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30.1 INTRODUCTION

Although the pharmaceutical industry was slow in adopting this technique, a number of
pharmaceutical applications of near-infrared (NIR) have been reported. This chapter will discuss
the development, application, and validation of NIR spectroscopy for the pharmaceutical industry;
the software and multivariate methods used for this work are covered extensively in other chapters
and will be mentioned in passing.

Though reported by Herschel in 1800, this spectral region was largely ignored until the late
1950s. The first publications describing pharmaceutical applications of NIR spectroscopy appeared
approximately 10 years later. Several articles on this topic were published during the 1970s and early
1980s; the late 1980s brought a distinct increase in the frequency of published articles that, again,
increased sharply in 2006 (see Figure 30.1). This reflects the growing popularity and increasing
maturity of the technique for pharmaceutical analyses over the past few decades with the marked
increase of the mid-2000s resulting from the process of analytical technology initiative from FDA
[1]. General reviews of NIR spectroscopy have been published [2–8] and contain references to a
number of earlier reviews of the technique and applications.

Several texts on NIR analysis are also available [9–16]. Three of the texts, those edited by
Patonay, by Burns and Ciurczak, and by Ciurczak and Drennen contain chapters dedicated to phar-
maceutical applications of NIR spectroscopy. Ciurczak also authored a comprehensive review of
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586 Handbook of Near-Infrared Analysis

FIGURE 30.1 Number of pharmaceutical publications utilizing NIR spectroscopy.

the pharmaceutical applications of this method, and other papers discussing selected topics in NIR
analysis of pharmaceuticals have been published [2,17–20].

The NIR region of the electromagnetic spectrum is generally defined as between 700 and 2500 nm.
Absorption bands in this region are due to overtones and combinations of the fundamental mid-
IR bands. Most compounds have low molar absorptivities in the NIR region, exhibiting broad,
overlapping absorbance peaks. The low absorptivities, once considered a shortcoming of the NIR
region, have become a primary reason the method is used extensively in the pharmaceutical industry.
NIR absorbances arise primarily from anharmonic oscillations arising from C−−H, O−−H, and N−−H
bonds, common to most drugs.

Several qualities of the NIR method have made it appealing as an alternative to traditional
analytical techniques for pharmaceutical products: samples can be scanned as is, requiring little or
no preparation prior to analysis; analyses of complex matrices are performed rapidly, with results
often obtained in a few seconds or less; and, unlike many other methods, NIR spectroscopy does
not use expensive, dangerous solvents. These attributes make the technique well-suited for routine
laboratory and process control applications.

30.2 APPLICATIONS IN THE ANALYSIS OF TABLETS
AND SOLID PHARMACEUTICAL DOSAGE FORMS

The earliest publications of NIR assays of pharmaceuticals by NIR appeared in the late 1960s. In
most cases, the drug was extracted from the dosage form and analyzed in solution. In several of these
early studies, spectra of solid state samples of drug reported.

In 1966, Sinsheimer and Keuhnelian [21] investigated a number of pharmacologically active
amine salts both in solution and in the solid state by NIR spectroscopy. Quantitative analysis of the
samples in solution was performed using the 2150 to 2320 nm region. Solid-state samples consisted
of compressed pellets composed of an amine salt/KCl mixture and pellets of amine salt only. Spectra
of the solid samples collected in the 1050 to 2800 nm region were analyzed qualitatively using peak
assignments. Several spectral features were noted as showing promise for the quantitation of drugs
in the solid state, although no calibrations were developed. This was the first report of the analysis
of pharmaceutical solids by NIR.

In 1967, Oi and Inaba [22] published an article on the quantitation of allylisopropylacetureide
and phenacetin in pharmaceutical preparations. The samples were dissolved in chloroform and the
concentrations determined using absorbance values at 1983 nm for allylisopropylacetureide and
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Pharmaceutical Applications of NIRS 587

2019 nm for phenacetin. Concentrations of these two drugs in standard mixed samples and unknown
samples were determined without interference from three other drugs present in the formulation.

In another application, Sinsheimer and Poswalk [23] investigated the technique for the determ-
ination of water in several matrices. Solid-state samples were analyzed, in which hydrous and
anhydrous forms of strychnine sulfate, sodium tartrate, and ammonium oxalate were mixed with
KCl and compressed into disks containing 100 mg KCl and 25 mg of drug. In some samples, the
water absorbance band at 1940 nm was clearly seen in the spectra of the hydrates. Quantitation of
water in these samples was not successful. In other samples, differences in the spectra above 2100 nm
were not explained.

30.3 DETERMINATION OF TABLET ACTIVES BY
NEAR-INFRARED SPECTROSCOPY

In the earliest NIR assays of solid dosage forms, tablets and capsules served as the starting point,
but were not analyzed intact. The drugs were extracted from the dosage form and the concentrations
determined in solution.

The first use of NIR for tablet drug content was reported in 1968 by Sherken [24]. In this
study, an assay for meprobamate in tablet mixtures and commercially available preparations was
established. A range of standard solutions of meprobamate analyzed by the NIR method was used
for calibration development. He used the two wavelengths corresponding to the symmetric and
asymmetric stretching modes of the primary amine group of the drug molecule. The new method
was as accurate, but less tedious than the official assay and recommended as the official method for
determination of meprobamate.

In a study conducted by Allen [25], NIR was used for the determination of carisoprodol, phen-
acetin, and caffeine content in tablets. Twenty tablets were pulverized and an aliquot, dissolved in
chloroform. A series of standard solutions of carisoprodol, phenacetin, and caffeine were scanned
between 2750 and 3000 nm. All exhibited to Beer’s law behavior (maximum 200 mg/ml). Cariso-
prodol and phenacetin were determined simultaneously at 2820 nm for carisoprodol and 2910 nm
for phenacetin. Caffeine concentrations were determined at 3390 nm. Since chloroform is a strong
absorber, carbon tetrachloride was substituted as the solvent. The NIR method provided a coefficient
of variation (CV) for all three drugs of 1.4% or less.

In many of these early examples of pharmaceutical analysis by NIR, the investigators worked
in the 2800 to 3100 nm region, considered to be part of the mid-IR region. However, these were
pioneering efforts in NIR pharmaceutical analysis. The NIR analyses of pharmaceuticals reported
since these early studies have generally been performed in the 1100 to 2500 nm region, primarily
owing to the design of currently marketed instrumentation.

In 1977, Zappala and Post [26] investigated the use of NIR in the analysis of meprobamate in
four pharmaceutical preparations: tablets, sustained-release capsules, suspensions, and injectables.
By the publication of the paper, a colorimetric method for the assay of meprobamate in tablets had
been adopted in USP XIX. This colorimetric method was more rapid than the previous assay, but
still required close control of reagent pH. NIR remained an attractive alternative for determination
of meprobamate concentrations in dosage forms.

This new NIR method was an improvement over the NIR method introduced by Sherken nearly
10 years earlier. It took advantage of a meprobamate primary amine combination band at 1958 nm,
not subject to the interference that the peak at 2915 nm suffered. The previous NIR method required
removal of an alcohol preservative from the chloroform prior to analysis that interfered with the
2915 nm drug absorbance peak. The 1958 nm absorbance band, though weaker, was sufficient for
calibration development.

The new method required 20 tablets or capsules to be pulverized and an aliquot of meprobamate
dissolved in chloroform. Testing the calibration, nine commercial products from four different
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588 Handbook of Near-Infrared Analysis

manufacturers were analyzed. The CV was 0.7% for tablets and 1.3% for capsules, compared to
1.5% for the reference method.

Used as described above, NIR has a detection limit of 0.1% for solids. High-potency drugs
constitute a small percentage of the dosage form, making accurate quantitation of drug by NIR
difficult. In a 1990 paper by Corti et al. [27], an extraction procedure was used to improve the
detection limit of oral contraceptives, small tablets with a low-concentration of drug.

Ethinyloestradiol and norethisterone, two synthetic hormones commonly used in oral contra-
ceptives were analyzed in this study, both qualitatively and quantitatively. Tablets with a total
mass of 80 mg, 0.05 mg ethinyloestradiol content, and 0.25 mg norethisterone content were used.
Drug was extracted from the powdered samples with chloroform. Aliquots of the extracts were
placed in an aluminum sample cup and scanned in triplicate with a Technicon InfraAlyzer 450
spectrometer.

For qualitative analysis, six wavelengths were used in the Mahalanobis distance calculation.
The program was able to discriminate between samples, and to distinguish the ethinyloestradiol
extracts even at concentrations below 0.05%. For the quantitative analysis, a method based upon
multiple linear regression was employed. Twenty extracts were used for calibration development,
with ethinyloestradiol and norethisterone concentrations varying over a 10% range. The correlations
obtained for the two calibrations were high (ethinyloestradiol calibration r2 = .85 and norethisterone
calibration r2 = .86). Given the low-drug concentrations in the samples, however, the standard errors
of calibration were also high.

The researchers attempted to use the calibrations for the prediction of samples not extracted from
the tablets with a calibration based upon tablets prepared in the laboratory. When the tablet-based
calibrations were used to determine drug concentration in the synthetic samples, poor results were
obtained. This was an early illustration of the importance of the similarity between calibration and
test samples when an accurate prediction is required.

30.4 FOUNDATIONS OF ANALYSIS OF SOLID
DOSAGE FORMULATIONS

The next development in NIR spectroscopic analysis of pharmaceuticals was the analysis of solid
dosage formulations. This represented a significant advance in pharmaceutical analysis, because
it increased the potential for the application of the method to a large number of pharmaceutical
processes. NIR was no longer restricted to the analytical laboratory; rather, it could now be used on
the production floor. In addition, it obviated the need for extraction with solvents like chloroform
and carbon tetrachloride prior to NIR analysis. This technique has been used in the NIR analysis of
blends, granules, encapsulation matrices, and milled tablets.

An early paper using NIR in the analysis of pharmaceutical mixed powders was published in 1981
by Becconsall et al. [28]. NIR and UV photoacoustic spectroscopies were employed in the analysis
of propranolol/magnesium carbonate mixtures. In this study, complete spectra were collected in the
1300 to 2600 nm region, using carbon black as the reference sample. An aromatic C−−H combination
band at 2200 nm and an overtone band at 1720 nm were used in the quantitation of propranolol in
the drug-excipient mixtures.

The composition of the mixtures was varied over a wide range and a spectrum collected at
each concentration. While the calibration developed with UV exhibited nonlinearity, the calibrations
obtained using the two NIR wavelengths were linear. This linearity in the NIR region was attributed
to the decreased light scattering efficiency at longer wavelengths and the more equal absorption
coefficients of propranolol and magnesium carbonate in this region.

The authors concluded that pharmaceutical quality control measurements could potentially be
applied in the NIR region, but cautioned that spectral interferences from other components in the
sample matrix could complicate attempts at quantitation.
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Pharmaceutical Applications of NIRS 589

From 1982 through 1985, little was published on NIR analysis of solid dosage forms. Since
1986, the rapid growth in popularity of NIR for the analysis of solid dosage forms has been reflected
by the numerous publications on this topic.

The first was a 1986 paper by Ciurczak and Maldacker [29]. These investigators used NIR
in the analysis of tablet formulation blends and examined three methods of data treatment: spectral
subtraction, spectral reconstruction, and discriminant analysis. Blends were prepared in which active
ingredients (aspirin, butalbital, and caffeine) were either omitted from the formulation or varied over
a concentration range of 90 to 110% of labeled strength. All samples were ground in a powder mill
to ensure homogeneity, then scanned in a sample cup on a model 500C InfraAlyzer.

The first experiment examined the use of spectral subtraction. Spectra of true placebos were
subtracted from spectra of the complete formulation, yielding spectra very close to that of the
omitted drug. This technique could be used in the identification of constituents present in a tablet
matrix.

The second experiment also involved the qualitative identification of formulation constituents.
Spectral reconstruction was performed with commercially available software. Using a series of
mixtures of known concentrations, the program used modified multiterm linear regression equations
to correlate spectral changes with drug concentration changes. The spectrum of the drug could then
be reconstructed, providing identification of drugs present in the sample blend.

The third experiment involved the classification of samples by discriminant analysis. In one series
of blends, the caffeine, butalbital, and aspirin concentrations were varied independently between 90
and 110% of labeled strength. In another series, one of the three drugs was excluded from the mixture,
while the other two were varied between 90 and 110%. The Mahalanobis distance calculation was
employed successfully in the classification of formulations into similar groups. This technique was
also used in the analysis of samples from complete formulations (in which all three drugs were
present at 100% of labeled strength), borderline formulations, and samples which lacked one of the
three active components. Although all the samples were classified correctly by the software, the
authors noted that the spectra were nearly indistinguishable, forcing the analyst to depend on the
software, rather than visual spectral differences, to make the identification.

Chemometric techniques are excellent for differentiation between samples with subtle spectral
differences. However, relying on these routines without an understanding of the underlying physical
and chemical phenomena responsible for the spectral differences could lead to unstable calibration
models or classification based upon extraneous spectral characteristics.

These experiments highlight another advantage of NIR in dosage form analysis. For products
containing multiple active ingredients, individual reference tests must generally be conducted to
verify that each ingredient is present in its correct concentration. NIR can be used to characterize
the entire formulation simultaneously, making multiple reference tests unnecessary.

The following year, Ciurczak and Torlini [30] published a paper on the analysis of solid and liquid
dosage forms by NIR. The authors contrasted the use of NIR in the development of calibrations for
natural products with that for pharmaceutical dosage forms. They noted that natural products require
the development of a reference method for calibration development, while pharmaceutical dosage
forms could be synthetically prepared to develop a calibration.

One disadvantage to this technique is the fact that samples prepared in the laboratory are often
spectrally different from production samples due to differences in preparation methods, processing
equipment, or batch size, making calibration by this method more difficult. In other words, this
approach to calibration development often leads to unsatisfactory results, and the use of production
samples for calibration development is preferred when production samples will be tested. In either
case, a calibration range wider than that expected for production samples is necessary, to minimize
the likelihood of accepting a false sample. This subject will be discussed in greater detail later.

In the study by Ciurczak and Torlini, the performance of NIR was compared with high perform-
ance liquid chromatography (HPLC) for speed and accuracy of results in dosage form analysis. The
effect of milling the samples prior to analysis was also investigated. Two solid dosage form matrices,
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590 Handbook of Near-Infrared Analysis

a caffeine–acetaminophen tablet mixture and an acetaminophen tablet mixture, were prepared. Acet-
aminophen tablet mixtures were analyzed after milling, and caffeine–acetaminophen tablet mixtures
were analyzed with and without milling. The samples were placed into a sample cup and scanned
by a model 500C InfraAlyzer. Multiple Linear Regression was used for the calibration with 80% of
the samples used for calibration development and the remainder for validation.

The investigation of the effects of milling showed that this sample preparation procedure did not
necessarily improve results. Milling of the caffeine–acetaminophen mixture significantly improved
the determination of acetaminophen, but the determination of caffeine was virtually unchanged. The
largest differences between the NIR determined concentrations and theoretical concentrations were
attributed to sample handling variability.

The average difference between the theoretical and predicted drug concentrations was approxim-
ately 0.25%, competitive with HPLC determinations. The NIR method also provided the advantages
of rapid analysis times and no solvent purchase or disposal costs.

Granules can be used as a final dosage form, or as a processing intermediate requiring tabletting
or encapsulation. In a 1987 paper, Chasseur used NIR for the assay of cimetidine granules [31].
Batches of granules were prepared in which the cimetidine concentration ranged from 70 to 130% of
label strength; spectra were collected on a Pacific Scientific filter-based instrument. For calibration
development, both first and second derivative spectra were analyzed, with one or two wavelengths
included in the model. A two-wavelength model using first derivative spectra provided the best
results, giving a standard error of 1.75%.

These researchers also compared the performance of NIR with the UV reference method in the
determination of cimetidine content. Samples of 100% label strength were prepared and analyzed
by both methods. The standard errors for the NIR (2.73%) and the UV (2.97%) assays were virtually
identical.

In a 1987 paper, Osborne investigated the use of NIR spectroscopy in the determination of
nicotinamide in vitamin pre-mixes [32]. Although this was not specifically a tablet matrix, the study
showed potential advantages of the method for pharmaceutical analysis. HPLC was the existing
reference method for nicotinamide, requiring 3 days to analyze 36 samples. The proposed NIR
method required only 30 min to analyze the same samples.

Twenty-five mixtures were used for calibration development, with nicotinamide concentrations
ranging from 0 to 6% of the pre-mix formulation. Spectra were collected in duplicate on a Pacific Sci-
entific Mk I 6350 at 2 nm intervals between 1200 and 2400 nm. The spectra were reference corrected
using a standard ceramic reference. Second derivative spectra were calculated and the calibration
obtained by regressing nicotinamide concentration against the ratio of the second derivative values
at 2138 nm (a nicotinamide absorbance peak) and 2070 nm (a spectral minimum in the pre-mixes).
The validity of the calibration was determined in two ways: first, 25 more samples were prepared in
the laboratory and used to validate the model; second, 25 commercially prepared pre-mix samples
with different batches of raw materials were analyzed by the NIR method and by the HPLC reference
method.

The standard error of prediction (SEP) for the validation set was 0.56% w/w, with sample position-
ing variability accounting for half of the total sample variance. To further validate the calibration,
commercial samples were collected over a period of several months and analyzed by HPLC and
NIR. The results obtained by the two methods were not significantly different, verifying the NIR
calibration.

In NIR calibration, the introduction of unexpected components (e.g., incorrect chemicals or
contaminated raw materials) into a sample may go undetected, causing erroneous results. This
type of false sample is potentially more serious than samples in which the correct constituents are
present in the wrong concentrations. In a 1988 paper, Lodder and Hieftje [33] discussed in detail
the application of a new algorithm, the quantile-BEAST (Bootstrap Error-Adjusted Single-sample
Technique), which was more sensitive to false sample detection. The quantile-BEAST was proposed
as a new method to assess pharmaceutical powder blends qualitatively.
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Pharmaceutical Applications of NIRS 591

The quantile-BEAST algorithm is a nonparametric bootstrap method based upon the work of
Efron. In the 1988 study, four individual benzoic acid derivatives were analyzed as were mixtures
of the four derivatives. The active ingredient concentrations were varied between 0 and 25% of the
sample, with aluminum oxide used as a diluent. The samples were ground and passed through a
100-mesh screen prior to analysis. Spectra were collected in triplicate at three wavelengths on an
InfraAlyzer 400.

After analysis by the bootstrap algorithm, the individual benzoic acid derivatives were classified
into clusters using the measurement of nonparametric standard deviations (SDs), analogous to SDs in
parametric statistics. Avalue of three SDs or less was expected for identical samples, while dissimilar
groups were expected to have SDs greater than three. The four derivatives displayed a minimum
distance of 39 SDs from each other. A “worst-case” analysis was conducted, in which acetylsalicylic
acid was mixed in with the formulations at concentrations between 1 and 20%. Although three of
the ten contaminated samples failed the three SD test for being false, none of the uncontaminated
samples were incorrectly identified. All the compounds, including the contaminant, were closely
related derivatives of benzoic acid, making their differentiation and identification at relatively low
concentrations even more notable.

The most important factor in the accuracy (bias) of this method was the size of the training set,
while the most important factor in determining the CV was the number of bootstrap replications of
the training set.

Polymorphism is a phenomenon of great concern to pharmaceutical formulators. A number
of drugs have been shown to undergo polymorphic transformation under compression, creating
potential stability and bioavailability problems. Gimet and Luong [34] published results of a study in
which NIR spectroscopy was used for the quantitative determination of polymorphs in a formulation
matrix. Most polymorphs exhibit spectral differences in the mid-IR, and, since NIR spectra arise
from overtones and combinations of mid-IR absorbances, NIR was also reasoned to be suitable for
the analysis of polymorphs. An investigational drug was shown to have two polymorphic forms,
with the more stable form transformed to a less stable polymorph under pressure. The researchers
employed NIR spectroscopy during formulation development to quantify the more stable polymorph.

Spectra of the polymorphs displayed minor variations, but no distinguishing characteristics were
obvious. The authors did not attempt to identify spectral differences according to polymorphic
changes in crystalline structure. Had difference spectra (in which the spectra of one polymorphic
form are subtracted from the spectra of the other form) been calculated and studied, the spectral
variations between polymorphic forms may have been enhanced, providing further insight into the
phenomena which allow polymorphic forms to be discernable by NIR spectroscopy. Further research
should be conducted into this application of NIR spectroscopy.

Quantitative determination of indomethacin was studied by Otsuka et al. in 2003. Tablets con-
taining α [alpha] and γ [gamma] forms of indomethacin were manufactured at laboratory scale. The
sum of the two polymorphs in the tablets constituted 50% of the tablet. A calibration was developed
to predict the percentage of γ of indomethacin in the tablets from 0 to 100%. Powder x-ray diffraction
was used as the reference method for the determination of polymorph content.

Changes in the NIR spectrum that are indicative of the presence of a polymorphic form are
frequently subtle, but are detectable with the proper processing of the spectra. In 2005, Li et al. [35]
demonstrated the detection of a second polymorph (form B) of an API (proprietary) in a formulation
following wet granulation. Subsequent spiking studies with the discovered polymorph over a range
of 1 to 8% enabled researchers to quantitatively predict the fraction of theAPI that had been converted
to form B during wet granulation.

