Radiation I

Solutions to Selected Problems

Jan Trulsen

The Institute for Theoretical Astrophysics
University of Oslo

Chapter 4

Spectra of One-Electons Atoms

Quiz 4.5:

$$
\begin{aligned}
{\left[\nabla^{2}, x\right] \psi } & \equiv \nabla^{2}(x \psi)-x \nabla^{2} \psi=\nabla \cdot(\psi \nabla x+x \nabla \psi)-x \nabla^{2} \psi- \\
& =2 \frac{\partial}{\partial x} \psi \quad \text { and similarly for } y \text { and } z
\end{aligned}
$$

Thus,

$$
[H, \boldsymbol{r}]=-\frac{\iota \hbar}{m} \boldsymbol{p}
$$

Similarly,

$$
[H, \boldsymbol{p}] \psi=[U(r), \boldsymbol{p}] \psi=U \boldsymbol{p} \psi-\boldsymbol{p}(U \psi)=\iota \hbar \nabla U \psi
$$

Substituting $Q=\boldsymbol{r}$ and $Q=\boldsymbol{p}$ in (4.12) and noting that the operators \boldsymbol{r} and \boldsymbol{p} are both independent of t (the wave function ψ and therefore $\langle\boldsymbol{r}\rangle$ and $\langle\boldsymbol{p}\rangle$ may depend on t !) we find

$$
m \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\boldsymbol{r}\rangle=\langle\boldsymbol{p}\rangle \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} t}\langle\boldsymbol{p}\rangle=-\langle\nabla U(r)\rangle
$$

That is, the mean values of quantum mechanical operators \boldsymbol{r} and \boldsymbol{p} behaves as the classical quantities \boldsymbol{r} and \boldsymbol{p} !

Quiz 4.6:

With $A^{\prime} \equiv A-\langle A\rangle$ and similarly for B we may write

$$
\begin{aligned}
(\Psi,[A, B] \Psi) & =\left(\Psi,\left[A^{\prime}, B^{\prime}\right] \Psi\right) \quad\langle A\rangle \text { and }\langle B\rangle \text { are numbers } \\
& =\left(A^{\prime} \Psi, B^{\prime} \Psi\right)-\left(B^{\prime} \Psi, A^{\prime} \Psi\right) \quad \text { operators } A^{\prime} \text { and } B^{\prime} \text { are Hermitian } \\
& =\left(A^{\prime} \Psi, B^{\prime} \Psi\right)-\left(A^{\prime} \Psi, B^{\prime} \Psi\right)^{*} \quad \text { from definition of scalar product } \\
& =2 \iota \operatorname{Im}\left(\left(A^{\prime} \Psi, B^{\prime} \Psi\right)\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
\frac{1}{2}|(\Psi,[A, B] \Psi)| & \leq\left|\left(A^{\prime} \Psi, B^{\prime} \Psi\right)\right| \quad \text { imaginary part less than absolute value } \\
& \leq\langle\Delta A\rangle\langle\Delta B\rangle \quad \text { from Schwartz inequality, see section } 2.6 .2
\end{aligned}
$$

The minimum value of the product of the uncertainties in mean values $\langle A\rangle$ and $\langle B\rangle$ is determined by the commutator of the corresponding operators.

