave
cylindrical, 22
plane, 22
spherical, 22

wave function, 54
wave equation, 21
wave equation, 217
wave function, 61
wave number, 22
wave vector, 22
wave-particle dualism, 34
work, 161

Zeeman effect
anomalous, 93
normal, 92