Qualitative determination of the polymorphic form of an API is achievable by NIR. In 2006,
Blanco et al. [36] demonstrated that the polymorph of the API used to manufacture a tablet was
detectable in the finished dosage form. Thus, demonstrating the ability of NIR spectra to verify
the correct form of the API was utilized in the manufacturing process. NIR was used to determine
which crystalline form (A or B) of formulations of desketoprofen trometamol (DKP, 10 to 25% w/w
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592 Handbook of Near-Infrared Analysis

of dosage form) was used to manufacture a tablet. Investigations indicated that different manu-
facturing processes had the potential to modify the crystalline form of DKP which were detected
by NIR.

The ability of NIR to detect changes in the API can facilitate investigations into quality failures.
Bauer et al. [37] utilized NIR to detect the desolvation of erythromycin in a finished tablet following
dissolution failures. NIR was used to follow the loss of water from erythromycin and the uptake of
those waters of hydration by Mg(OH)2. Although the method describes on the ability to monitor the
reaction in a qualitative sense, the potential for quantitative determination of the exchange of water,
and the subsequent prediction of dissolution behavior is apparent. This work also demonstrates the
ability to follow a solid-state reaction by NIR without specific knowledge of the specific reaction
species.

The application of NIR analysis to the quantitation of ketoprofen in a gel matrix and a powder
matrix intended for encapsulation was reported by Corti et al. in 1989 [38]. The goal of the research
was to compare the utility of a calibration developed over a wide concentration range with that of a
calibration developed over a narrow range in the prediction of unknown samples.

The NIR spectrometer was a filter-based Technicon InfraAlyzer 450 and a sample cup was used
to hold the powdered samples. Reproducibility of the assay was checked by scanning a single sample
in one sample cup ten times; the CV was 0.941%. When the same sample was scanned in ten different
sample cups, a CV of 1.214% was obtained.

For the narrow calibration range, 13 samples were prepared that fell within±5% of the theoretical
content (33% active) of the matrix. The wider calibration range consisted of the original thirteen
samples and an additional seven samples whose ketoprofen concentration ranged from 3 to 30%.

Several characteristics of the two calibration approaches were noted. First, the SEP for both
calibrations was approximately 2%, with no sample having an error greater than 3.5%. Second, the
wider calibration did not offer any significant advantages, as neither the standard error of estimate
(SEE) nor the SEP improved. When the samples to be analyzed fell into a narrow range of concentra-
tions (typical of production samples), relatively few samples were needed to develop a calibration.
When the potential for considerable variability of the matrix exists (such as in the NIR analysis of
natural products), many more samples are needed to generate a valid calibration.

In the analysis of powders in which the ingredient of interest varies over a wide concentration
range, deviations from linearity are possible and can be a significant source of calibration error.
Researchers should consider this phenomenon when developing such calibrations. For example, even
though it might be valuable to use a calibration ranging from 50 to 150% of desired active ingredient
concentration for quantitation of drug in both good and bad samples, it is unlikely that a linear
response would be obtained over such a large concentration range. The range over which linearity
is possible will depend on the concentration of drug in the matrix and the nature of the dosage form
matrix itself. Additionally, the range of a calibration may significantly affect the commonly reported
chemometric statistics such as root mean square error of prediction (RMSEP). For calibrations of
a wide range, the RMSEP may be acceptably low, but the ability to distinguish between similar
concentrations may be absent.

The following year, Corti et al. [39] applied NIR reflection spectroscopy to the analysis of
ranitidine and water content in tablets. These were production samples with a narrow distribution
of concentrations, so the authors established two criteria for the calibration development. First,
the narrow range of sample concentrations allowed fewer samples to be included in the calibration
set. Second, production samples had a normal concentration range of 4%, and the calibration was
expanded to cover a 10% concentration range. These samples were prepared by adding either filler
or drug to a commercial mixture (a spiking study).

Near-infrared spectra were collected on powdered samples, obtained by crushing five tablets
and underdosing or overdosing the samples as described. A Technicon InfraAlyzer 450 filter-based
instrument was used for the analysis. Tablet drug content was determined by HPLC and water content
by Karl Fischer titration.
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Pharmaceutical Applications of NIRS 593

For quantitation of tablet drug content, three calibrations using multiple linear regression were
developed. The first used only laboratory samples and provided a low SEE, but a SEP of 8.4% when
the unknown commercial samples were tested. The second calibration used only production samples
and provided a SEP of 1% for production samples; the SEP was 6.4% for laboratory samples. The
third calibration, built with production and laboratory-modified samples, had SEPs of approximately
1% for both production and laboratory samples. The results showed that progressive widening of the
calibration range provided an advantage only up to a point, beyond which no improvement in SEE or
SEP was seen. This optimum value was determined to be a calibration range of approximately 5%.

The calibration for determination of water content also employed production samples and modi-
fied production samples. Both SEE and SEP were less than 0.1%. In a test of production samples over
1 year, the NIR had the greatest error in moisture prediction of tablets with less than 1% moisture.
When used qualitatively, in no case did the NIR method erroneously reject samples with a moisture
content greater than 2%, the moisture level at which tablets were rejected. As in the previous pub-
lication, the results supported the hypothesis that for products with little variability, a small number
of samples (∼10 to 20) is sufficient for calibration development.

One study in which NIR was investigated and not found to be a suitable analytical method was
reported by Ryan et al. in 1991 [40]. The purpose of the study was to find a rapid and routine method
for the verification of the correctness of clinical packaging. Both mid-IR and NIR were investigated
for the analysis of two structurally similar cholesterol-lowering drugs, lovastatin, and simvastatin.
For this study, a Pacific Scientific Model 6250 and a Bio-Rad FTS 40N were employed, with KBr
powder used as a reference. Sample preparation involved grinding the samples to a uniform particle
size prior to analysis. Both mid-IR and NIR offered a detection limit of approximately 1% (w/w) in the
presence of excipients. NIR was unable to differentiate between the two drugs at low concentrations.
Since it was conceivable that these two compounds would be present in low concentrations in the
same clinical packaging, the NIR technique was discontinued. However, as reported in another
chapter, this type of detection has been accomplished [41–43].

In 1992, Corti et al. [44] analyzed a variety of antibiotic compounds by NIR, including primary
materials, partially processed granules, and an antibiotic cream. Spectral collection was performed
on an InfraAlyzer 450. All samples were read in triplicate, with the sample cup emptied and refilled
between readings. As in the authors’ earlier work, multiple linear regression was used for the
calibration development and Mahalanobis distances for qualitative analysis.

Qualitative analysis involved the differentiation among ten antibiotic preparations, including
three types of ampicillin (amorphous, crystalline, and trihydrate) and blends of erythromycin powder
and granules. All samples tested were easily differentiated based upon Mahalanobis distances. Calib-
rations were developed for each material, including 15 samples spanning a 5% concentration range.
The SEE and SEP for each calibration were less than 2% and most were less than 1%.

A 1993 paper by Blanco et al. [45] addressed some of the concerns regarding the laboratory
manipulation of production samples prior to NIR analysis. In this study, two different commer-
cial preparations of ascorbic acid (vitamin C) were analyzed, one a granular product, the other an
effervescent tablet. No less than five batches were used in the calibration development for each
product.

Samples for calibration and validation were ground to a specific mesh size (250 or 100 µm)
before analysis. To expand the calibration range, samples were either diluted, with the primary inact-
ive ingredient added to each, or overdosed with ascorbic acid. Using calibration matrices containing
increasing numbers of overdosed samples and comparing the sum of squared differences between
the laboratory-determined and NIR-determined values, the authors verified that the underdosing
and overdosing process did not affect the physical properties of the samples. Avoiding calibra-
tion problems in dilution or concentration of samples is possible by milling samples to a uniform
particle size.

Spectra of the homogenized samples were collected in triplicate on a NIRSystems 6500 in
reflectance mode. The effects of sample particle size on NIR spectra are often significant, but can
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594 Handbook of Near-Infrared Analysis

usually be minimized by preprocessing the spectra. Prior to analysis, three preprocessing methods
were evaluated: multiplicative scatter correction (MSC), signal scaling, and first derivative. In this
study, the first derivative spectra provided the best calibration results and were used throughout the
experiment.

Two chemometric techniques were used for calibration development. The first was stepwise
multiple linear regression (SMLR), using four wavelengths or fewer, and provided correlation coef-
ficients greater than or equal to .99. The SEE and SEP for all calibrations were less than 2.4%.
Calibrations were also developed using partial least squares (PLS) regression, on both full (1100 to
2500 nm) and reduced wavelength (1300 to 1800 nm) spectra. Generally, two or three factors were
adequate for the calibrations and most of the models had SEE and SEP values less than 2%. SMLR
gave more accurate results for the simpler granule preparation, while PLS was more accurate in drug
quantitation for the more complex effervescent tablet formulation.

These reports of NIR analysis of blends and granules lend substantial support to the usefulness
of this technology in the monitoring of intermediate pharmaceutical processes, such as blending,
granulation, and qualification of bulk powders prior to tabletting or encapsulation. NIR analysis of
powdered tablets and capsules takes advantage of the analytical speed of this method, but does not
capitalize on the nondestructive nature of the technique or the versatility of its sampling capabilities.
Over the past 20 years, research has first intensified in the area of intact dosage form analysis
and subsequently attention has been turned to use of NIR as a tool for monitoring pharmaceutical
manufacturing.

30.5 ANALYSIS OF SOLID DOSAGE FORMULATIONS
DURING MANUFACTURING

The monitoring of pharmaceutical manufacturing process, as they occur has become a primary goal
of many analytical science practitioners since the introduction of the draft process analytical tech-
nology (PAT) guidance in early 2000s and its finalization in 2004 [1]. Substantial work in this area
has been completed in foods and petroleum industries (and to a limited degree, the pharmaceutical
industry) prior to this time; however, only a few forward looking researchers were working in the
application of NIR to pharmaceutical processing prior to the FDA initiative. While the goal of the
guidance is not to encumber pharmaceutical companies with additional testing burdens, achieve-
ment of the objectives of PAT often require the use of analytical solutions for on-line monitoring of
pharmaceutical processes. Hammond and Warman [46] stated that greater than 70% of the on-line
analytical needs of Pfizer involve NIR spectroscopy. It cannot be over-emphasized that the imple-
mentation of a NIR method (or any other on-line technique) does not constitute a PAT application;
however, rapid and accurate methods for determination of critical quality attributes of a product
during processing are an essential element of a successful PAT program.

The process of combining dry pharmaceutical ingredients is critical to the ultimate success of
the manufacturing process. The homogeneity (or blend uniformity) achieved during the operation is
of the utmost importance. Blend uniformity is typically described in terms of the mass of the final
dosage unit. As the typical consumer will not consume less than an entire dosage unit, homogeneity
at a scale of scrutiny less than that is frequently not considered. Recent work in NIR imaging has
demonstrated some instances of this practice to be an inappropriate perspective for the overall quality
of performance of a solid dosage form, and such work is covered in the analysis by NIR Imaging
section of this chapter. Considerations for the mass of material sampled during blending and thus the
scale of scrutiny is an important consideration when implementing NIR as a means of monitoring
blending. The criteria for considering materials “homogenous” is of prime importance and must be
carefully defined.

Early reports of NIR for blending was by Cuesta et al. and Wargo and Drennen [47,48] wherein,
the use of NIR as a means of establishing homogeneity between samples from different locations
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Pharmaceutical Applications of NIRS 595

within a blender at a given time was demonstrated. Direct, on-line monitoring of pharmaceutical
blending was demonstrated by Hailey et al. [49] and published in 1996. In this publication, the
blender utilized was a V-blender with a NIR probe interfaced through windows in blender. This
was the interface used again in 1998 by De Maesschalck [50]. Two differences existed between
these early reports of the use of NIR for the determination of blend uniformity. The first is the basis
for determining blend uniformity; the former works utilized multiple samples at a single time point;
while the latter compared the same point in a blend across time. The second difference between these
groups is the means by which the blend end point is calculated, although each utilized a version of
either a conformity index approach (spectral matching) or a SD of some characteristic of the blend
over the data collected from the blender. Numerous other reports of blend monitoring are available
and employ a variety of sampling, and end-point calculation methods [51–56].

The work by Duong et al. [56] is notable as it examined the ability of NIR to monitor the uniformity
of magnesium stearate in a blend. A landmark series of papers by El-Hagrasy and Drennen [57–59]
demonstrated the critical nature of the location of the NIR probe in a blender. In these reports,
the blending of materials in a V-blender is monitored at a number of locations around the blender.
Differences in the results from the various locations are noted and an overall pattern of good inter-
shell mixing and poor intra-shell mixing is observed. Lowery et al. and later Popo et al. [60,61]
suggest characterization of the blend by monitoring the powder as it flows from the blender into the
feed-frame of a tablet press.

An important early contribution is an estimation of the quantity of material sampled by a NIR
probe during blend monitoring. This work was undertaken by Cho et al. [62] and demonstrated that
the quantity of material sampled was approximately 0.15 to 0.86 g. With a typical tablet having a
mass of 0.2 to 1.0 g, this quantity of material is on the correct order of magnitude to meet FDA
guidelines on blend monitoring.

Wet massing of pharmaceutical ingredients, or granulation, is a commonly employed technique in
pharmaceutical manufacturing. The first reports of NIR spectroscopy monitoring of this process are
by Rantanen et al. [63–65] in 2000. In this work, the degree of hydration of the granules is monitored
by NIR using a fiber optic probe interfaced through the side of a high-shear granulator. The authors
report that a successful calibration based on four wavelengths was employed. Such a method is
predicated upon the strong absorption of water in the NIR region that was used to demonstrate the
ability to monitor granulation during the process.

A subsequent report by Jorgensen et al. [66] followed granulation in a similar manner, excepting
that the full NIR spectrum was utilized to detect the change in moisture content of the granules and the
formation of a crystalline hydrate. Afiber optic probe interfaced through the side of the granulator was
used to obtain the data. This interface is common for all of the granulation monitoring applications.

In 2003, Otsuka et al. [67] reported direct determination of granule size during the granulation
process by NIR spectroscopy. This was an example of directly determining the quality attribute of
the product that is a function of the specific unit operation being measured. Alteration of crystalline
habit of a proprietary molecule during wet granulation was reported by Li et al. [35] in 2005. Blanco
et al. [36] later reported the modification of the crystalline habit of dexketoprofen trometamol during
wet granulation. The work by Li and Blanco illustrates the versatility of NIR as these methods could
be almost as valuable in an off-line application as they are when applied on-line. However, the
ability to determine the crystalline state of the API on-line has good potential to assist formulation
development by providing information on the state of the molecule as it progresses through the unit
operation.

Roller compaction is another frequently employed means of mixing and consolidating pharma-
ceutical ingredients prior to tabletting. The ability to follow this process by NIR spectroscopy was
demonstrated in an off-line application by Miller [68] in 2000. Gupta et al. [69] demonstrated the
ability of NIR to monitor roller compaction on-line in 2004. In this study, a fiber optic probe from
a diode-array NIR was suspended above a ribbon as it exited a roller compactor. Spectra were pro-
cessed to predict ribbon strength and particle size of the granules following milling. In 2005, the
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596 Handbook of Near-Infrared Analysis

ability to predict moisture content, compact density, tensile strength, and Young’s modulus of roller
compacted blends was demonstrated by Gupta et al. [70]. In a subsequent study, NIR was used to
establish the effect of ambient moisture on the compaction behavior (during roller compaction) of
microcrystalline cellulose [71]. In this application, the properties of the roller compaction ribbon
were monitored in real time. It is the type of data that can be critical to control the process and
consequently the success of a PAT application. Recently, Miller et al. [72] reported the application
of these techniques to monitor the scale-up of a roller compaction process. This work demonstrates
another important potential function of NIR in the pharmaceutical manufacturing arena: the ability
to monitor a process for a given parameter at multiple scales. This capacity is not limited to roller
compaction and has been demonstrated in other unit operations.

Determination of properties of film coated tablets was demonstrated by Kirsch and Drennen [73]
in 1995. Here, the thickness of an ethylcellulose coating, T50 (50% dissolution time), and the hardness
of the tablet were determined from NIR spectra measured on grating based and acousto-optic tunable
filter (AOTF) spectrometers. While the performance of the grating based spectrometer was superior,
the AOTF was demonstrated to perform adequately for most pharmaceutical applications and had
the advantage of substantially shorter measurement times. This demonstration of the capacity for
rapid tablet analysis was a critical step towards the implementation of such systems in an in-line
tablet analysis system.

Further demonstrations of this potential for NIR were presented by several other researchers
[52,74–78]. In 2000, Andersson et al. [79] demonstrated an in-line system for following the process
of coating of tablet cores by placing a NIR-fiber optic probe inside a pan coater. It was noted that the
calibration for determination of coating thickness was not only a function of the increasing signal due
to the coating, but also the disappearance of signal from the core. Perez-Ramose et al. [80] utilized
a similar measurement configuration and NIR monitoring of the process by a single wavelength to
develop a model for the film growth on tablets.

The current literature has shown the capability NIR to monitor blending, granulation, and coating
during the manufacturing process. Advances in the on-/in-line use of NIR frequently rely on char-
acterization of in-process materials and finished dosage forms through other analytical techniques.
On-line applications demonstrate the analytical potential of NIR as a sensor in pharmaceutical man-
ufacturing; they allow the rapid chemical and physical characterization of materials during unit
operations. Appropriate understanding of the product during manufacturing allows control of the
production process that ultimately improves the quality of the pharmaceutical product. Briefly, NIR
is a critical enabling technology for PAT.

30.6 ANALYSIS OF INTACT DOSAGE FORMS

In most cases, an entire batch of powder blend or granulation is encapsulated or tableted, then a
random sample of capsules or tablets drawn and analyzed prior to final release. Failure of a sample
often means rework or disposal of the entire batch. Characterization of intact dosage forms by
NIR is a significant advantage because it offers the potential for on-line or at-line qualification of
dosage forms. Loss of batches could be avoided, because problems could be detected and addressed
immediately.

Consider the potential advantage of real-time monitoring of the tabletting process. A production
of a batch of 2.5 million tablets may be sold at retail for several dollars per tablet, not an unusual price
today. Assume the granulation segregates in the hopper feeding a high-speed tablet press. Without
NIR, it could be days before the LC data is returned, long after the production run is complete, and
the lot of tablets would have to be discarded or reworked (if it is even detected). If the process had
been monitored by NIR, the first unusual tablets produced as a result of segregation of the granulation
would have been recognized and the process shut down, allowing the granulation to be remixed and
the lot ($7.5 million in retail value) saved.
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Pharmaceutical Applications of NIRS 597

Furthermore, a single NIR scan of one tablet, collected in a matter of seconds or even fractions
of a second, may be used to qualify or quantify numerous tablet properties. NIR has shown value for
monitoring drug and excipient concentrations, hardness, moisture content, dissolution rate, degrad-
ants, and so forth. Pattern recognition algorithms or other methods for qualitative analysis allow one
yes/no decision to determine if a tablet meets all specifications of interest: the tablet is acceptable
or the tablet is unacceptable. Given the increasing demand for correlation to a rapidly expanding
list of tablet parameters, NIR is frequently a method of choice for its speed of analysis and richness
of the data [1]. Because of the rapid and nondestructive nature of the method, a larger sample of a
production lot can be analyzed, giving more statistical confidence to our acceptance or rejection of
a lot.

The first report of NIR applied to the analysis of intact dosage forms came as a direct result of the
deaths caused by cyanide-laced capsules in the early and middle 1980s. Following these poisonings,
the Food and Drug Administration analyzed two million capsules by a variety of methods. In 1987,
Lodder et al. [81] published a landmark paper in which intact capsules were analyzed by NIR. In
this study, the quantile-BEAST cluster-analysis algorithm was used in the analysis of adulterated
and unadulterated capsules.

A reproducible positioning system is critical to sampling intact capsules. To achieve this, invest-
igators used a plastic blister glued to the center of an elliptical polished aluminum reflector. Much of
the signal returned to the detector by this elliptical reflector was due to specular reflectance, revealing
little about the sample. A new reflector was developed using a 90◦ conical reflector machined from
a block of aluminum. This conical reflector minimized specular reflectance and maximized diffuse
reflectance from the sample. A comparative study of the two sample configurations revealed that
when the ratio of distance between spectra of dissimilar capsules to distance between spectra of
similar capsules was calculated, it was nearly three times greater for the conical reflector than the
elliptical reflector.

Spectra of 10 to 13 unadulterated capsules were collected at 18 wavelengths with an InfraAlyzer
400 and used as a training set. The model was tested with an equal number of unadulterated capsules.
Potassium and sodium cyanide, aluminum shavings, arsenic trioxide, and other contaminants were
incorporated into acetaminophen capsules and used to test the model. All the adulterated capsules
were easily differentiated from unadulterated capsules, even with as few as two wavelengths.

Both capsule color and positioning of the adulterant affected the NIR analysis. The relative
position of the adulterant in the capsule was predictable by the NIR. Many of the capsules studied
had a white end and a colored end; the white ends of the capsules caused more light-scattering and
a lower signal when oriented toward the light source, giving a first indication of the significance of
sample positioning in NIR analysis of intact dosage forms.

A calibration was established for a quantile-BEAST determination of capsule KCN content.
A detection limit of 2.6 mg of KCN was established in acetaminophen capsules whose average mass
was 670 mg (<0.4% of the capsule weight). Nine milligrams of KCN added to an intact capsule
caused the capsule to be classified as an outlier, nearly six SDs from the center of the training group.

The next paper, by Lodder and Hieftje [82], discussed NIR analysis of intact tablets. The sample
cell described earlier was modified, with a smaller right circular cone at the vertex of the main cone
and oriented in the opposite direction. This insert illuminated the side of the tablet away from the
light source.

Commercially available aspirin tablets from two manufacturers were analyzed at 18 wavelengths
using the modified sample apparatus and two other configurations. Data treatment involved principal
component analysis followed by discriminant analysis with the quantile-BEAST algorithm. Cluster
separation was greatest for the spectra collected with the modified sample cell and least for tablets
which had been powdered and placed in a traditional sample cup. The single-reflecting cone results
were slightly better than those of the powdered samples.

To further examine the utility of the double-reflecting cone, a hole was drilled in the side of a
tablet and packed with 10 mg KCN. When scanned using a single reflecting cone, the sample fell into
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598 Handbook of Near-Infrared Analysis

the cluster with the training set (unadulterated) tablets. When the double-reflecting cone was used,
the tablet fell well outside the unadulterated tablet cluster, revealing the value of the double-reflecting
cone over the single-cone configuration.

Continuing the analysis of intact dosage forms with NIR and the quantile-BEAST algorithm,
Lodder and Hieftje published an article using the technique for the quantitative and qualitative
characterization of capsules with low concentrations of contaminants. Using quantile–quantile (QQ)
plots, detection of subpopulations in NIR spectral clusters was possible. These subpopulations were
defined as samples whose distance from the center of the training group was less than three SDs.

Ten to thirteenAPAP capsules, from which the contents were removed and repacked (to minimize
variation between training and test sample handling), were used for the training set and an equal num-
ber used to validate the model. Contaminated samples were produced by adding aluminum shavings
(average of 208 mg per capsule) or floor sweepings (average of 221 ppm per capsule) to the capsules.
Incorporating these data into QQ plots, the investigators found that the correlation coefficients for
the plots containing the contaminated samples fell below the confidence level established by the QQ
plots of the unadulterated training and test sets. Detection of trace contaminants was possible by this
method with as few as one or two wavelengths.

In a paper published the same year, Jensen et al. [83] used NIR in the analysis of amiodarone
tablets. Before spectral collection, the film-coated surfaces of the tablets were scraped off and the
tablets glued to an anodized aluminum plate. In this study, the authors suggested that the interference
of the film coating necessitated its removal prior to analysis. The spectrum of the pure drug was
obtained to determine wavelengths of drug absorbance and was compared to the tablet spectra. Six
wavelengths were chosen for the calibration. To develop the calibration, tablets ranging from 47 to
63% active ingredient were prepared in increments of 2%. The calibration provided an r2 = .996
and SEE = 0.45.

Reproducibility of the method was determined by analyzing a group of tablets with the same
concentration of active ingredient. Samples were analyzed on a variety of sample backings and at
three storage conditions (room temperature, 40◦C, and room temperature with storage in a desiccator).
Although the results were slightly less variable for samples stored at 40◦C, NIR prediction for samples
stored under all three conditions was virtually identical. Subsequent reports demonstrated the lack of
necessity of removal of a tablet film coat prior to NIR analysis. An early demonstration of analysis
through a tablet coating was reported by Kirsch and Drennen [73].

An investigation into the determination of degradation products by NIR was published in 1990
by Drennen and Lodder [84]. The major degradation process in aspirin tablets is the hydrolysis of
aspirin to salicylic acid. One of two USP methods must be performed to verify tablet aspirin content
and both are time-consuming. A second analysis by HPLC must be performed to verify that salicylic
acid levels do not exceed 0.3% of the tablet mass.

In this study, tablets were stored in a hydrator for up to 168 h with tablets withdrawn at regular
intervals. After removal from the hydrator, the tablets were weighed and NIR spectra collected prior
to the HPLC analysis. Spectra of the intact tablets were collected on an InfraAlyzer 500 in the 1100
to 2500 nm region, using the double-reflecting sample apparatus described by Lodder and Hieftje
[82]. The spectra were processed by principal component analysis, and the scores analyzed by the
quantile-BEAST algorithm.

The study had three objectives: first, changes in NIR spectra were correlated to the time aspirin
tablets spent in the hydrator (the calibration had a correlation coefficient of 0.95 and SEE of 18.8 h);
second, a calibration was developed for the prediction of tablet salicylic acid content (the researchers
ensured that prediction of salicylic acid was based on changes in salicylic acid concentration, and
not some related process, such as absorption of moisture, by evaluation of loadings spectra from
principal component analysis of the data. The HPLC-determined salicylic acid levels ranged from
0.36 to 1.66 mg, and the NIR method allowed prediction of the degradant with a standard error of
144 mg); and third, the mass of water absorbed by the tablets was determined by NIR spectroscopy.
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Pharmaceutical Applications of NIRS 599

Given the strong absorbance of water in the NIR region, a correlation between NIR spectra and
water absorbed is not surprising. However, the amount of water absorbed by the tablets, determined
by weighing the tablets on an analytical balance, was <2.5 mg for all samples. In this study, the
amount of water absorbed was predicted with a standard error of 163 µg. Thus, even very small
changes in dosage form moisture content can be detected by this method.

Two book chapters discussing NIR analysis of tablets were published in 1991. The first was from
work presented at the 4th International Conference on Near Infrared Spectroscopy [85]. In this paper,
Stark used a newly developed diode array spectrometer which scanned the 520 to 1800 nm region,
useful in the analysis of macro- and micro-specimens. Samples were placed on a glass slide prior to
analysis, maintained at an angle to the probe. With this configuration, light reflected by the sample
was detected, but light reflected by the glass was not. Spectra were collected from a 1 mg sample of
acetaminophen powder. The sample was subsequently divided into 500, 250, and 125 mg; reasonable
spectra were collected from all these samples. Diffuse reflectance spectra of intact acetaminophen,
ibuprofen, and antacid tablets were successfully collected. No comparative studies or quantitative
or qualitative analyses of the spectra were performed.

Monfre and DeThomas [86] published a chapter describing a NIR calibration for QC monitoring
of a marketed vasodilator. The NIR analysis was performed on a NIRSystems Model 6500, using
an aperture plate to assist in tablet positioning. For the calibration, individual tablets were crushed
to a fine powder and scanned. Second derivative spectra were used in the analysis to minimize the
light scattering differences between the samples. A bias correction was introduced to factor in the
scattering efficiency of the tablets vs. the powders. Because the excipient concentrations were not
constant, a drug absorbance wavelength was ratioed by an absorbance wavelength primarily due to
the formulation matrix, and these normalized values were then used for the calibration.

HPLC was used as the reference method and the tablets were found to vary between 96 and
102% of labeled strength. To determine the accuracy and precision of the method, one tablet was
analyzed ten times with sample removal and replacement between scans. The NIR-determined value
was within 0.5 mg of the HPLC-determined value, indicating the accuracy of the method. Tablet
placement on the spectrometer played an important role in the precision of the method, even with
the use of the aperture plate.

An increasing rate of publications on the determination of properties of finished dosage forms
followed this initial work; between 1995 and 2005 more than 100 papers were published on this
subject. Early work was concerned with the comparison of transmission and reflectance. An example
of this is found in Gottfries et al. [87] from 1996, where transmission measurements were found to
have a lower RMSEP (1.06 vs. 2.83) than reflection measurements for the determination of meto-
prolol succinate. Merckle and Kovar [88] compared transmission and reflection measurements of
acetylsalicylic acid formulations and found both performed adequately without a significant differ-
ence between them. A comparison by Thosar et al. [89] indicated an advantage in using transmission,
but noted that both methods demonstrated performance that was suitable to task. Cogdill et al. [90]
indicated that while both reflection and transmission were suitable for determination of API in tablets
in a system designed for in-line application, reflection was demonstrated to be much less sensitive
to sample position.

The late 1990s represented a significant maturation of the use of NIR for tablet analysis, a
summary of the analytes, ranges and NIR mode used is found in Table 30.1. Many researchers
published accounts of successfully calibrating for tablet properties by NIR analysis [89,91–108].
Ebube et al. [109] reported an analysis of magnesium stearate at concentrations down to 0.25% in
compacts of microcrystalline cellulose. Gustafsson et al. [110] reported the use of IR and NIR for
the determination of compact density, particle shape, tablet axial tensile strength, and drug release
characteristics. This work is an example of combining multiple spectral ranges (IR and NIR) and
process data (compaction behavior) to create comprehensive models for tablet performance (ideas
well aligned with PAT).
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TABLE 30.1
Reported NIR Calibrations of Pharmaceutical Analytes and the Associated
Sampling Method for Each Method

Analyte

Range (or lowest
level studied,
% w/w) Sampling Reference

Potassium cyanide (in
acetaminophen capsules)

0.4 Reflection with a conical reflector
accessory

[81]

Potassium cyanide (in aspirin
tablets)

2 Reflection with a double reflecting
conical accessory

[82]

Aluminum shavings 31 Reflection with a double reflecting
conical accessory

[114]

Floor sweepings 33 Reflection with a double reflecting
conical accessory

[114]

Amiodarone 47–63 Reflection (tablet coating removed) [83]
Salicylic acid in Aspirin tablets 0.07–0.3 Reflection with a double reflecting

conical accessory
[84]

Metoprolol 20–25 Transmission and reflection [87]
Aspirin 7.0–21 Transmission and reflection [88]
Paracetamol 76–93 Reflection [91]
Magnesium stearate 0.25–2.0 Reflection [109]
Paracetamol 76–93 Reflection [111]
Gemfibrozil 67–89 Reflection [93]
Steroid (Proprietary) 2.9–18 Transmission [94]
Theophylline 1–40 Transmission and reflection [89]
Ibuprofen 49–90 Transmission [95]
Caffeine 13.7 Reflection [98]
Water 1.74–5.32 Transmission [99]
Sulfamethazine 60 Reflection [100]
Bromazepam 0.60–3.9 Reflection [101]
Clonazepam 1.4–2.6 Reflection [101]
Paracetamol 45 Reflection [102]
Amantadine hydrochloride 17 Reflection [102]
Cimetidine 66–86 Reflection [103]
Aminopyrine 28 Reflection [104]
Phenacetin 28 Reflection [104]
Roxithromycin 19.5 Reflection [105]
Erythromycin 28.1 Reflection [105]
Riboflavin 0.41–2.3 Transmission [106]
Ibuprofen 0.7 Transmission [107]
Mirtazapine 5.5–14.5 Reflection [108]

Research through the 1990s dealt primarily with demonstration of the ability of NIR to determine
different tablet properties in a regulatory environment (validation). An account of a NIR analytical
methods validation by Moffat et al. [111] was published in 2000. The target of this investigation was
to demonstrate that a NIR analytical method met the criteria established by ICH Q2 [112,113]. The
accuracy, precision, specificity, detection limit, quantification limit, linearity, range, robustness, and
system suitability testing were demonstrated to be appropriate for use in routine testing. While this
type of validation is based upon the needs of other analytical techniques, it served as an example of
the validation of a NIR-based method for tablet analysis. Other researchers followed in validating
NIR analyses of tablets for use in release testing [95–98].
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Pharmaceutical Applications of NIRS 601

Prediction of the dissolution rate of tablets is another area of application of NIR spectroscopy.
Carbamazepine is used for the treatment of epilepsy and consistent dissolution of the dosage form
is critical in the maintenance of therapeutic blood levels of drug. In a 1991 study by Zannikos et al.
[115], dissolution profiles of brand-name and generic carbamazepine tablets were compared after
storage in conditions of high humidity. The calibration was based upon the percentage of drug in
solution after 1 h in a USP Dissolution Apparatus II.

Spectra of intact tablets were collected on an InfraAlyzer 500, after which the dissolution rates of
the tablets were determined. The NIR spectra and dissolution profiles of the generic tablets changed
little during the 5 days of high-humidity storage, but the spectra and dissolution profiles of the brand-
name tablets changed significantly. A calibration based upon principal component analysis followed
by the bootstrap algorithm was developed for the brand-name tablets. The R was .99, and the SEP
for extent of dissolution after 1 h was 6.8%.

Further storage of the tablets did not affect the dissolution profiles or the NIR spectra of the
tablets appreciably, but after 5 days other absorbance peaks began to appear in the NIR spectra,
which were attributed to degradation products in the tablet. The authors surmised that the peaks
could have resulted from a chemical or physical change that altered the dissolution rate.

Drennen and Lodder [116] published a paper in 1991 comparing the performance of the improved
quantile-BEAST algorithm with that of the Mahalanobis distance in the qualitative analysis of car-
bamazepine tablets. While the Mahalanobis distance calculation assumes that spectral variations
associated with both the calibration and test set are random, in complex pharmaceutical mixtures
this may not be the case. The bootstrap algorithm, on the other hand, is a nonparametric test which
can be used with nearly any spectral data distribution.

In this study, the dissolution profiles of carbamazepine tablets exposed to conditions of high
humidity were classified according to the Mahalanobis distance calculation and the bootstrap method
using both full (701 wavelength) and principal component spectra collected on an InfraAlyzer 500.
This was the first report of the use of full spectra and required substantial computing power relative
to readily accessible systems of the time. In multiple tests, the bootstrap calculation was shown to
provide more accurate qualitative results than the Mahalanobis calculation. In one experiment, nine
tablets with a slow dissolution rate were used as a training set. Twenty-one tablets with a variety of
dissolution rates were used to test the model. The modified bootstrap calculation correctly identified
all tablets with a faster dissolution rate than the training set, while the Mahalanobis calculation
incorrectly identified 58% of the tablets with a higher dissolution rate. The quantile-BEAST algorithm
gave better precision, accuracy, and speed than the Mahalanobis calculation in nearly all cases.

Recent reports of prediction of dissolution behavior are focused on prediction of specific, release
testing criteria. Tatavarti Aditya et al. [100] have reported prediction of the quantity of drug released
at 120 min (Q120). Donoso and Ghaly [117] and Freitas et al. [118] developed models to predict
the behavior of the tablet in specific pH buffer at a specific time. Each of these authors developed
individual calibration for the quantity of drug released at several times for each of 3 pH conditions for
dissolution testing. Donoso [119] also reported using NIR as a means of predicting the disintegration
time for a tablet.

30.7 HARDNESS

In a 1993 review of pharmaceutical applications of NIR spectroscopy, Drennen and Lodder [120]
presented new research on the prediction of tablet hardness based upon NIR spectral changes. Tablets
ranging in hardness from 0.3 to 10.75 kilopons (kp) were analyzed nondestructively by NIR, then
subjected to the destructive reference test. Increasing tablet hardness was found to cause an upward
shift in the spectral baselines, probably due to a reduction of light scattering from the tablet. It was
surmised that a harder and smoother tablet surface reduced the light scattering from the surface,
allowing more light to penetrate the sample and causing increased absorbance. Tablets were easily
classified according to hardness using the quantile-BEAST algorithm. Spectral changes were found
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602 Handbook of Near-Infrared Analysis

to correlate well with variations in hardness. Prediction of hardness provided SEE and SEP values
of approximately 0.6 kp.

Following the initial example of the use of NIR to predict hardness, researchers have used NIR
to predict hardness [121] and related properties such as tensile strength of tablets [100,110], or have
demonstrated the effect of compression force on tablets [108,109].

The use of NIR in the qualification of clinical batches of tablets is an application for which
this technique is well suited. When medications are dispensed for use in clinical trials, the blister
packs in which they are distributed often contain tablets with a range of doses. The tablets are
usually identical in appearance, making visual classification nearly impossible. Verification of the
correct tablet configuration in the packaging by a noninvasive and nondestructive method would be
a significant advantage in the quality control inspection of such packages.

In the first study published on this tablet analysis application, Dempster et al. [122] used three
sampling configurations to investigate the classification of an experimental drug present in tablets
in 2, 5, 10, and 20% concentrations, a matching placebo, and a marketed drug used as a clinical
comparator. The first method of tablet analysis required the removal of the tablets from the blister
packs and scanning them directly through the spectrometer window. In the second approach, the
tablets were scanned through the plastic packaging using the spectrometer window. With the third
arrangement, the tablets were analyzed through the plastic blister packaging with a fiber-optic probe.

A NIRSystems Model 6500 was employed in the analysis with a ceramic disk used as the refer-
ence. Second-derivative spectra were used in the data analysis. The identification and classification
algorithms used were supplied by the instrument vendor. In the first configuration, all but the 2%
tablets were easily classified. The 2% tablets were not be differentiated from the placebo. Using the
second and third configurations, only the 10 and 20%, placebo and clinical comparator tablets could
be properly classified.

This lack of ability to identify and classify the range of dosages in the clinical batch indicates
the need for further research in this area. Substituting another plastic for the white opaque blister
packaging used may have improved the results of the analysis, since this packaging would be expected
to be an excellent light scatterer, decreasing the signal of the tablet within the blister packaging.

The second application of NIR spectroscopy in the analysis of intact tablets from clinical batches
was published in a 1994 paper by Aldridge et al. [123]. A NIRSystems Model 6500 with a custom
sampling configuration was used for spectral collection of the blister-packed samples, and the second
derivative spectra were used in the analysis. SpectralonTM was used for reference. Although certain
peaks in the NIR spectra were attributed to the hydrocarbon functionality of the packaging material,
the spectral features of the tablets within were clearly visible.

The Mahalanobis distance calculation was used for discriminant analysis. These distances were
plotted in a control chart, revealing that several samples were in danger of being misclassified
based upon the Mahalanobis distance calculation alone. When the residual ratios of the spectra were
calculated and plotted in a control chart, however, the probability of misclassifying a sample was
greatly diminished.

In a paper by Kirsch and Drennen [73], intact theophylline tablets coated with an ethylcellulose
polymer were analyzed by grating-based and AOTF spectrometers. The purpose of the work was
threefold. First, tablets were coated with increasing levels of ethylcellulose to vary the dissolution
profiles of the dosage forms. After NIR spectra were collected, the tablets were subjected to dis-
solution in a USPDA II. The time required for 50% of the drug to enter solution was used as the
measure of dissolution rate. Principal component regression was used to develop the calibration.
The calibration provided a SEE of 2.8 min, a coefficient of determination of .977, and an SEP of
6.6 min, with time to 50% dissolution values ranging from 48 to 93 min.

Second, the potential of this method in the monitoring of the film-coating process was investig-
ated. Tablets coated with 2 to 7% ethylcellulose were used to determine the utility of this method
in the prediction of film coat thickness. NIR spectral changes were found to correlate well with
film thickness. Using the first principal component, a SEE of 0.0002 in. was obtained, for coating
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Pharmaceutical Applications of NIRS 603

thicknesses ranging from 0.001 to 0.003 in. The use of NIR spectroscopy as a means of on-line
evaluation of film-coating is currently under investigation in this laboratory.

The third experiment was a NIR-based determination of the hardness of coated tablets. Thirty-
eight tablets whose hardness ranged from 6 to 12 kp were first analyzed spectroscopically, and then
by the destructive reference method. Prediction of hardness with a standard error of 0.6 kp was
possible even after removal of the baseline shifting with MSC. This research confirmed the results of
hardness studies reported earlier by Drennen and Lodder [120]. Further research is being conducted
to characterize this phenomenon.

In another paper by Lodder et al. [124], the qualification of a number of tablet characteristics
was performed in a comparative study of two classification algorithms: soft independent modeling
of class analogies (SIMCA) and the quantile-BEAST. The study involved qualitative classification
of tablet hardness, moisture content, dissolution rate, and degradant concentration.

An evaluation of the performance of these algorithms in predictions using inside model space
and outside model space was conducted. In principal component regression, principal axes highly
correlated with sample constituents of interest are considered to be inside model space, while axes
typically attributed to spectral noise are termed outside model space.

SIMCA provided highly variable results, occasionally offering optimum performance with
outside model space, while the quantile-BEAST gave better results overall and more consistent
prediction. The best results were obtained when the quantile-BEAST algorithm was used with full
spectra, with no principal axis transformation prior to analysis.

In a later work, Cogdill, Anderson, and Drennen [125] demonstrated the use of Hotelling’s T2 and
spectral residuals (Qres), and proposed wavelength uncertainty and spectral noise tests to demonstrate
the suitability of the measurement for prediction of a concentration. Hotelling’s T2 and Qres were used
to verify the overall suitability of the prediction of the API concentration. Factors influencing these
two metrics include the interaction between the model and sample changes, sample interface changes,
and spectrometer performance. The remaining two metrics were utilized as indicators of spectrometer
performance and were not related to the model used to predict API concentration or hardness.

30.8 CONSIDERATIONS FOR INTACT DOSAGE
FORM ANALYSIS

Numerous styles and brands of instruments and sample cells have been used for the analysis of
tablets. The authors currently use several brands of instrumentation for tablet analysis, including
filter based, diffraction-grating based, and AOTF-based instrumentation. Detector configurations
for tablet analysis are evolving slowly towards an optimum design; however, the standard designs
offered by most instrument manufacturers are suitable. Tablets have been successfully analyzed
with integrating spheres and with a standard dual-angled detector configuration. Intact tablets are
analyzed in both diffuse reflectance and transmission modes.

The first analyses of individual intact tablets and capsules involved the use of reflective alu-
minum sample cells, designed specifically for tablets [82] or capsules [81], that allowed illumination
of all sample surfaces. Illumination of all sample surfaces has proven to offer enhanced sensitiv-
ity. The authors now prefer the latest configuration of the original sample cell, the CAPCELLTM

(Optical Prototypes, Inc., Natrona Heights, PA 15065), for analysis of individual intact tablets and
capsules.

Sample positioning variability is the single largest source of error in NIR analysis of tablets,
regardless of whether diffuse reflectance or transmission measurements are used. Hardware, meth-
odology, and mathematics may be used to reduce this error. Tablet-specific sample cells that allow
consistent positioning of tablets are valuable in reducing this error. A method involving the collection
of three spectra per tablet, with 120◦ rotation of the sample or the sample cell/sample combination
between spectra, is used by the authors. Using the mean (or median) spectrum for each tablet
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significantly reduces the spectral variability by averaging out the positioning effects. The median
calculation results in less weighting by particularly odd spectra than does the mean.

The individual tablet spectra must then always be corrected for baseline shifting prior to analysis.
Many techniques have been attempted, but the second derivative and MSC calculations are most
common. This baseline correction is critical even if an average tablet spectrum is used.

Curved surfaces, debossing, and scoring are factors that affect the spectrum of a tablet as posi-
tioning is varied, but the spectral effects of such factors can be reduced by the methods just discussed.
Natural variations in tablet mass and hardness will affect a tablet’s spectrum, primarily through spec-
tral baseline shifting. Some work by Baxter [126] involved a unique method of normalizing tablet
weight variations.

Baxter concluded that because NIR spectra are “in essence a picture of active per unit area” and
do not allow detection of differences in tablet weight, reference assay values should be normalized for
tablet weight, multiplying the HPLC reference value by the theoretical tablet weight and dividing
by the actual tablet weight. Values predicted from this calibration must then be denormalized by
multiplying the NIR predicted value by the actual tablet weight, divided by the theoretical weight.
Baxter observed a reduction in residual values from 2.17 to 1.57% for 228 tablets for which active
ingredient concentrations were predicted.

In 1997, Candolfi et al. [41] studied the sources of variance in NIR measurements of tablets
and capsules. The sources of variation studied were measurement repeatability, sample positioning,
day-to-day variability, object-to-object variability within a batch, and batch-to-batch variability. For
tablets, positioning and time between measurements were the least significant factors; for capsules,
sample positioning and time contributed the most to the variability of the spectra. Further remarks
indicate that the researchers doubt that the contents of the gelatin capsules were probed. This work
gave one of the early indications of the importance of sample positioning that remains a central issue
to the present.

Researchers validating or performing tests claiming to validate analytical methods based upon
the chemometric analysis of NIR data must take care to establish the complete independence of the
validation samples. Take, for example, a data set of eight spectra collected from each of 20 tablets
sampled from 10 batches. Setting aside one of the eight spectra collected from each tablet does not
constitute an independent validation of the method; similarly, setting aside half of the tablets from
each batch does not constitute an independent validation set. Even though the number of batches is
limited, the only independent validation set available is the removal of a number of batches from the
training and testing set to the validation set. From a compliance perspective, once a batch of samples
have been used to validate the method, changes to the method (particularly those based upon the
results of testing the validation set) render those samples not longer suitable for validation. In this
instance, testing to demonstrate validation will require a new set of samples from which the data
must be collected.

30.9 NEAR-INFRARED IMAGING

Hyperspectral imaging (or NIR imaging) increases the information density of NIR spectroscopy
by combining spectra with spatial information of the locations from which the spectra originate.
NIR as a single-point measurement has been demonstrated to be a robust technique for analysis
of pharmaceutical ingredients; however, it lacks any spatial information beyond the volume of the
sample represented by the spectrum. In hyperspectral imaging, the spatial domain is much like the
field of view for a photograph; the difference is that instead of a color or intensity at each point on
the image an entire NIR spectrum is captured for that point (or pixel). NIR imaging spectroscopy
is not a new technique application and examples have been reported in the mid-1990s [127,128],
however, it has found new interest in the wake of the FDA’s PAT initiative [1].
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Pharmaceutical Applications of NIRS 605

The role of hyperspectral imaging in pharmaceutical manufacturing was discussed by Clarke et al.
[129–131]. In these reports, it is suggested that the combination of chemical and spatial information
provided by NIR imaging can greatly enhance the knowledge of the product and the process that has
produced it. A subsequent paper by Clarke et al. [132] described the depth of penetration in terms of
the thickness of penetration at which 50% of the substrate signal has been attenuated by the layers of
cellulose placed on top of it. The values for this condition varied with wavelength and per sample. At
2380 nm, the 50% attenuation was approximately 27 µm; at 1675 nm, 39 to 61 µm; and at 1100 nm,
ca. 180 µm.

Lyon et al. [133] reported on the value of NIR imaging for trouble-shooting formulations and
pharmaceutical processes by careful analysis of the images. In this work, the importance of image
analysis techniques is emphasized as a means of utilizing the data for purposes beyond intuitive
visual inspection. The use of histograms to describe populations within an image is a key tool to
gain maximum knowledge from images. Further discussions of the application of imaging to solid-
dosage processes [8,134]; wherein LaPlant and Lodder focused on the data processing requirements
of imaging spectroscopy.

Hyperspectral imaging of freeze-dried solid-dosage formulations have been recently published
[135]. The ability to characterize both the morphological and chemical properties of a freeze-dried
formulation is a critical element to the complete description the dosage forms studied.

30.10 CONCLUSIONS

Tremendous advances have been made recently in the use of NIR spectroscopy for the analysis
of pharmaceutical dosage forms. Just 25 years ago, NIR spectroscopy was used in a way that
offered relatively few advantages over other analytical methods for the analysis of dosage form
drug content, requiring extractions with organic solvents prior to sample analysis. With advances in
instrumentation, software, and sample handling, rapid characterization of intact dosage forms has
become a reality. The pharmaceutical industry is beginning to implement NIR methods to monitor
many phases of the manufacturing process, from the arrival of bulk raw material at the loading dock,
to the inspection of tablets for final release.

Myths about the “black box” nature of this method have been debunked, and as those involved
in analytical methods development, process control, and quality assurance acquire a more thorough
understanding of NIR spectroscopy and its capabilities, pharmaceutical applications will become
even more widespread. NIR instruments are becoming faster, smaller, and less expensive, increasing
their potential for application as process monitors in many phases of the manufacturing process.
Similarly, increased computer storage and power are becoming rapidly cheaper. Pharmaceutical
manufacturers are under increasing pressure to validate their processes and to provide extensive
documentation of ongoing validation activities. NIR has proven itself to be a rapid and rugged
analytical method capable of continuous on-line process monitoring, making it a valuable method
to couple with ongoing validation activities.

The FDA has recognized the value of NIR spectroscopy, and has already approved the method
for the analysis of lincomycin in a veterinary product [136]. More recently, NIR spectroscopy
has been employed in the qualification of incoming raw materials, and the FDA is working with
pharmaceutical manufacturers to develop and implement other NIR-based methods, with several
having been approved.

In many ways, NIR spectroscopy is an ideal method for pharmaceutical process control, partic-
ularly for the analysis of intact dosage forms. As production costs, including analytical expenses,
continue to increase, the advantages of NIR spectroscopy will become more attractive. With NIR
spectroscopy, the pharmaceutical industry will move one step closer to “zero-defect” quality control,
making the costs associated with the method’s development well spent.
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(e.g., defects) within at most 1% of the true value. (The least precise estimate occurs when
p � 0.5.)

3.4 CONTINUOUS DATA DISTRIBUTIONS

Another view of probability concerns continuous data such as tablet dissolution time. The
probability that any single tablet will have a particular specified dissolution result is 0,
because the number of possible outcomes for continuous data is infinite. Probability can
be conceived as the ratio of the number of times that an event occurs to the total number
of possible outcomes. If the total number of outcomes is infinite, the probability of any
single event is zero. This concept can be confusing. If one observes a large number of
dissolution results, such as time to 90% dissolution, any particular observation might
appear to have a finite probability of occurring. Analogous to the discussion for discrete
data, could we not make an equitable bet that a result for dissolution of exactly 5 min 13
sec, for example, would be observed? The apparent contradiction is due to the fact that
data which are continuous, in theory, appear as discrete data in practice because of the
limitations of measuring instruments, as discussed in Chapter 1. For example, a sensitive
clock could measure time to virtually any given precision (i.e., to small fractions of a
second). It would be difficult to conceive of winning a bet that a 90% dissolution time
would occur at a very specific time, where time can be measured to any specified degree
of precision (e.g., 30 min 8.21683475 … sec).

With continuous variables, we cannot express probabilities in as simple or intuitive
a fashion as was done with discrete variables. Applications of calculus are necessary to
describe concepts of probability with continuous distributions. Continuous cumulative
probability distributions are represented by smooth curves (Fig. 3.7) rather than the steplike
function shown in Fig. 3.5B. The area under the probability distribution curve (also known
as the cumulative probability density) is equal to 1 for all probability functions. Thus the
area under the normal distribution curve in Fig. 3.7A is equal to 1.

3.4.1 The Normal Distribution

The normal distribution is an example of a continuous probability density function. The
normal distribution is most familiar as the symmetrical, bell-shaped curve shown in Fig.
3.8. A theoretical normal distribution is a continuous probability distribution and consists
of an infinite number of values. In the theoretical normal distribution, the data points extend
from positive infinity to negative infinity. It is clear that scientific data from pharmaceutical
experiments cannot possibly fit this definition. Nevertheless, if real data conform reason-
ably well with the theoretical definition of the normal curve, adequate approximations, if
not very accurate estimates of probability, can be computed based on normal curve theory.

The equation for the normal distribution (normal probability density) is

(3.13)Y e X= − −1

2
1 2 2 2

σ π
µ σ( / )( ) /

where

� � standard deviation
� � mean
X � value of the observation
e � base of natural logarithms, 2.718…

Y � ordinate of normal curve, a function of X
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Figure 3.7 A normal distribution.

Figure 3.8 A typical normal curve.
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The normal distribution is defined by its mean, �, and its standard deviation, � [see
Eq. (3.13)]. This means that if these two parameters of the normal distribution are known,
all the properties of the distribution are known. There are any number of different normal
distributions. They all have the typical symmetrical, bell-shaped appearance. They are
differentiated only by their means, a measure of location, and their standard deviation, a
measure of spread. The normal curve shown in Fig. 3.8 can be considered to define the
distribution of the potencies of tablets in a batch of tablets. Most of the tablets have a
potency close to the mean potency of 50 mg. The farther the assay values are from the
mean, the fewer the number of tablets there will be with these more extreme values. As
noted above, the spread or shape of the normal distribution is dependent on the standard
deviation. A large standard deviation means that the spread is large. In this example, a
larger s.d. means that there are more tablets far removed from the mean, perhaps far
enough to be out of specifications (see Fig. 3.9).

In real-life situations, the distribution of a finite number of values often closely approx-
imates a normal distribution. Weights of tablets taken from a single batch may be approxi-
mately normally distributed. For practical purposes, any continuous distribution can be
visualized as being constructed by categorizing a large amount of data in small equilength
intervals and constructing a histogram. Such a histogram can similarly be constructed for
normally distributed variables.

Suppose that all the tablets from a large batch are weighed and categorized in small
intervals or boxes (see Fig. 3.10). The number of tablets in each box is counted and a
histogram plotted as in Fig. 3.11. As more boxes are added and the intervals made shorter,
the intervals will eventually be so small that the distinction between the bars in the histo-
gram is lost and a smooth curve results, as shown in Fig. 3.12. In this example, the
histogram of tablet weights looks like a normal curve.

Areas under the normal curve represent probabilities and are obtained by appropriate
integration of Eq. (3.13). In Fig. 3.7, the probability of observing a value between Z1 and
Z2 is calculated by integrating the normal density function between Z1 and Z2.

This function is not easily integrated. However, tables are available that can be used
to obtain the area between any two values of the variable, Z. Such an area is illustrated

Figure 3.9 Two normal curves with different standard deviations.
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Figure 3.10 Categorization of tablets from a tablet batch by weight.

in Fig. 3.7A. If the area between Z1 and Z2 in Fig. 3.7 is 0.3, the probability of observing
a value between Z1 and Z2 is 3 in 10 or 0.3. In the case of the tablet potencies, the area
in a specified interval can be thought of as the proportion of tablets in the batch contained
in the interval. This concept is illustrated in Fig. 3.13.

Probabilities can be determined directly from the cumulative distribution plot as shown
in Fig. 3.7B (see Exercise Problem 9). The probability of observing a value below Z1 is
0.6. Therefore, the probability of observing a value between Z1 and Z2 is 0.9 � 0.6 �
0.3.

There are an infinite number of normal curves depending on � and �. However, the
area in any interval can be calculated from tables of cumulative areas under the standard
normal curve. The standard normal curve has a mean of 0 and a standard deviation of 1.
Table IV.2 in App. IV is a table of cumulative areas under the standard normal curve,
giving the area below Z (i.e., the area between �� and Z). For example, for Z � 1.96,
the area in Table IV.2 is 0.975. This means that 97.5% of the values comprising the

Figure 3.11 Histogram of tablet weights.
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Figure 3.12 Histogram of tablet weights with small class intervals.

Figure 3.13 Area under normal curve as a representation of proportion of tablets in an
interval.
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Figure 3.14 Symmetry of the normal curve.

standard normal curve are less than 1.96, lying between �� and 1.96. The normal curve
is symmetrical about its mean. Therefore, the area below �1.96 is 0.025 as depicted in
Fig. 3.14. The area between Z equal to �1.96 and �1.96 is 0.95. Referring to Table
IV.2, the area below Z equal to �2.58 is 0.995, and the area below Z � �2.58 is 0.005.
Thus the area between Z equal to �2.58 and �2.58 is 0.99. It would be very useful for
the reader to memorize the Z values and the corresponding area between 	Z as shown
in Table 3.4. These values of Z are commonly used in statistical analyses and tests.

The area in any interval of a normal curve with a mean and standard deviation different
from 0 and 1, respectively, can be computed from the standard normal curve table by
using a transformation. The transformation changes a value from the normal curve with
mean � and standard deviation �, to the corresponding value, Z, in the standard normal
curve. The transformation is

(3.14)Z
X= −µ

σ

The area (probability) between �� and X (i.e., the area below X) corresponds to the
value of the area below Z from the cumulative standard normal curve table. Note that

Table 3.4 Area Between 	Z for
Some Commonly Used Values of Z

Z Area between 	Z

0.84 0.60
1.00 0.68
1.28 0.80
1.65 0.90
1.96 0.95
2.32 0.98
2.58 0.99
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if the normal curve which we are considering is the standard normal curve itself, the
transformation results in the identity

Z
X

X= − =0

1

Z is exactly equal to X, as expected. Effectively the transformation changes variables with
a mean of � and a standard deviation of � to variables with a mean of 0 and a standard
deviation of 1.

Suppose in the example of tablet potencies that the mean is 50 and the standard
deviation is 5 mg. Given these two parameters, what proportion of tablets in the batch
would be expected to have more than 58.25 mg of drug? First we calculate the transformed
value, Z. Then the desired proportion (equivalent to probability) can be obtained from
Table IV.2. In this example, X � 58.25, � � 50, and � � 5. Referring to Eq. (3.14),
we have

Z
X= −

= − =

µ
σ

58 25 50

5
1 65

.
.

According to Table IV.2, the area between �� and 1.65 is 0.95. This represents the
probability of a tablet having 58.25 mg or less of drug. Since the question was, ‘‘What
proportion of tablets in the batch have a potency greater than 58.25 mg?’’, the area above
58.25 mg is the correct answer. The area under the entire curve is 1; the area above 58.25
mg is 1 � 0.95, equal to 0.05. This is equivalent to saying that 5% of the tablets have
at least 58.25 mg (58.25 mg or more) of drug in this particular batch or distribution of
tablets. This transformation is illustrated in Fig. 3.15.

One should appreciate that since the normal distribution is a perfectly symmetrical
continuous distribution which extends from �� to ��, real data never exactly fit this
model. However, data from distributions reasonably similar to the normal can be treated
as being normal, with the understanding that probabilities will be approximately correct.
As the data are closer to normal, the probabilities will be more exact. Methods exist to

Figure 3.15 Z transformation for tablets with mean of 50 mg and s.d. of 5 mg.
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test if data can reasonably be expected to be derived from a normally distributed population
[1]. In this book, when applying the normal distribution to data we will either (a) assume
that the data are close to normal according to previous experience or from an inspection
of the data, or (b) that deviations from normality will not greatly distort the probabilities
based on the normal distribution.

Several examples are presented below which further illustrate applications of the
normal distribution.

Example 1: The U.S. Pharmacopia (USP) weight test for tablets states that for tablets
weighing up to 100 mg, not more than 2 of 20 tablets may differ from the average weight
by more than 10%, and no tablet may differ from the average weight by more than 20%
[2]. To ensure that batches of a 100-mg tablet (labeled as 100 mg) will pass this test
consistently, a statistician recommended that 98% of the tablets in the batch should weigh
within 10% of the mean. One thousand tablets from a batch of 3,000,000 were weighed
and the mean and standard deviation were calculated as 101.2 	 3.92 mg. Before perform-
ing the official USP test, the quality control supervisor wishes to know if this batch meets
the statistician’s recommendation. The calculation to answer this problem can be made
using areas under the standard normal curve if the tablet weights can be assumed to have
a distribution that is approximately normal. For purposes of this example, the sample mean
and standard deviation will be considered equal to the true batch mean and standard
deviation. Although not exactly true, the sample estimates will be close to the true values
when a sample as large as 1000 is used. For this large sample size, the sample estimates
are very close to the true parameters. However, one should clearly understand that to
compute probabilities based on areas under the normal curve, both the mean and standard
deviation must be known. When these parameters are estimated from the sample statistics,
other derived distributions can be used to calculate probabilities.

Figure 3.16 shows the region where tablet weights will be outside the limits, 10%
from the mean (� 	 0.1�), that is, 10.12 mg or more from the mean for an average tablet
weight of 101.2 mg (101.2 	 10.12 mg). The question to be answered is: What proportion

Figure 3.16 Distribution of tablets with mean weight 101.2 mg and standard deviation
equal to 3.92.
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of tablets is between 91.1 and 111.3 mg? If the answer is 98% or greater, the requirements
are met. The proportion of tablets between 91.1 and 111.3 mg can be estimated by comput-
ing the area under the normal curve in the interval 91.1 to 111.3, the unshaded area in
Fig. 3.16. This can be accomplished by use of the Z transformation and the table of areas
under the standard normal curve (Table IV.2). First we calculate the areas below 111.3
using the Z transformation:

Z
X= − = − =µ

σ
111 3 101 2

3 92
2 58

. .

.
.

This corresponds to an area of 0.995 (see Table IV.2). The area above 111.3 is (1 �
0.995) � 0.005 or 1/200. Referring to Fig. 3.16, this area represents the probability of
finding a tablet that weighs 111.3 mg or more. The probability of a tablet weighing 91.1
mg or less is calculated in a similar manner

Z = − =91 1 101 2

3 92
2 58

. .

.
.−

Table IV.2 shows that this area is 0.005; that is, the probability of a tablet weighing
between �� and 91.1 mg is 0.005. The probability that a tablet will weigh more than
111.3 mg or less than 91.1 mg is 0.005 � 0.005, equal to 0.01. Therefore, 99% (1.00 �
0.01) of the tablets weigh between 91.1 and 111.3 mg and the statistician’s recommendation
is more than satisfied. The batch should have no trouble passing the USP test.

The fact that the normal distribution is symmetric around the mean simplifies calcula-
tions of areas under the normal curve. In the example above, the probability of values
exceeding Z equal to 2.58 is exactly the same as the probability of values being less than
Z equal to �2.58. This is a consequence of the symmetry of the normal curve, 2.58 and
�2.58 being equidistant from the mean. This is easily seen from an examination of Fig.
3.16.

Although this batch of tablets should pass the USP weight uniformity test, if some
tablets in the batch are out of the 10 or 20% range, there is a chance that a random sample
of 20 will fail the USP test. In our example, about 1% or 30,000 tablets will be more than
10% different from the mean (less than 91.1 or more than 111.3 mg). It would be of
interest to know the chances, albeit small, that of 20 randomly chosen tablets, more than
2 would be ‘‘aberrant.’’ When 1% of the tablets in a batch deviate from the batch mean
by 10% or more, the chances of finding more than 2 such tablets in a sample of 20 is
approximately 0.001 (1/1000). This calculation makes use of the binomial probability
distribution.

Example 2: During clinical trials, serum cholesterol, among other serum components,
is frequently monitored to ensure that a patient’s cholesterol is within the normal range,
as well as to observe possible drug effects on serum cholesterol levels. A question of
concern is: What is an abnormal serum cholesterol value? One way to define ‘‘abnormal’’
is to tabulate cholesterol values for apparently normal healthy persons, and to consider
values very remote from the average as abnormal. The distribution of measurements such
as serum cholesterol often have an approximately normal distribution.

The results of the analysis of a large number of ‘‘normal’’ cholesterol values showed
a mean of 215 mg % and a standard deviation of 35 mg %. This data can be depicted as
a normal distribution as shown in Fig. 3.17. ‘‘Abnormal’’ can be defined in terms of the
proportion of ‘‘normal’’ values that fall in the extremes of the distribution. This may be
thought of in terms of a gamble. By choosing to say that extreme values observed in a
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Figure 3.17 Distribution of ‘‘normal’’ cholesterol values.

new patient are abnormal, we are saying that persons observed to have very low or high
cholesterol levels could be ‘‘normal,’’ but the likelihood or probability that they come
from the population of normal healthy persons is small. By defining an abnormal choles-
terol value as one that has a 1 in 1000 chance of coming from the distribution of values
from normal healthy persons, cutoff points can be defined for abnormality based on the
parameters of the normal distribution. According to the cumulative standard normal curve,
Table IV.2, a value of Z equal to approximately 3.3 leaves 0.05% of the area in the upper
tail. Because of the symmetry of the normal curve, 0.05% of the area is below Z � �3.3.
Therefore, 0.1% (1/1000) of the values will lie outside the values of Z equal to 	3.3 in
the standard normal curve. The values of X (cholesterol levels) corresponding to Z �
	3.3 can be calculated from the Z transformation.

Z
X X

X

= − = − = ±

= ± =

µ
σ

215

35
3 3

215 3 3 35 99 331

.

( . )( ) and

This is equivalent to saying that cholesterol levels which deviate from the average of
‘‘normal’’ persons by 3.3 standard deviation units or more are deemed to be abnormal.
For example, the lower limit is the mean of the ‘‘normals’’ minus 3.3 times the standard
deviation or 215 � (3.3)(35) � 99. The cutoff points are illustrated in Fig. 3.17.

Example 3: The standard normal distribution may be used to calculate the proportion
of values in any interval from any normal distribution. As an example of this calculation,
consider the data of cholesterol values in Example 2. We may wish to calculate the propor-
tion of cholesterol values between 200 and 250 mg %.

Examination of Fig. 3.18 shows that the area (probability) under the normal curve
between 200 and 250 mg % is the probability of a value being less than 250 minus the
probability of a value being less than 200. Referring to Table IV.2, we have:

Probability of a value less than 250:

250 215

35
1 0 841

− = = =Z probability .
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Figure 3.18 Illustration of the calculation of proportion of cholesterol values between
200 and 250 mg %.

Probability of a value less than 200:

200 215

35
0 429 0 334

− = = =. .Z probability−

Therefore, the probability of a value falling between 250 and 200 is

0.841 � 0.334 � 0.507

3.4.2 Central Limit Theorem

‘‘Without doubt, the most important theorem in statistics is the central limit theorem’’[3].
This theorem states that the distribution of sample means of size N taken from any distribu-
tion with a finite variance �2 and mean � tends to be normal with variance �2/N and
mean �. We have previously discussed the fact that a sample mean of size N has a variance
equal to �2/N. The new and important feature here is that if we are dealing with means
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of sufficiently large sample size, the means have a normal distribution, regardless of the
form of the distribution from which the samples were selected.

How large is a ‘‘large’’ sample? The answer to this question depends on the form of
the distribution from which the samples are taken. If the distribution is normal, any size
sample will have a mean that is normally distributed. For distributions that deviate greatly
from normality, larger samples will be needed to approximate normality than distributions
which are more similar to the normal distributions (e.g., symmetrical distributions).

The power of this theorem is that the normal distribution can be used to describe
most of the data with which we will be concerned, provided that the means come from
samples of sufficient size. An example will be presented to illustrate how means of distribu-
tions far from normal tend to be normally distributed as the sample size increases. Later
in this chapter we will see that even the discrete binomial distribution, where only a very
limited number of outcomes are possible, closely approximates the normal distribution
with sample sizes as small as 10 in symmetrical cases (e.g., p � q � 0.5).

Consider a distribution which consists of outcomes 1, 2, and 3 with probabilities
depicted in Fig. 3.19. The probabilities of observing values of 1, 2, and 3 are 0.1, 0.3,
and 0.6, respectively. This is an asymmetric distribution, with only three discrete outcomes.
The mean is 2.5. Sampling from this population can be simulated by placing 600 tags
marked with the number 3, 300 tags marked with the number 2, and 100 tags marked
with the number 1 in a box. We will mix up the tags, select 10 (replacing each tag and
mixing after each individual selection), and compute the mean of the 10 samples. A typical
result might be five tags marked 3, four tags marked 2, and one tag marked 1, an average
of 2.4. With a computer or programmable calculator, we can simulate this drawing of 10
tags. The distributions of 100 such means for samples of sizes 10 and 20 obtained from
a computer simulation are shown in Fig. 3.20. The distribution is closer to normal as the
sample size is increased from 10 to 20. This is an empirical demonstration of the central
limit theorem. Of course, under ordinary circumstances, we would not draw 100 samples
each of size 10 (or 20) to demonstrate a result that can be proved mathematically.

3.4.3 Normal Approximation to the Binomial

A very important result in statistical theory is that the binomial probability distribution
can be approximated by the normal distribution if the sample size is sufficiently large (see

Figure 3.19 Probability distribution of outcomes 1, 2, and 3.
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Figure 3.20 Distribution of means of sizes 10 and 20 from population shown in Fig.
3.19.

Sec. 3.4.2). A conservative rule of thumb is that if Np (the product of the number of
observations and the probability of success) and Nq are both greater than or equal to 5,
we can use the normal distribution to approximate binomial probabilities. With symmetric
binomial distributions, when p � q � 0.5, the approximation works well for Np less than
5.

To demonstrate the application of the normal approximation to the binomial, we will
examine the binomial distribution described above, where N � 10 and p � 0.5. We can
superimpose a normal curve over the binomial with � � 5 (number of successes) and
standard deviation �Npq � �10(0.5)(0.5) � 1.58, as shown in Fig. 3.21.

The probability of a discrete result can be calculated using the binomial probability
[Eq. (3.9)] or Table IV.3. The probability of seven successes, for example, is equal to
0.117. In a normal distribution, the probability of a single value cannot be calculated. We
can only calculate the probability of a range of values within a specified interval. The
area that approximately corresponds to the probability of observing seven successes in 10
trials is the area between 6.5 and 7.5, as illustrated in Fig. 3.21. This area can be obtained
using the Z transformation discussed earlier in this chapter [Eq. (3.14)]. The area between
6.5 and 7.5 is equal to the area below 7.5 minus the area below 6.5.

Area below 6.5:

Z �
6.5 � 5

1.58
� 0.948 from Table IV.2, area � 0.828
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Figure 3.21 Normal approximation to binomial distribution: Np � 5 and s.d. � 1.58.

Area below 7.5:

Z �
7.5 � 5

1.58
� 1.58 from Table IV.2, area � 0.943

Therefore, the area (probability) between 6.5 and 7.5 is

0.943 � 0.828 � 0.115

This area is very close to the exact probability of 0.117.
The use of X 	 0.5 to help estimate the probability of a discrete value, X, using a

continuous distribution (e.g., the normal distribution) is known as a continuity correction.
We will see that the continuity correction is commonly used to improve the estimation
of binomial probabilities by the normal approximation (Chap. 5).

Most of our applications of the binomial distribution will involve data that allow for
the use of the normal approximation to binomial probabilities. This is convenient because
calculations using exact binomial probabilities are tedious and much more difficult than
the calculations using the standard normal cumulative distribution (Table IV.2), particu-
larly when the sample size is large.

3.5 OTHER COMMON PROBABILITY DISTRIBUTIONS

3.5.1 The Poisson Distribution

Although we will not discuss this distribution further in this book, the Poisson distribution
deserves some mention. The Poisson distribution can be considered to be an approximation
to the binomial distribution when the sample size is large and the probability of observing
a specific event is small. In quality control, the probability of observing a defective item
is often calculated using the Poisson. The probability of observing X events of a given
kind in N observations, where the probability of observing the event in a single observation
is P, is

(3.15)p X
e

X

X

( )
!

=
−λ λ
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where

� � NP
e � base of natural logarithms (2.718 . . .)
N � number of observations

We may use the Poisson distribution to compute the probability of finding one defective
tablet in a sample of 100 taken from a batch with 1% defective tablets. Applying Eq.
(3.15), we have

N P NP

P
e

e

= = = = =

= = =
−

−

100 0 01 100 0 01 1

1
1

1
0 368

1 1
1

. ( )( . )

( )
( ) ( )

!
.

λ

The exact probability calculated from the binomial distribution is 0.370. (See Exercise
Problem 8.)

3.5.2 The t Distribution (‘‘Student’s t’’)

The t distribution is an extremely important probability distribution. This distribution can
be constructed by repeatedly taking samples of size N from a normal distribution and
computing the statistic

(3.16)t
X

S N
= −

−
µ

/

where X̄ is the sample mean, � the true mean of the normal distribution, and S the sample
standard deviation. The distribution of the t’s thus obtained forms the t distribution. The
exact shape of the t distribution depends on sample size (degrees of freedom), but the t
distribution is symmetrically distributed about a mean of zero, as shown in Fig. 3.22A.

To elucidate further the concept of a sampling distribution obtained by repeated sam-
pling, as discussed for the t distribution above, a simulated sampling of 100 samples each
of size 4 (N � 4) was performed. These samples were selected from a normal distribution
with mean 50 and standard deviation equal to 5, for this example. The mean and standard
deviation of each sample of size 4 were calculated and a t ratio [Eq. (3.16)] constructed.

Figure 3.22 Examples of typical probability distributions.
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Table 3.5 Frequency Distribution
of 100 t Values Obtained by
Simulated Repeat Sampling from a
Normal Distribution with Mean 50
and Standard Deviation 5a

Class interval Frequency

�5.5 to �4.5 1
�4.5 to �3.5 2
�3.5 to �2.5 2
�2.5 to �1.5 11
�1.5 to �0.5 18
�0.5 to �0.5 29
�0.5 to �1.5 21
�1.5 to �2.5 9
�2.5 to �3.5 4
�3.5 to �4.5 2
�4.5 to �5.5 1

a Sample size � 4.

The distribution of the 100 t values thus obtained is shown in Table 3.5. The data are
plotted (histogram) together with the theoretically derived t distribution with 3 degrees of
freedom (N � 1 � 4 � 1 � 3) in Fig. 3.23. Note that the distribution is symmetrically
centered around a mean of 0, and that 5% of the t values are 3.18 or more units from the
mean (theoretically).

3.5.3 The Chi-Square (�2) Distribution

Another important probability distribution in statistics is the chi-square distribution. The
chi-square distribution may be derived from normally distributed variables, defined as the
sum of squares of independent normal variables, each of which has mean 0 and standard
deviation 1. Thus, if Z is normal with � � 0 and � � 1,

Figure 3.23 Simulated t distribution (d.f. � 3) compared to a theoretical t distribution.
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(3.17)χ2 2= ∑Zi

Applications of the chi-square distribution are presented in Chapters 5 and 15. The chi-
square distribution is often used to assess probabilities when comparing discrete values
from comparative groups, where the normal distribution can be used to approximate dis-
crete probabilities.

As with the t distribution, the distribution of chi-square depends on degrees of freedom,
equal to the number of independent normal variables as defined in Eq. (3.17). Figure
3.22B shows chi-square distributions with 1 and 3 degrees of freedom.

3.5.4 The F Distribution

After the normal distribution, the F distribution is probably the most important probability
distribution used in statistics. This distribution results from the sampling distribution of
the ratio of two independent variance estimates obtained from the same normal distribution.
Thus the first sample consists of N1 observations and the second sample consists of N2

observations:

(3.18)F
S

S
= 1

2

2
2

The F distribution depends on two parameters, the degrees of freedom in the numerator
(N1 � 1) and the degrees of freedom in the denominator (N2 � 1). This distribution is
used to test for differences of means (analysis of variance) as well as to test for the equality
of two variances. The F distribution is discussed in more detail in Chaps. 5 and 8 as
applied to the comparison of two variances and testing of equality of means in the analysis
of variance, respectively.

KEY TERMS

Binomial distribution Independent events
Binomial formula Multiplicative probability
Binomial trial Mutually exclusive
Central limit theorem Normal distribution
Chi-square distribution Outcome
Combinations Poisson distribution
Conditional probability Population
Continuous distribution Probability distribution
Cumulative distribution Proportion
Density function Random
Discontinuous variable Randomly chosen
Discrete distribution Standard normal distribution
Distribution Success
Equally likely t distribution
Event Variability
Factorial Z transformation
Failure
F distribution
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LINEAR REGRESSION AND CORRELATION

Simple linear regression analysis is a statistical technique that defines the functional rela-
tionship between two variables, X and Y, by the ‘‘best-fitting’’ straight line. A straight
line is described by the equation, Y � A � BX, where Y is the dependent variable
(ordinate), X is the independent variable (abscissa), and A and B are the Y intercept
and slope of the line, respectively (see Fig. 7.1).* Applications of regression analysis in
pharmaceutical experimentation are numerous. This procedure is commonly used:

1. To describe the relationship between variables where the functional relationship
is known to be linear, such as in Beer’s law plots, where optical density is plotted
against drug concentration

2. When the functional form of a response is unknown, but where we wish to repre-
sent a trend or rate as characterized by the slope (e.g., as may occur when follow-
ing a pharmacological response over time)

3. When we wish to describe a process by a relatively simple equation that will
relate the response, Y, to a fixed value of X, such as in stability prediction (concen-
tration of drug versus time).

In addition to the specific applications noted above, regression analysis is used to
define and characterize dose-response relationships, for fitting linear portions of pharmaco-
kinetic data, and in obtaining the best fit to linear physical-chemical relationships.

Correlation is a procedure commonly used to characterize quantitatively the relation-
ship between variables. Correlation is related to linear regression, but its application and
interpretation are different. This topic is introduced at the end of this chapter.

* The notation Y � A � BX is standard in statistics. We apologize for any confusion that may
result from the reader’s familiarity with the equivalent, Y � mX � b, used frequently in analytical
geometry.

173
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Figure 7.1 Straight-line plot.

7.1 INTRODUCTION

Straight lines are constructed from sets of data pairs, X and Y. Two such pairs (i.e., two
points) uniquely define a stright line. As noted previously, a straight line is defined by
the equation

(7.1)Y A BX= +

where A is the Y intercept (the value of Y when X � 0) and B is the slope (�Y/�X).
�Y/�X is (Y2 � Y1)/(X2 � X1) for any two points on the line (see Fig. 7.1). The slope
and intercept define the line; once A and B are given, the line is specified. In the elementary
example of only two points, a statistical approach to define the line is clearly unnecessary.

In general, with more than two X, y points,* a plot of y versus X will not exactly
describe a straight line, even when the relationship is known to be linear. The failure of
experimental data derived from truly linear relationships to lie exactly on a straight line
is due to errors of observation (experimental variability). Figure 7.2 shows the results of
four assays of drug samples of different, but known potency. The assay results are plotted
against the known amount of drug. If the assays are performed without error, the plot
results in a 45� line (slope � 1) which, if extended, passes through the origin; that is, the
Y intercept, A, is 0 (Fig. 7.2A). In this example, the equation of the line Y � A � BX is
Y � 0 � 1(X), or Y � X. Since there is no error in this experiment, the line passes exactly
through the four X, Y points.

Real experiments are not error free, and a plot of X, y data rarely exactly fits a straight
line, as shown in Fig. 7.2B. We will examine the problem of obtaining a line to fit data

* In the rest of this chapter, y denotes the experimentally observed point, and Y denotes the corre-
sponding point on the least squares ‘‘fitted’’ line (or the true value of Y, according to context).
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Figure 7.2 Plot of assay recovery versus known amount: theoretical and actual data.

that are not error free. In these cases, the line does not go exactly through all of the points.
A ‘‘good’’ line, however, should come ‘‘close’’ to the experimental points. When the
variability is small, a line drawn by eye will probably be very close to that constructed
more exactly by a statistical approach (Fig. 7.3A). With large variability, the ‘‘best’’ line
is not obvious. What single line would you draw to best fit the data plotted in Fig. 7.3B?
Certainly, lines drawn through any two arbitrarily selected points will not give the best
(or a unique) line to fit the totality of data.

Given N pairs of variables, X, y, we can define the best straight line describing the
relationship of X and y as that line which minimizes the sum of squares of the vertical

Figure 7.3 Fit of line with variable data.
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Figure 7.4 Lack of fit due to (A) experimental error and (B) nonlinearity.

distances of each point from the fitted line. The definition of ‘‘sum of squares of the
vertical distances of each point from the fitted line’’ (see Fig. 7.4) is written mathematically
as �(y � Y)2, where y represents the experimental points and Y represents the correspond-
ing points on the fitted line. The line constructed according to this definition is called the
least squares line. Applying techniques of calculus, the slope and intercept of the least
squares line can be calculated from the sample data as follows:

(7.2)Slope = =
− −

−
∑

∑
b

X X y y

X X

( )( )

( )2

(7.3)Intercept = = −a y bX

Remember that the slope and intercept uniquely define the line.
There is a shortcut computing formula for the slope, similar to that described previ-

ously for the standard deviation:

(7.4)b
N Xy X y

N X X
=

− ( )( )
− ( )
∑∑ ∑

∑∑ 2 2

where N is the number of X, y pairs. The calculation of the slope and intercept is relatively
simple, and can usually be quickly computed with a hand calculator. Some calculators
have a built-in program for calculating the regression parameter estimates, a and b.*

* a and b are the sample estimates of the true parameters, A and B.
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Table 7.1 Raw Data from Fig. 7.2A to Calculate the Least
Squares Line

Drug potency, X Assay, y Xy

60 60 3,600
80 80 6,400

100 100 10,000
120 120 14,400

∑ X � 360 ∑ y � 360 ∑ Xy � 34,400
∑ X2 � 34,400

For the example shown in Fig. 7.2A, the line that exactly passes through the four
data points has a slope of 1 and an intercept of 0. The line, Y � X, is clearly the best line
for these data, an exact fit. The least squares line, in this case, is exactly the same line,
Y � X. The calculation of the intercept and slope using the least squares formulas, Eqs.
(7.3) and (7.4), is illustrated below. Table 7.1 shows the raw data used to construct the
line in Fig. 7.2A.

According to Eq. (7.4) (N � 4, � X2 � 34,400, � Xy � 34,400, � X � � y �
360),

b = + + + −
−

=( )( , , ) ( )( )

( , ) ( )

4 3600 6400 10 000 14 000 360 360

4 34 400 360 2
11

a is computed from Eq. (7.3); a � ȳ � bX̄ (ȳ � X̄ � 90, b � 1). a � 90 � 1(90) �
0. This represents a situation where the assay results exactly equal the known drug potency
(i.e., there is no error).

The actual experimental data depicted in Fig. 7.2B are shown in Table 7.2. The slope
b and the intercept a are calculated from Eqs. (7.4) and (7.3). According to Eq. (7.4),

b = −
−

=( )( , ) ( )( )

( , ) ( )
.

4 33 600 360 353

4 34 400 360
0 915

2

According to Eq. (7.3),

Table 7.2 Raw Data from Fig. 7.2B Used to Calculate the Least
Squares Line

Drug potency, X Assay, y Xy

60 63 3,780
80 75 6,000

100 99 9,900
120 116 13,920

∑ X � 360 ∑ y � 353 ∑ Xy � 33,600
∑ X2 � 34,400 ∑ y2 � 32,851
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a = − =353

4
0 915 90 5 9. ( ) .

A perfect assay (no error) has a slope of 1 and an intercept of 0, as shown above. The
actual data exhibit a slope close to 1, but the intercept appears to be too far from 0 to be
attributed to random error. Exercise Problem 2 addresses the interpretation of these results
as they relate to assay method characteristics.

This example suggests several questions and problems regarding linear regression
analysis. The line that best fits the experimental data is an estimate of some true relationship
between X and Y. In most circumstances, we will fit a straight line to such data only if
we believe that the true relationship between X and Y is linear. The experimental observa-
tions will not fall exactly on a straight line because of variability (e.g., error associated
with the assay). This situation (true linearity associated with experimental error) is different
from the case where the underlying true relationship between X and Y is not linear. In the
latter case, the lack of fit of the data to the least squares line is due to a combination of
experimental error and the lack of linearity of the X, Y relationship (see Fig. 7.4). Elemen-
tary techniques of simple linear regression will not differentiate these two situations: (a)
experimental error with true linearity and (b) experimental error and nonlinearity. (A
design to estimate variability due to both nonlinearity and experimental error is given in
App. II.)

We will discuss some examples relevant to pharmaceutical research which make
use of least squares linear regression procedures. The discussion will demonstrate how
variability is estimated and used to construct estimates and tests of the line parameters A
and B.

7.2 ANALYSIS OF STANDARD CURVES IN DRUG ANALYSIS:
APPLICATION OF LINEAR REGRESSION

The assay data discussed previously can be considered as an example of the construction
of a standard curve in drug analysis. Known amounts of drug are subjected to an assay
procedure, and a plot of percentage recovered (or amount recovered) versus amount added
is constructed. Theoretically, the relationship is usually a straight line. A knowledge of
the line parameters A and B can be used to predict the amount of drug in an unknown
sample based on the assay results. In most practical situations, A and B are unknown. The
least squares estimates a and b of these parameters are used to compute drug potency (X)
based on the assay response (y). For example, the least squares line for the data in Fig.
7.2B and Table 7.2 is

(7.5)Assay result potency= +5 9 0 915. . ( )

Rearranging Eq. (7.5), an unknown sample which has an assay value of 90 can be predicted
to have a true potency of

Potency X
y

Potency

= = −

= − =

5 9

0 915
90 5 9

0 915
91 9

.

.
.

.
.

This point (91.9, 90) is indicated in Fig. 7.2 by a cross.
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Figure 7.5 Plot of data in Table 7.2 with known (0, 0) intercept.

7.2.1 Line Through the Origin

Many calibration curves (lines) are known to pass through the origin; that is, the assay
response must be zero if the concentration of drug is zero. The calculation of the slope
is simplified if the line is forced to go through the point (0,0). In our example, if the
intercept is known to be zero, the slope is (see also Table 7.2)

(7.6)

b
Xy

X
=

=
+ + +

=

∑
∑ 2

2 2 2 2

33 600

60 80 100 120
0 977

,
.

The least squares line fitted with the zero intercept is shown in Fig. 7.5. If this line were
to be used to predict actual concentrations based on assay results, we would obtain answers
which are different from those predicted from the line drawn in Fig. 7.2B. However, both
lines have been constructed from the same raw data. ‘‘Is one of the lines correct?’’ or ‘‘Is
one line better than the other?’’ Although one cannot say with certainty which is the better
line, a thorough knowledge of the analytical method will be important in making a choice.
For example, a nonzero intercept suggests either nonlinearity over the range of assays or
the presence of an interfering substance in the sample being analyzed. The decision of
which line to use can also be made on a statistical basis. A statistical test of the intercept
can be performed under the null hypothesis that the intercept is 0 (H0: A � 0, Sec.
7.4.1). Rejection of the hypothesis would be strong evidence that the line with the positive
intercept best represents the data.

7.3 ASSUMPTIONS IN TESTS OF HYPOTHESES IN LINEAR
REGRESSION

Although there are no prerequisites for fitting a least squares line, the testing of statistical
hypotheses in linear regression depends on the validity of several assumptions.
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1. The X variable is measured without error. Although not always exactly true, X
is often measured with relatively little error and, under these conditions this
assumption can be considered to be satisfied. In the present example, X is the
potency of drug in the ‘‘known’’ sample. If the drug is weighed on a sensitive
balance, the error in drug potency will be very small. Another example of an X
variable that is often used, which can be precisely and accurately measured, is
‘‘time.’’

2. For each X, y is independent and normally distributed. We will often use the
notation Y.x to show that the value of Y is a function of X.

3. The variance of y is assumed to be the same at each X. If the variance of y is
not constant, but is either known or related to X in some way, other methods [see
Sec. 7.7] are available to estimate the intercept and slope of the line [1].

4. A linear relationship exists between X and Y. Y � A � BX, where A and B are
the true parameters. Based on theory or experience, we have reason to believe
that X and Y are linearly related.

These assumptions are depicted in Fig. 7.6. Except for location (mean), the distribution
of y is the same at every value of X; that is, y has the same variance at every value of X.
In the example in Fig. 7.6, the mean of the distribution of y’s decreases as X increases
(the slope is negative).

Figure 7.6 Normality and variance assumptions in linear regression.
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ANALYSIS OF VARIANCE

Analysis of variance, also known as ANOVA, is perhaps the most powerful statistical tool.
ANOVA is a general method of analyzing data from designed experiments, whose objec-
tive is to compare two or more group means. The t test is a special case of ANOVA in
which only two means are compared. By designed experiments, we mean experiments
with a particular structure. Well-designed experiments are usually optimal with respect to
meeting study objectives. The statistical analysis depends on the design, and the discussion
of ANOVA therefore includes common statistical designs used in pharmaceutical research.
Analysis of variance designs can be more or less complex. The designs can be very simple,
as in the case of the t-test procedures presented in Chapter 5. Other designs can be quite
complex, sometimes depending on computers for their solution and analysis. As a rule of
thumb, one should use the simplest design that will achieve the experimental objectives.
This is particularly applicable to experiments otherwise difficult to implement, such as is
the case in clinical trials.

8.1 ONE-WAY ANALYSIS OF VARIANCE

An elementary approach to ANOVA may be taken using the two-independent-groups t
test as an example. This is an example of one-way analysis of variance, also known as a
‘‘completely randomized’’ design. (Certain simple ‘‘parallel-groups’’ designs in clinical
trials correspond to the one-way analysis of variance design.) In the t test, the two treat-
ments are assigned at random to different independent experimental units. In a clinical
study, the t test is appropriate when two treatments are randomly assigned to different
patients. This results in two groups, each group representing one of the two treatments.
One-way ANOVA is used when we wish to test the equality of treatment means in experi-
ments where two or more treatments are randomly assigned to different, independent
experimental units. The typical null hypothesis is H0: �1 � �2 � �3 � … where �1

refers to treatment 1, and so on.
Suppose that 15 tablets are available for the comparison of three assay methods, five

tablets for each assay. The one-way ANOVA design would result from a random assign-
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ment of the tablets to the three groups. In this example, five tablets are assigned to each
group. Although this allocation (five tablets per group) is optimal with regard to the
precision of the comparison of the three assay methods, it is not a necessary condition
for this design. The number of tablets analyzed by each analytical procedure need not be
equal for the purposes of comparing the mean results. However, one can say, in general,
that symmetry is a desirable feature in the design of experiments. This will become more
apparent as we discuss various designs. In the one-way ANOVA, symmetry can be defined
as an equal number of experimental units in each treatment group.

We will pursue the example above to illustrate the ANOVA procedure. Five replicate
tablets are analyzed in each of the three assay method groups, one assay per tablet. Thus
we assay the 15 tablets, five tablets by each method, as shown in Table 8.1. If only two
assay methods were to be compared, we could use a t test to compare the means statistically.
If more than two assay methods are to be compared, the correct statistical procedure to
compare the means is the one-way analysis of variance (ANOVA).

Analysis of variance is a technique of separating the total variability in a set of data
into component parts, represented by a statistical model. In the simple case of the one-
way ANOVA, the model is represented as

(8.1)Y Gij i ij= + +µ ε

where

Yij � jth response in treatment group i (e.g., i � 3, j � 2, second tablet in third
group)

Gi � deviation of the ith treatment (group) mean from the overall mean, �
εij � random error in the experiment (measurement error, biological variability, etc.)

assumed to be normal with mean 0 and variance �2

The model says that the response is a function of the true treatment mean (� � Gi) and
a random error that is normally distributed, with mean zero and variance �2. In the case
of a clinical study, Gi � � is the true average of treatment i. If a patient is treated with
an antihypertensive drug whose true mean effect is a 10-mmHg reduction in blood pressure,
then Yij � 10 � εij, where Yij is the jth observation among patients taking the drug i.
(Note that if treatments are identical, Gi is the same for all treatments.) The error, εij, is
a normally distributed variable, identically distributed for all observations. It is composed
of many factors, including interindividual variation and measurement error. Thus the ob-

Table 8.1 Results of Assays Comparing Three
Analytical Methods

Method A Method B Method C

102 99 103
101 100 100
101 99 99
100 101 104
102 98 102

X̄ 101.2 99.4 101.6
s.d. 0.84 1.14 2.07



217Analysis of Variance

served experimental values will be different for different people, a consequence of the
nature of the assigned treatment and the random error, εij (e.g., biological variation).
Section 8.5 expands the concept of statistical models.

In addition to the assumption that the error is normal with mean 0 and variance �2,
the errors must be independent. This is a very important assumption in the analysis of
variance model. The fact that the error has mean 0 means that some people will show
positive deviations from the treatment mean, and others will show negative deviations;
but on the average, the deviation is zero.

As in the t test, statistical analysis and interpretation of the ANOVA is based on the
following assumptions.

1. The errors are normal with constant variance.
2. The errors (or observations) are independent.

As will be discussed below, ANOVA separates the variability of the data into parts,
comparing that due to treatments to that due to error.

8.1.1 Computations and Procedure for One-Way Analysis of Variance

Analysis of variance for a one-way design separates the variance into two parts, that due
to treatment differences and that due to error. It can be proven that the total sum of squares
(the squared deviations of each value from the overall mean)

( )Y Yij −∑ 2

is equal to

(8.2)( ) ( )Y Y N Y Yij i i i− + −∑∑ 2 2

where Ȳ is the overall mean and Ȳi is the mean of the ith group. Ni is the number of
observations in treatment group i. The first term in expression (8.2) is called the within
sum of squares, and the second term is called the between sum of squares.

A simple example to demonstrate the equality in Eq. (8.2) is shown below, using the
data of Table 8.2.

( )
( )

( ) ( ) ( )

Y Y Y
Y

N

Y Y

ij

ij i

− = −
( )

= − =

− = − + −

∑∑∑
∑

2 2

2
2

2 2

160
24

6
64

0 1 2 1 22 2 2 2

2

2 2

2 3 4 3 6 8

10 8 2 2 8 12

2 1 4

+ − + − + −

= − = + + =

− = − +

( ) ( ) ( )

( )

( ) ( )N Y Yi i 22 3 4 2 8 4 522 2( ) ( )− + − =∑
Thus, according to Eq. (8.2), 64 � 12 � 52.

Table 8.2 Sample Data to Illustrate Eq. (8.2)

Group I (Y1j) Group II (Y2j) Group III (Y3j)

0 2 6
2 4 10

Ȳt 1 3 8
Ȳ � (1 � 3 � 8)/3 � (0 � 2 � 2 � 4 � 6 � 10)/6 � 4
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The calculations for the analysis make use of simple arithmetic with shortcut formulas
for the computations similar to that used in the t-test procedures. Computer programs are
available for the analysis of all kinds of analysis of variance designs from the most simple
to the most complex. In the latter cases, the calculations can be very extensive and tedious,
and use of computers may be almost mandatory. For the one-way design, the calculations
pose no difficulty. In many cases, use of a pocket calculator will result in a quicker answer
than can be obtained using a less accessible computer. A description of the calculations,
with examples, are presented below.

The computational process consists first of obtaining the sum of squares (SS) for all
of the data.

(8.3)Total sum of squares SS( ) ( )= −∑ Y Yij
2

The total sum of squares is divided into two parts: (a) the SS due to treatment differences
(between-treatment sum of squares), and (b) the error term derived from the within-treat-
ment sum of squares. The within-treatment sum of squares (within SS) divided by the
appropriate degrees of freedom is the pooled variance, the same as that obtained in the t
test for the comparison of two treatment groups. The ratio of the between-treatment mean
square to the within-treatment mean square is a measure of treatment differences (see
below).

To illustrate the computations, we will use the data from Table 8.1, a comparison of
three analytical methods with five replicates per method. Remember that the objective of
this experiment is to compare the average results of the three methods. We might think
of method A as the standard, accepted method, and methods B and C as modifications of
the method, meant to replace method A. As in the other tests of hypotheses described in
Chap. 5, we first state the null and alternative hypotheses as well as the significance level,
prior to the experiment. For example, in the present case*,

H Ha i j0: :µ µ µ µ µBA = = ≠c for any two means*

1. First, calculate the total sum of squares (total SS or TSS). Calculate � (Yij � Ȳ)2

[Eq. (8.3)] using all of the data, ignoring the treatment grouping. This is most easily
calculated using the shortcut formula

(8.4)Y
Y

N
2

2

−
( )∑∑

(�Y)2 is the grand total of all of the observations squared, divided by the total number of
observations N, and is known as the correction term, C.T. As mentioned in Chapter 1,
the correction term is commonly used in statistical calculations, and is important in the
calculation of the sum of squares in the ANOVA.

Total sum of squares = −
( )

= + + + +

+ −

∑∑Y
Y

N
2

2

2 2 2

2

102 101 103

102

(

)

… …

(( )

, , . .

1511

15
152 247 152 208 07 38 93

2

= − =

* Alternatives to H0 may also include more complicated comparisons than �i � �J; see, for example,
Sec. 8.2.1.
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2. The between-treatment sum of squares (between SS or BSS) is calculated as
follows:

(8.5)Between-treatment sum of squares C.T.= −∑T

N
i

i

2

Ti is the sum of observations in treatment group i and Ni is the number of observations
in treatment group i. Ni need not be the same for each group. In our example, the BSS is
equal to

506

5

497

5

508

5
152 208 07 13 73

2 2 2

+ +








 − =, . .

As previously noted, the treatment sum of squares is a measure of treatment differences.
A large sum of squares means that the treatment differences are large. If the treatment
means are identical, the treatment sum of squares will be exactly equal to zero (0).

3. The within-treatment sum of squares (WSS) is equal to the difference between
the TSS and BSS; that is, TSS � BSS � WSS. The WSS can also be calculated, as in
the t test, by calculating � (Yij � Ȳi)2 within each group, and pooling the results.

(8.6)

Within-treatment sum of squares Total SS  between SS=
=

−
38 9. 33 13 73

25 20

−
=

.

.

Having performed the calculations above, the sum of squares for each ‘‘source’’ is set
out in an ‘‘analysis of variance table,’’ as shown in Table 8.3. The ANOVA table includes
the source, degrees of freedom, sum of squares (SS), mean square (MS) and the probability
based on the statistical test (F ratio).

The degrees of freedom, noted in Table 8.3, are calculated as Ni � 1 for the total
(Ni is the total number of observations); number of treatments minus one for the treatments;
and for the within error, subtract d.f. for treatments from the total degrees of freedom.
In our example,

Total degrees of freedom � 15 � 1 � 14
Between-treatment degrees of freedom � 3 � 1 � 2
Within-treatment degrees of freedom � 14 � 2 � 12

Note that for the within degrees of freedom, we have 4 d.f. from each of the three groups.
Thus there are 12 d.f. for the within error term. The mean squares are equal to the sum
of squares divided by the degrees of freedom.

Table 8.3 Analysis of Variance for the Data Shown in Table 8.1: Comparison of
Three Analytical Methods

Source d.f. SS MS F

Between methods 2 13.73 6.87 F � 3.27*
Within methods 12 25.20 2.10
Total 14 38.93

* 0.05 � P � 0.10.
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Before discussing the statistical test, the reader is reminded of the assumptions under-
lying the analysis of variance model: independence of errors, equality of variance, and
normally distributed errors.

Testing the Hypothesis of Equal Treatment Means

The mean squares are variance estimates. One can demonstrate that the variance estimated
by the treatment mean square is a sum of the within variance plus a term that is dependent
on treatment differences. If the treatments are identical, the term due to treatment differ-
ences is zero, and the between mean square (BMS) will be approximately equal to the
within mean square (WMS) on the average. In any given experiment, the presence of
random variation will result in nonequality of the BMS and WMS terms, even though the
treatments may be identical. If the null hypothesis of equal treatment means is true, the
distribution of the BMS/WMS ratio is described by the F distribution. Note that under
the null hypothesis, both WMS and BMS are estimates of �2, the within-group variance.

The F distribution is defined by two parameters, degrees of freedom in the numerator
and denominator of the F ratio:

F=
BMS(2 d.f.)

WMS(12 d.f.)
= =6 87

2 10
3 27

.

.
.

In our example, we have an F with 2 d.f. in the numerator and 12 d.f. in the denominator.
A test of significance is made by comparing the observed F ratio to a table of the F
distribution with appropriate d.f. at the specified level of significance. The F distribution
is an asymmetric distribution with a long tail at large values of F, as shown in Fig. 8.1.
(See also Secs. 3.5 and 5.3.)

To tabulate all the probability points of all F distributions would not be possible.
Tables of F, similar to the t table, usually tabulate points at commonly used � levels. The
cutoff points (� � 0.01, 0.05) for F with n1 and n2 d.f. (numerator and denominator) are
given in Table IV.6. the probabilities in this table (1% and 5%) are in the upper tail, usually
reserved for one-sided tests. This table is used to determine statistical ‘‘significance’’ for
the analysis of variance. Although the alternative hypothesis in ANOVA (Ha: at least two
treatment means not equal) is two-sided, the ANOVA F test (BMS/WMS) uses the upper

Figure 8.1 Some F distributions.
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tail of the F distribution because, theoretically, the BMS cannot be smaller than the WMS.*
(Thus the F ratio will be less than 1 only due to chance variability.) The BMS (between
mean square) is composed of the WMS plus a possible ‘‘treatment’’ term. Only large
values of the F ratio are considered to be significant. In our example, Table 8.3 shows the
F ratio to be equal to 3.27. Referring to Table IV.6, the value of F needed for significance at
the 5% level is 3.89 (2 d.f. in the numerator and 12 d.f. in the denominator). Therefore,
we cannot reject the hypothesis that all means are equal: method A � method B �
method C (�A � �B � �C).

8.1.2 Summary of Procedure for One-Way ANOVA

1. Choose experimental design and state the null hypothesis.
2. Define the � level.
3. Choose samples, perform the experiment, and obtain data.
4. Calculate the total sum of squares and between sum of squares.
5. Calculate the within sum of squares as the difference between the total SS and

the between SS.
6. Construct an analysis of variance table with mean squares.
7. Calculate the F statistic (BMS/WMS).
8. Refer the F ratio statistic to Table IV.6 (n1 and n2 d.f., where n1 is the d.f. for

the BMS and n2 is the d.f. for the WMS).
9. If the calculated F is equal to or greater than the table value for F at the specified

� level of significance, at least two of the treatments can be said to differ.

8.1.3 A Common but Incorrect Analysis of the Comparison of Means from
More Than Two Groups

In the example in Sec. 8.1.1, if more than two assay methods are to be compared, the
correct statistical procedure is a one-way ANOVA. A common error made by those persons
not familiar with ANOVA is to perform three separate t tests on such data: comparing
method A to method B, method A to method C, and method B to method C. This would
require three analyses and ‘‘decisions,’’ which can result in apparent contradictions. For
example, decision statements based on three separate analyses could read:

Method A gives higher results than method B (P � 0.05).
Method A is not significantly different from method C (P 
 0.05).
Method B is not significantly different from method C (P 
 0.05).

These are the conclusions one would arrive at if separate t tests were performed on the
data in Table 8.1 (see Exercise Problem 1). One may correctly question: If A is larger
than B, and C is slightly larger than A, how can C not be larger than B? The reasons
for such apparent contradictions are (a) the use of different variances for the different
comparisons, and (b) performing three tests of significance on the same set of data. Analy-
sis of variance obviates such ambiguities by using a common variance for the single test

* This may be clearer if one thinks of the null and alternative hypotheses in ANOVA as H0: � 2
B

� � 2
w; H0 � 2

B 
 � 2
w.
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FACTORIAL DESIGNS

Factorial designs are used in experiments where the effects of different factors, or condi-
tions, on experimental results are to be elucidated. Some practical examples where factorial
designs are optimal are experiments to determine the effect of pressure and lubricant on
the hardness of a tablet formulation, to determine the effect of disintegrant and lubricant
concentration on tablet dissolution, or to determine the efficacy of a combination of two
active ingredients in an over-the-counter cough preparation. Factorial designs are the de-
signs of choice for simultaneous determination of the effects of several factors and their
interactions. This chapter introduces some elementary concepts of the design and analysis
of factorial designs.

9.1 DEFINITIONS (VOCABULARY)

9.1.1 Factor

A factor is an assigned variable such as concentration, temperature, lubricating agent,
drug treatment, or diet. The choice of factors to be included in an experiment depends on
experimental objectives and is predetermined by the experimenter. A factor can be qualita-
tive or quantitative. A quantitative factor has a numerical value assigned to it. For example,
the factor ‘‘concentration’’ may be given the values 1%, 2%, and 3%. Some examples of
qualitative factors are treatment, diets, batches of material, laboratories, analysts, and
tablet diluent. Qualitative factors are assigned names rather than numbers. Although facto-
rial designs may have one or many factors, only experiments with two factors will be
considered in this chapter. Single-factor designs fit the category of one-way ANOVA
designs. For example, an experiment designed to compare three drug substances using
different patients in each drug group is a one-way design with the single factor ‘‘drugs.’’

9.1.2 Levels

The levels of a factor are the values or designations assigned to the factor. Examples of
levels are 30� and 50� for the factor ‘temperature,’’ 0.1 molar and 0.3 molar for the factor
‘‘concentration,’’ and ‘‘drug’’ and ‘‘placebo’’ for the factor ‘‘drug treatment.’’

265
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The runs or trials that comprise factorial experiments consist of all combinations of
all levels of all factors. As an example, a two-factor experiment would be appropriate
for the investigation of the effects of drug concentration and lubricant concentration on
dissolution time of a tablet. If both factors were at two levels (two concentrations for each
factor), four runs (dissolution determinations for four formulations) would be required,
as follows:

Symbol Formulation

(1) Low drug and low lubricant concentration
a Low drug and high lubricant concentration
b High drug and low lubricant concentration
ab High drug and high lubricant concentration

‘‘Low’’ and ‘‘high’’ refer to the low and high concentrations pre-selected for the drug
and lubricant. (Of course, the actual values selected for the low and high concentrations
of drug will probably be different from those chosen for the lubricant.) The notation
(symbol) for the various combinations of the factors, (1), a, b, ab, is standard. When both
factors are at their low levels, we denote the combination as (1). When factor A is at its
high level and factor B is at its low level, the combination is called a. b means that only
factor B is at the high level, and ab means that both factors A and B are at their high
levels.

9.1.3 Effects

The effect of a factor is the change in response caused by varying the level(s) of the factor.
The main effect is the effect of a factor averaged over all levels of the other factors.
In the previous example, a two-factor experiment with two levels each of drug and
lubricant, the main effect due to drug would be the difference between the average
response when drug is at the high level (runs b and ab) and the average response
when drug is at the low level [runs (1) and a]. For this example the main effect can
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be characterized as a linear response, since the effect is the difference between the
two points shown in Fig. 9.1.

More than two points would be needed to define more clearly the nature of the response
as a function of the factor drug concentration. For example, if the response plotted against
the levels of a quantitative factor is not linear, the definition of the main effect is less
clear. Figure 9.2 shows an example of a curved (quadratic) response based on experimental
results with a factor at three levels. In many cases, an important objective of a factorial
experiment is to characterize the effect of changing levels of a factor or combinations of
factors on the response variable.

9.1.4 Interaction

Interaction may be thought of as a lack of ‘‘additivity of factor effects.’’ For example,
in a two-factor experiment, if factor A has an effect equal to 5 and factor B has an effect
of 10, additivity would be evident if an effect of 15 (5 � 10) were observed when both

Figure 9.1 Linear effect of drug. a � lubricant; b � drug.
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Figure 9.2 Nonlinear (quadratic) effect.

A and B are at their high levels (in a two-level experiment). (It is well worth the extra
effort to examine and understand this concept as illustrated in Fig. 9.3.)

If the effect is greater than 15 when both factors are at their high levels, the result is
synergistic (in biological notation) with respect to the two factors. If the effect is less than
15 when A and B are at their high levels, an antagonistic effect is said to exist. In statistical
terminology, the lack of additivity is known as interaction. In the example above (two
factors each at two levels), interaction can be described as the difference between the
effects of drug concentration at the two lubricant levels. Equivalently, interaction is also
the difference between the effects of lubricant at the two drug levels. More specifically,

Figure 9.3 Additivity of effects: Lack of interaction.
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this means that the drug effect measured when the lubricant is at the low level [a�(1)]
is different from the drug effect measured when the lubricant is at the high level (ab�b).
If the drug effects are the same in the presence of both high and low levels of lubricant,
the system is additive, and no interaction exists. Interaction is conveniently shown graphi-
cally as depicted in Fig. 9.4. If the lines representing the effect of drug concentration at
each level of lubricant are ‘‘parallel,’’ there is no interaction. Lack of parallelism, as
shown in Fig. 9.4B, suggests interaction. Examination of the lines in Fig. 9.4B reveals
that the effect of drug concentration on dissolution is dependent on the concentration of
lubricant. The effects of drug and lubricant are not additive.

Factorial designs have many advantages [1]:

1. In the absence of interaction, factorial designs have maximum efficiency in esti-
mating main effects.

2. If interactions exist, factorial designs are necessary to reveal and identify the
interactions.

3. Since factor effects are measured over varying levels of other factors, conclusions
apply to a wide range of conditions.

4. Maximum use is made of the data since all main effects and interactions are
calculated from all of the data (as will be demonstrated below).

5. Factorial designs are orthogonal; all estimated effects and interactions are inde-
pendent of effects of other factors. Independence, in this context, means that
when we estimate a main effect, for example, the result we obtain is due only to
the main effect of interest, and is not influenced by other factors in the experiment.
In non-orthogonal designs (as is the case in many multiple-regression-type
‘‘fits’’—see App. III), effects are not independent. Confounding is a result of
lack of independence. When an effect is confounded, one cannot assess how

Figure 9.4 Illustration of interaction.
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much of the observed effect is due to the factor under consideration. The effect
is influenced by other factors in a manner that often cannot be easily unraveled,
if at all. Suppose, for example, that two drugs are to be compared, with patients
from a New York clinic taking drug A and patients from a Los Angeles clinic
taking drug B. Clearly, the difference observed between the two drugs is con-
founded with the different locations. The two locations reflect differences in
patients, methods of treatment, and disease state, which can affect the observed
difference in therapeutic effects of the two drugs. A simple factorial design where
both drugs are tested in both locations will result in an ‘‘unconfounded,’’ clear
estimate of the drug effect if designed correctly, e.g., equal or proportional number
of patients in each treatment group at each treatment site.

9.2 TWO SIMPLE HYPOTHETICAL EXPERIMENTS TO ILLUSTRATE
THE ADVANTAGES OF FACTORIAL DESIGNS

The following hypothetical experiment illustrates the advantage of the factorial approach
to experimentation when the effects of multiple factors are to be assessed. The problem
is to determine the effects of a special diet and a drug on serum cholesterol levels. To
this end, an experiment was conducted in which cholesterol changes were measured in
three groups of patients. Group A received the drug, group B received the diet, and group
C received both the diet and drug. The results are shown below. The experimenter con-
cluded that there was no interaction between drug and diet (i.e., their effects are additive).

Drug alone: decrease of 10 mg %
Diet alone: decrease of 20 mg %
Diet � drug: decrease of 30 mg %

However, suppose that patients given neither drug nor diet would have shown a decrease
of serum cholesterol of 10 mg % had they been included in the experiment. (Such a result
could occur because of ‘‘psychological effects’’ or seasonal changes, for example.) Under
these circumstances, we would conclude that drug alone has no effect, that diet results in
a cholesterol lowering of 10 mg %, and that the combination of drug and diet is synergistic.
The combination of drug and diet results in a decrease of cholesterol equal to 20 mg %.
This concept is shown in Fig. 9.5.

Thus, without a fourth group, the control group (low level of diet and drug), we have
no way of assessing the presence of interaction. This example illustrates how estimates
of effects can be incorrect when pieces of the design are missing. Inclusion of a control
group would have completed the factorial design, two factors at two levels. Drug and diet
are the factors, each at two levels, either present or absent. The complete factorial design
consists of the following four groups:

(1) Group on normal diet without drug (drug and special diet at low level)
a Group on drug only (high level of drug, low level of diet)
b Group on diet only (high level of diet, low level of drug)
ab Group on diet and drug (high level of drug and high level of diet)

The effects and interaction can be clearly calculated based on the results of these four
groups (see Fig. 9.5).

Incomplete factorial designs such as those described above are known as the one-at-
a-time approach to experimentation. Such an approach is usually very inefficient. By
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Figure 9.5 Synergism in cholesterol lowering as a result of drug and diet.

performing the entire factorial, we usually have to do less work, and we get more informa-
tion. This is a consequence of an important attribute of factorial designs: effects are mea-
sured with maximum precision. To demonstrate this property of factorial designs, consider
the following hypothetical example. The objective of this experiment is to weigh two
objects on an insensitive balance. Because of the lack of reproducibility, we will weigh
the items in duplicate. The balance is in such poor condition that the zero point (balance
reading with no weights) is in doubt. A typical one-at-a-time experiment is to weigh each
object separately (in duplicate) in addition to a duplicate reading with no weights on the
balance. The weight of item A is taken as the average of the readings with A on the
balance minus the average of the readings with the pans empty. Under the assumption
that the variance is the same for all weighings, regardless of the amount of material being
weighed, the variance of the weight of A is the sum of the variances of the average weight
of A and the average weight with the pans empty (see App. I):

(9.1)
σ σ σ

2 2
2

2 2
+ =

Note that the variance of the difference of the average of two weighings is the sum of the
variances of each weighing. (The variance of the average of two weighings is �2/2.)
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Similarly, the variance of the weight of B is �2 � �2/2 � �2/2. Thus, based on six
readings (two weighings each with the balance empty, with A on the balance and with B
on the balance), we have estimated the weights of A and B with variance equal to �2,
where �2 is the variance of a single weighing.

In a factorial design, an extra reading(s) would be made, a reading with both A and
B on the balance. In the following example, using a full factorial design, we can estimate
the weight of A with the same precision as above using only 4 weighings (instead of 6).
In this case the weighings are made without replication. That is, four weighings are made
as follows:

(1) Reading with balance empty 0.5 kg
a Reading with item A on balance 38.6 kg
b Reading with item B on balance 42.1 kg

ab Reading with both items A and B on balance 80.5 kg

With a full factorial design, as illustrated above, the weight of A is estimated as (the main
effect of A)

(9.2)
a ab b− + −( )1

2

Expression (9.2) says that the estimate of the weight of A is the average of the weight of
A alone minus the reading of the empty balance [a � (1)] and the weight of both items
A and B minus the weight of B. According to the weights recorded above, the weight of
A would be estimated as

38.6 80.5 42.1
kg

− + − =0 5

2
38 25

.
.

Similarly, the weight of B is estimated as

42.1 80.5 38.6
kg

− + − =0 5

2
41 75

.
.

Note how we use all the data to estimate the weights of A and B; the weight of B alone
is used to help estimate the weight of A, and vice versa!

Interaction is measured as the average difference of the weights of A in the presence
and absence of B as follows:

(9.3)
(ab b) a− −[ − (1)]

2

We can assume that there is no interaction, a very reasonable assumption in the present
example. (The weights of the combined items should be the sum of the individual weights.)
The estimate of interaction in this example is

(
.

80.5 42.1) 38.6− − ( − 0.5)
2

0 3=

The estimate of interaction is not zero because of the presence of random errors made on
this insensitive balance.
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Table 9.1 Eight Experiments for a 23 Factorial Designa

Combination A B C

(1) � � �
a � � �
b � � �
ab � � �
c � � �
ac � � �
bc � � �
abc � � �

a �, factor at low level; �, factor at high level.

In this example, we have made four weighings. The variance of the main effects (i.e.,
the average weights of A and B) is �2, exactly the same variance as was obtained using
six weightings in the one-at-a-time experiment!* We obtain the same precision with two-
thirds of the work: four readings instead of six. In addition to the advantage of greater
precision, if interaction were present, we would have had the opportunity to estimate the
interaction effect in the full factorial design. It is not possible to estimate interaction in
the one-at-a-time experiment.

9.3 PERFORMING FACTORIAL EXPERIMENTS:
RECOMMENDATIONS AND NOTATION

The simplest factorial experiment, as illustrated above, consists of four trials, two factors
each at two levels. If three factors, A, B, and C, each at two levels, are to be investigated,
eight trials are necessary for a full factorial design, as shown in Table 9.1. This is also
called a 23 experiment, three factors each at two levels.

As shown in Table 9.1, in experiments with factors at two levels, the low and high
levels of factors in a particular run are denoted by the absence or presence of the letter,
respectively. For example, if all factors are at their low levels, the run is denoted as (1).
If factor A is at its high level, and B and C are at their low levels, we use the notation a.
If factors A and B are at their high levels, and C is at its low level, we use the notation
ab; and so on.

Before implementing a factorial experiment, the researcher should carefully consider
the experimental objectives vis-à-vis the appropriateness of the design. The results of a

* The main effect of A, for example, is [a � (1) � ab � b]/2. The variance of the main effect is
(� 2

a � � 2(1) � � 2
ab � � 2

b)/4 � �2 . �2 is the same for all weighings (App. I).
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factorial experiment may be used (a) to help interpret the mechanism of an experimental
system; (b) to recommend or implement a practical procedure or set of conditions in an
industrial manufacturing situation; or (c) as guidance for further experimentation. In most
situations where one is interested in the effect of various factors or conditions on some
experimental outcome, factorial designs will be optimal.

The choice of factors to be included in the experimental design should be considered
carefully. Those factors not relevant to the experiment, but which could influence the
results, should be carefully controlled or kept constant. For example, if the use of different
technicians, different pieces of equipment, or different excipients can affect experimental
outcomes, but are not variables of interest, they should not be allowed to vary randomly,
if possible. Consider an example of the comparison of two analytical methods. We may
wish to have a single analyst perform both methods on the same spectrophotometer to
reduce the variability that would be present if different analysts used different instruments.
However, there will be circumstances where the effects due to different analysts and
different spectrophotometers are of interest. In these cases, different analysts and instru-
ments may be designed into the experiment as additional factors.

On the other hand, we may be interested in the effect of a particular factor, but because
of time limitations, cost, or other problems, the factor is held constant, retaining the option
of further investigation of the factor at some future time. In the example above, one may
wish to look into possible differences among analysts with regard to the comparison of
the two methods (an analyst � method interaction). However, time and cost limitations
may restrict the extent of the experiment. One analyst may be used for the experiment,
but testing may continue at some other time using more analysts to confirm the results.

The more extraneous variables that can be controlled, the smaller will be the residual
variation. The residual variation is the random error remaining after the ANOVA removes
the variability due to factors and their interactions. If factors known to influence the
experimental results, but of no interest in the experiment, are allowed to vary ‘‘willy-
nilly,’’ the effects caused by the random variation of these factors will become part of
the residual error. Suppose the temperature influences the analytical results in the example
above. If the temperature is not controlled, the experimental error will be greater than if
the experiment is carried out under constant-temperature conditions. The smaller the resid-
ual error, the more sensitive the experiment will be in detecting effects or changes in
response due to the factors under investigation.

The choice of levels is usually well defined if factors are qualitative. For example,
in an experiment where a product supplied by several manufacturers is under investigation,
the levels of the factor ‘‘product’’ could be denoted by the name of the manufacturer:
company X, company Y, and so on. If factors are quantitative, we can choose two or more
levels, the choice being dependent on the size of the experiment (the number of trials and
the amount of replication) and the nature of the anticipated response. If a response is
known to be a linear function of a factor, two levels would be sufficient to define the
response. If the response is ‘‘curved’’ (a quadratic response for example*), at least three
levels of the quantitative factor would be needed to characterize the response. Two levels
are often used for the sake of economy, but a third level or more can be used to meet
experimental objectives as noted above. A rule of thumb used for the choice of levels in

* A quadratic response is of the form Y � A � BX � CX2, where Y is the response and X is the
factor level.
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two-level experiments is to divide extreme ranges of a factor into four equal parts and
take the one-fourth (1/4) and three-fourths (3/4) values as the choice of levels [1]. For
example, if the minimum and maximum concentrations for a factor are 1% and 5%,
respectively, the choice of levels would be 2% and 4% according to this empirical rule.

The trials comprising the factorial experiment should be done in random order if at
all possible. This helps ensure that the results will be unbiased (as is true for many statistical
procedures). The fact that all effects are averaged over all runs in the analysis of factorial
experiments is also a protection against bias.

9.4 A WORKED EXAMPLE OF A FACTORIAL EXPERIMENT

The data in Table 9.2 were obtained from an experiment with three factors each at two
levels. There is no replication in this experiment. Replication would consist of repeating
each of the eight runs one or more times. The results in Table 9.2 are presented in standard
order. Recording the results in this order is useful when analyzing the data by hand (see
below) or for input into computers where software packages require data to be entered in
a specified or standard order. The standard order for a 22 experiment consists of the first
four factor combinations in Table 9.2. For experiments with more than three factors, see
Davies for tables and an explanation of the ordering [1].

The experiment that we will analyze is designed to investigate the effects of three
components (factors)—stearate, drug, and starch—on the thickness of a tablet formulation.
In this example, two levels were chosen for each factor. Because of budgetary constraints,
use of more than two levels would result in too large an experiment. For example, if one
of the three factors were to be studied at three levels, 12 formulations would have to be
tested for a 2 � 2 � 3 factorial design. Because only two levels are being investigated,
nonlinear responses cannot be elucidated. However, the pharmaceutical scientist felt that
the information from this two-level experiment would be sufficient to identify effects that
would be helpful in designing and formulating the final product. The levels of the factors
in this experiment were as follows:

Table 9.2 Results of 23 Factorial Experiment: Effect of Stearate, Drug, and Starch
Concentration on Tablet Thicknessa

Factor Response (thickness)
combination Stearate Drug Starch (cm � 103)

(1) � � � 475
a � � � 487
b � � � 421
ab � � � 426
c � � � 525
ac � � � 546
bc � � � 472
abc � � � 522

a �, factor at low level; �, factor at high level.
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Factor Low level (mg) High level (mg)

A: Stearate 0.5 1.5
B: Drug 60.0 120.0
C: Starch 30.0 50.0

The computation of the main effects and interactions as well as the ANOVA may be done
by hand in simple designs such as this one. Readily available computer programs are
usually used for more complex analyses. (For n factors, an n-way analysis of variance is
appropriate. In typical factorial designs, the factors are usually considered to be fixed.)

For two-level experiments, the effects can be calculated by applying the signs (� or
�) arithmetically for each of the eight responses as shown in Table 9.3. This table is
constructed by placing a � or � in columns A, B, and C depending on whether or not
the appropriate factor is at the high or low level in the particular run. If the letter appears
in the factor combination, a � appears in the column corresponding to that letter. For
example, for the product combination ab, a � appears in columns A and B, and a �
appears in column C. Thus for column A, runs a, ab, ac, and abc have a � because in
these runs, A is at the high level. Similarly, for runs (1), b, c, and bc, a � appears in
column A since these runs have A at the low level.

Columns denoted by AB, AC, BC, and ABC in Table 9.3 represent the indicated
interactions (i.e., AB is the interaction of factors A and B, etc.). The signs in these columns
are obtained by multiplying the signs of the individual components. For example, to obtain
the signs in column AB we refer to the signs in column A and column B. For run (1),
the � sign in column AB is obtained by multiplying the � sign in column A times the
� sign in column B. For run a, the � sign in column AB is obtained by multiplying the
sign in column A (�) times the sign in column B (�). Similarly, for column ABC, we
multiply the signs in columns A, B, and C to obtain the appropriate sign. Thus run ab has

Table 9.3 Signs to Calculate Effects in a 23 Factorial Experimenta

Level of factor
in experiment Interactionb

Factor combination A B C AB AC BC ABC

(1) � � � � � � �
a � � � � � � �
b � � � � � � �
ab � � � � � � �
c � � � � � � �
ac � � � � � � �
bc � � � � � � �
abc � � � � � � �

a �, factor at low level; �, factor at high level.
b Multiply signs of factors to obtain signs for interaction terms in combination [e.g., AB at (1) � (�) � (�) �

(�)].
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Figure 9.6 Main effect of the factor ‘‘stearate.’’

a � sign in column ABC as a result of multiplying the three signs in columns A, B, and
C: (�) � (�) � (�).

The average effects can be calculated using these signs as follows. To obtain the
average effect, multiply the response times the sign for each of the eight runs in a column,
and divide the result by 2n �1, where n is the number of factors (for three factors, 2n�1

is equal to 4). This will be illustrated for the calculation of the main effect of A (stearate).
The main effect for factor A is

(9.4)
[ (− − − − × −1) a b ab c ac bc abc]+ + + + 10

4

3

Note that the main effect of A is the average of all results at the high level of A minus
the average of all results at the low level of A. This is more easily seen if formula (9.4)
is rewritten as follows:

(9.5)Main effect of A
a ab ac abc (1) b c bc= −+ + + + + +

4 4

‘‘Plugging in’’ the results of the experiment for each of the eight runs in Eq. (9.5), we
obtain

[ (

.

487 426 546 10

4
0 022

3+ + + + + +522 475 421 525 472)]

cm

− ×

=

−

The main effect of A is interpreted to mean that the net effect of increasing the stearate
concentration from the low to the high level (averaged over all other factor levels) is to
increase the tablet thickness by 0.022 cm. This result is illustrated in Fig. 9.6.

The interaction effects are estimated in a manner similar to the estimation of the main
effects. The signs in the column representing the interaction (e.g., AC) are applied to the
eight responses, and as before the total divided by 2n�1, where n is the number of factors.
The interaction AC, for example, is defined as one-half the difference between the effect
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of A when C is at the high level and the effect of A when C is at the low level (see Fig.
9.7). Applying the signs as noted above, the AC interaction is estimated as

(9.6)AC interaction abc ac bc c) ab a b (1)]}= + − − − + − −1

4
{( [

The interaction is shown in Fig. 9.7. With starch (factor C) at the high level, 50 mg,
increasing the stearate concentration from the low to the high level (from 0.5 mg to 1.5
mg) results in an increased thickness of 0.0355 cm.* At the low level of starch, 30 mg,
increasing stearate concentration from 0.5 mg to 1.5 mg results in an increased thickness
of 0.0085 cm. Thus stearate has a greater effect at the higher starch concentration, a
possible starch � stearate interaction.

Lack of interaction would be evidenced by the same effect of stearate at both low
and high starch concentrations. In a real experiment, the effect of stearate would not be
identical at both levels of starch concentration in the absence of interaction because of
the presence of experimental error. The statistical tests described below show how to
determine the significance of observed nonzero effects.

The description of interaction is ‘‘symmetrical.’’ The AC interaction can be described
in two equivalent ways: (a) the effect of stearate is greater at high starch concentrations,
or (b) the effect of starch concentration is greater at the high stearate concentration (1.5
mg) compared to its effect at low stearate concentration (0.5 mg). The effect of starch at
low stearate concentration is 0.051. The effect of starch at high stearate concentration is
0.078. (Also see Fig. 9.7.)

* (1/2)(abc � ac � bc � c).

Figure 9.7 Starch � stearate interaction.



279Factorial Designs

9.4.1 Data Analysis

Method of Yates

Computers are usually used to analyze factorial experiments. However, hand analysis of
simple experiments can give insight into the properties of this important class of experimen-
tal designs. A method devised by Yates for systematically analyzing data from 2n factorial
experiments (n factors each at two levels) is demonstrated in Table 9.4. The data are first
tabulated in standard order (see Ref. 1 for experiments with more than two levels). The
data are first added in pairs, followed by taking differences in pairs as shown in column
(1) in Table 9.4.

475 487 962

421 426 847

525 546 1071

472 522 994

487 475 12

426

+ =
+ =
+ =
+ =

− =
− =
− =
− =

421 5

546 525 21

522 472 50

This addition and subtraction process is repeated sequentially on the n columns. (Remem-
ber that n is the number of factors, three columns for three factors.) Thus the process is
repeated in column (2), operating on the results in column (1) of Table 9.4. Note, for
example, that 1809 in column (2) is 962 � 847 from column (1). Finally, the process is
repeated, operating on column (2) to form column (3). Column (3) is divided by 2n�1

(2n�1 � 4 for 3 factors) to obtain the average effect. The mean squares for the ANOVA
(described below) are obtained by dividing the square of column (n) by 2n. For example,
the mean square attributable to factor A is

Mean square for A = =( )88

8
968

2

Table 9.4 Yates Analysis of the Factorial Tableting Experiment for Analysis Variance

Thickness Effect Mean square
Combination (� 103) (1) (2) (3) (�103)(3)/4 (�106)(3)2/8

(1) 475 962 1809 3874 — —
a 487 847 2065 88 22.0 968
b 421 1071 17 �192 �48.0 4608
ab 426 994 71 22 5.5 60.5
c 525 12 �115 256 64.0 8192
ac 546 5 �77 54 13.5 364.5
bc 472 21 �7 38 9.5 180.5
abc 522 50 29 36 9.0 162
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The mean squares are presented in an ANOVA table, as discussed below.

Analysis of Variance

The results of a factorial experiment are typically presented in an ANOVA table, as shown
in Table 9.5. In a 2n factorial, each effect and interaction has 1 degree of freedom. The
error mean square for statistical tests and estimation) can be estimated in several ways
for a factorial experiment. Running the experiment with replicates is best. Duplicates are
usually sufficient. However, replication may result in an inordinately large number of
runs. Remember that replicates do not usually consist of replicate analyses or observations
on the same run. A true replicate usually is obtained by repeating the run, from ‘‘scratch.’’
For example, in the 23 experiment described above, determining the thickness of several
tablets from a single run [e.g., the run denoted by a (A at the high level)] would probably
not be sufficient to estimate the experimental error in this system. The proper replicate
would be obtained by preparing a new mix with the same ingredients, retableting, and
measuring the thickness of tablets in this new batch.* In the absence of replication, experi-
mental error may be estimated from prior experience in systems similar to that used in
the factorial experiment. To obtain the error estimate from the experiment itself is always
most desirable. Environmental conditions in prior experiments are apt to be different from
those in the current experiment. In a large experiment, the experimental error can be
estimated without replication by pooling the mean squares from higher-order interactions
(e.g., three-way and higher-order interactions) as well as other interactions known to be
absent, a priori. For example, in the tableting experiment, we might average the mean
squares corresponding to the two-way interactions, AB and BC, and the three-way ABC
interaction, if these interactions were known to be zero from prior considerations. The
error estimated from the average of the AB, BC, and ABC interactions is

( . . ) .60 5 180 5 162
10

3
134 2 10

6
6+ + × = ×

−
−

* If the tableting procedure in the different runs were identical in all respects (with the exception
of tablet ingredients), replicates within each run would be a proper estimate of error.

Table 9.5 Analysis of Variance for the Factorial Tableting Experiment

Factor Source d.f. Mean square (�106) Fa

A Stearate 1 968 7.2b

B Drug 1 4608 34.3c

C Starch 1 8192 61.0c

AB Stearate � drug 1 60.5
AC Stearate � starch 1 364.5 2.7
BC Drug � starch 1 180.5
ABC Stearate � drug � starch 1 162

a Error mean square based on AB, BC, and ABC interactions, 3 d.f.
b P � 0.1.
c P � 0.01.
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with 3 degrees of freedom (assuming that these interactions do not exist).

Interpretation

In the absence of interaction, the main effect of a factor describes the change in response
when going from one level of a factor to another. If a large interaction exists, the main
effects corresponding to the interaction do not have much meaning as such. Specifically,
an AC interaction suggests that the effect of A depends on the level of C and a description
of the results should specify the change due to A at each level of C. Based on the mean
squares in Table 9.5, the effects which are of interest are A, B, C, and AC. Although not
statistically significant, stearate and starch interact to a small extent, and examination of
the data is necessary to describe this effect (see Fig. 9.7). Since B does not interact with
A or C, it is sufficient to calculate the effect of drug (B), averaged over all levels of A
and C, to explain its effect. The effect of drug is to decrease the thickness by 0.048 mm
when the drug concentration is raised from 60 mg to 120 mg [Table 9.4, column (3)/4].

9.5 FRACTIONAL FACTORIAL DESIGNS

In an experiment with a large number of factors and/or a large number of levels for the
factors, the number of experiments needed to complete a factorial design may be inordi-
nately large. For example, a factorial design with 5 factors each at 2 levels requires 32
experiments; a 3-factor experiment each at 3 levels requires 27 experiments. If the cost
and time considerations make the implementation of a full factorial design impractical,
fractional factorial experiments can be used in which a fraction (e.g., 1⁄2, 1⁄4, etc.) of the
original number of experiments can be run. Of course, something must be sacrificed for
the reduced work. If the experiments are judiciously chosen, it may be possible to design
an experiment so that effects which we believe are negligible are confounded with impor-
tant effects. (The word ‘‘confounded’’ has been noted before in this chapter.) In fractional
factorial designs, the negligible and important effects are indistinguishable, and thus con-
founded. This will become clearer in the first example.

To illustrate some of the principles of fractional factorial designs, we will discuss
and present an example of a fractional design based on a factorial design where each of
3 factors is at 2 levels, a 23 design. Table 9.3 shows the 8 experiments required for the
full design. With the full factorial design, we can estimate 7 effects from the 8 experiments,
the 3 main effects (A, B, and C), and the 4 interactions (AB, AC, BC, and ABC). In a 1⁄2
replicate fractional design, we perform 4 experiments, but we can only estimate 3 effects.
With 3 factors, a 1⁄2 replicate can be used to estimate the main effects, A, B, and C. The
following procedure is used to choose the 4 experiments.

Table 9.6 shows the 4 experiments that define a 22 factorial design using the notation
described in Sec. 9.3.

Table 9.6 22 Factorial Design

Experiment A level B level AB

(1) � � �
a � � �
b � � �
ab � � �
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To construct the 1⁄2 replicate with 3 factors, we equate one of the effects to the third
factor. In the 22 factorial, the interaction, AB is equated to the third factor, C. Table 9.7
describes the 1⁄2 replicate design for 3 factors. The 4 experiments consist of (1) c at the
high level (a, b at the low level); (2) a at the high level (b, c at the low level); (3) b at
the high level (a, c at the low level); and (4) a, b, c all at the high level.

From Table 9.7, we can define the confounded effects, also known as aliases. An
effect is defined by the signs in the columns of Table 9.7. For example, the effect of A
is

( ) ( )a abc c b+ − +

Note that the effect of A is exactly equal to BC. Therefore, BC and A are confounded
(they are aliases). Also note that C � AB (by definition) and B � AC. Thus, in this
design the main effects are confounded with the two factor interactions. This means that
the main effects cannot be clearly interpreted if interactions are not absent or negligible.
If interactions are negligible, this design will give fair estimates of the main effects. If
interactions are significant, this design is not recommended.

Example 1: Davies [1] gives an excellent example of weighing 3 objects on a balance
with a zero error in a 1⁄2 replicate of a 23 design. This illustration is used because interactions
are zero when weighing two or more objects together (i.e., the weight of two or more
objects is the sum of the individual weights). The three objects are denoted as A, B, and
C; the high level is the presence of the object to be weighed, and the low level is the
absence of the object. From Table 9.7, we would perform 4 weighinings: A alone, B alone,
C alone, and A, B, and C together (call this ABC).

1. The weight of A is the [weight of A � the weight of ABC � the weight of B
� weight of C]/2.

2. The weight of B is the [weight of B � the weight of ABC � the weight of A
� weight of C]/2.

3. The weight of C is the [weight of C � the weight of ABC � the weight of A
� weight of B]/2.

As noted by Davies, this illustration is not meant as a recommendation of how to weigh
objects, but rather to show how the design works in the absence of interaction. (See
Exercise Problem 5 as another way to weigh these objects using a 1⁄2 replicate fractional
factorial design.)

Example 2. A 1⁄2 replicate of a 24 experiment: Chariot et al. [5] reported the results
of a factorial experiment studying the effect of processing variables on extrusion-spheroni-
zation of wet powder masses. They identified 5 factors each at 2 levels, the full factorial

Table 9.7 One-Half Replicate of 23 Factorial Design

Experiment A level B level C � AB AC BC

c � � � � �
a � � � � �
b � � � � �
abc � � � � �
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requiring 32 experiments. Initially, they performed a 1⁄4 replicate, requiring 8 experiments.
One of the factors, extrusion speed, was not significant. To simplify this discussion, we
will ignore this factor for our example. The design and results are shown in Table 9.8. A
� spheronization time, B � spheronization speed, C � spheronization load, and D �
extrusion screen.

Note the confounding pattern shown in Table 9.8. The reader can verify these con-
founded effects (see Exercise Problem 6 at the end of this chapter). Table 9.8 was con-
structed by first setting up the standard 23 factorial (Table 9.3) and substituting D for the
ABC interaction. For the estimated effects to have meaning, the confounded effects should
be small. For example, if BC and AD were both significant, the interpretation of BC and/
or AD would be fuzzy.

To estimate the effects, we add the responses multiplied by the signs in the appropriate
column and divide by 4. For example, the effect of AB is

[75.5 � 55.5 � 92.8 � 45.4 � 19.7 � 11.1 � 55.0]/4 � �1.825

Estimates of the other effects are (see Exercise Problem 7)

A

B

C

D

AB

AC

AD

= +
= −
= +
= −
= −
= +
= +

23 98

12 03

2 33

34 78

1 83

21 13

10 83

.

.

.

.

.

.

.

We cannot perform tests for the significance of these parameters without an estimate of
the error (variance). The variance can be estimated from duplicate experiments, nonexistent
interactions, or experiments from previous studies, for example. Based on the estimate
above, factor A, D, and AC are the largest effects. To help clarify the possible confounding

Table 9.8 One-Half Replicate of 24 Factorial Design (Extrusion–Spheronization of Wet
Powder Masses)

Parameter

A B C D
Experiment (min) (rpm) (kg) (mm) ABa � CD AC � BD AD � BC Response

(1) � � � � � � � 75.5
ab � � � � � � � 55.5
ac � � � � � � � 92.8
ad � � � � � � � 45.4
bc � � � � � � � 46.5
bd � � � � � � � 19.7
cd � � � � � � � 11.1
abcd � � � � � � � 55.0

a Illustrates confounding.
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effects, 8 more experiments can be performed. For example, the large effect observed for
the interaction AC, spheronization time � spheronization load could be exaggerated due
to the presence of a BD interaction. Without other insights, it is not possible to separate
these 2 interactions (they are aliases in this design). Therefore, this design would not be
desirable if the nature of these interactions are unknown. Data for the 8 further experiments
that complete the factorial design are given in Exercise Problem 8.

The conclusions given by Chariot et al. are

1. Spheronization time (factor A) has a positive effect on the production of spheres.
2. There is a strong interaction between factors A and C (spheronization time �

spheronization load). Note that the BD interaction is considered to be small.
3. Spheronization speed (factor B) has a negative effect on yield.
4. The interaction between spheronization speed and spheronization load (BC) ap-

pears significant. The AD interaction is considered to be small.
5. The interaction between spheronization speed and spheronization time (AB) ap-

pears to be insignificant. The CD interaction is considered to be small.
6. Extrusion screen (D) has a very strong negative effect.

Table 9.9 presents some fractional designs with up to 8 observations. To find the
aliases (confounded effects), multiply the defining contrast in the table by the effect under
consideration. Any letter that appears twice is considered to be equal to 1. The result is
the confounded effect. For example, if the defining contrast is �ABC and we are interested
in the alias of A, we multiply �ABC by A � �A2BC � �BC. Therefore, A is con-
founded with �BC. Similarly, B is confounded with �AC and C is confounded with
�AB.

9.6 SOME GENERAL COMMENTS

As noted previously, experiments need not be limited to factors at two levels, although
the use of two levels is often necessary to keep the experiment at a manageable size.
Where factors are quantitative, experiments at more than two levels may be desirable
when curvature of the response is anticipated. As the number of levels increase, the size
of the experiment increases rapidly and fractional designs are recommended.

The theory of factorial designs is quite fascinating from a mathematical viewpoint.
Particularly, the algebra and arithmetic lead to very elegant concepts. For those readers
interested in pursuing this topic further, the book The Design and Analysis of Industrial
Experiments, edited by O. L. Davies, is indispensable [1]. This topic is also discussed in
some detail in Ref. 2. Applications of factorial designs in pharmaceutical systems have
appeared in the recent pharmaceutical literature. Plaizier-Vercammen and De Neve investi-
gated the interaction of povidone with low-molecular-weight organic molecules using a
factorial design [3]. Bolton has shown the application of factorial designs to drug stability
studies [4]. Ahmed and Bolton optimized a chromatographic assay procedure based on a
factorial experiment (7).

KEY TERMS

Additivity Main effect
Aliases One-at-a-time experiment
Confounding Replication
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Effects Residual variation
Factor Runs
Fractional factorial designs Standard order
Half replicate 2n factorials
Interaction Yates analysis
Level

EXERCISES

1. A 22 factorial design was used to investigate the effects of stearate concentration
and mixing time on the hardness of a tablet formulation. The results below are the
averages of the hardness of 10 tablets. The variance of an average of 10 determina-
tions was estimated from replicate determinations as 0.3 (d.f. � 36). This is the
error term for performing statistical tests of significance.

Stearate
Mixing
time (min) 0.5% 1%

15 9.6 (1) 7.5 (a)
30 7.4 (b) 7.0 (ab)

(a) Calculate the ANOVA and present the ANOVA table.
(b) Test the main effects and interaction for significance.
(c) Graph the data showing the possible AB interaction.

2. Show how to calculate the effect of increasing stearate concentration at low starch
level for the data in Table 9.2. The answer is an increased thickness of 0.085 cm.
Also, compute the drug � starch interaction.

3. The end point of a titration procedure is known to be affected by (1) temperature,
(2) pH, and (3) concentration of indicator. A factorial experiment was conducted
to estimate the effects of the factors. Before the experiment was conducted, all
interactions were thought to be negligible except for a pH � indicator concentration
interaction. The other interactions are to be pooled to form the error term for statisti-
cal tests. Use the Yates method to calculate the ANOVA based on the following
assay results:

Factor Factor
combination Recovery (%) combination Recovery (%)

(1) 100.7 c 99.9
a 100.1 ac 99.6
b 102.0 bc 98.5
ab 101.0 abc 98.1
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(a) Which factors are significant?
(b) Plot the data to show main effects and interactions which are significant.
(c) Describe, in words, the BC interaction.

4. A clinical study was performed to assess the effects of a combination of ingredients
to support the claim that the combination product showed a synergistic effect com-
pared to the effects of the two individual components. The study was designed as
a factorial with each component at two levels.

Ingredient A: low level, 0; high level, 5 mg
Ingredient B: low level, 0; high level, 50 mg

Following is the analysis of variance table:

Source d.f. MS F

Ingredient A 1 150 12.5
Ingredient B 1 486 40.5
A � B 1 6 0.5
Error 20 12

The experiment consisted of observing six patients in each cell of the 22 experiment.
One group took placebo with an average result of 21. A second group took ingredient
A at a 5-mg dose with an average result of 25. The third group had ingredient B
at a 50-mg dose with an average result of 29, and the fourth group took a combina-
tion of 5 mg of A and 50 mg of B with a result of 35. In view of the results and
the ANOVA, discuss arguments for or against the claim of synergism.

5. The 3 objects in the weighing experiment described in Sec. 9.5, Example 1, may
also be weighed using the other 4 combinations from the 23 design not included
in the example. Describe how you would weigh the 3 objects using these new 4
weighings. (Note that these combinations comprise a 1/2 replicate of a fractional
factorial with a different confounding pattern from that described in Sec. 9.5. [Hint:
See Table 9.9.]

6. Verify that the effects (AB � CD, AC � BD, and AD � BC) shown in Table
9.8 are confounded.

7. Compute the effects for the data in Sec. 9.5, example 2 (Table 9.8).
**8. In example 2 in Sec. 9.5 (Table 9.8), eight more experiments were performed with

the following results:

** A more advanced topic.
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Experiment Response

a 78.7
b 56.9
c 46.7
ab 21.2
abc 67.0
abd 29.0
acd 34.9
bcd 1.2

Using the entire 16 experiments (the 8 given here plus the 8 in Table 9.8), analyze
the data as a full 24 factorial design. Pool the 3-factor and 4-factor interactions (5
d.f.) to obtain an estimate of error. Test the other effects for significance at the 5%
level. Explain and describe any significant interactions.
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OPTIMIZATION TECHNIQUES AND
SCREENING DESIGNS**

The optimization of pharmaceutical formulations with regard to one or more attributes
has always been a subject of importance and attention for those engaged in formulation
research. Product formulation is often considered an art, the formulator’s experience and
creativity providing the ‘‘raw material’’ for the creation of a new product. Given the same
active ingredient and a description of the final marketed product, two different scientists
will very likely concoct different formulations. Certainly, human input is an essential
ingredient of the creative process. In addition to the art of formulation, techniques are
available that can aid the scientist’s choice of formulation components which will optimize
one or more product attributes. These techniques have been traditionally applied in the
chemical and food industries, for example, and in recent years have been applied success-
fully to pharmaceutical formulations. In this chapter we describe the application of factorial
designs (and modified factorials) and simplex lattice designs to formulation optimization.
When the effects of factors on a pharmaceutical process or response are unknown, the
use of screening designs to estimate factor effects may be indicated.

16.1 INTRODUCTION

The pharmaceutical scientist has the responsibility to choose and combine ingredients that
will result in a formulation whose attributes conform with certain prerequisite require-
ments. Often, the choice of the nature and quantities of additives (excipients) to be used
in a new formulation is based on experience, for example, similar products previously
prepared by the scientist or his or her colleagues. To break habits based on experience
and tradition is difficult. Although there is much to be said for the practical experience of
many years, we often become caught in the web of the past. The application of formulation
optimization techniques is relatively new to the practice of pharmacy. When used intelli-

** This is an advanced topic.
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gently, with common sense, these ‘‘statistical’’ methods will broaden the perspective of
the formulation process.

Although several optimization procedures are available to the pharmaceutical scientist,
a few frequently used methods will be presented in this chapter. The objective is to produce
a mathematical model that describes the responses. In general, the procedure consists of
preparing a series of formulations, varying the concentrations of the formulation ingredi-
ents in some systematic manner. These formulations are then evaluated according to one
or more attributes, such as hardness, dissolution, appearance, stability, taste, and so on.
Based on the results of these tests, a particular formulation (or series of formulations)
may be predicted to be optimal. The ‘‘proof of the pudding,’’ however, is actually to
prepare and evaluate the predicted optimal formulation.

If the formulation is optimized according to a single attribute, the optimization proce-
dure is relatively uncomplicated. To optimize on the basis of two or more attributes,
dissolution and hardness, for example, may not be possible. The formulation that is optimal
for one attribute very well may be different from the formulation needed to optimize other
attributes. In these cases, a compromise must be made, depending on the relative impor-
tance of each attribute. The final formulation, therefore, is suitably modified to attain an
acceptable performance of all relevant attributes, if possible. We will discuss the optimiza-
tion procedure based on a single attribute. More complex situations may require more
complex designs, and the advice of an experienced statistician is recommended in these
cases. Therefore, the use of the term, ‘‘optimization’’ may be a misnomer. An optimal
response may not be a single response, but a region of responses that satisfy the require-
ments of the formulation. Once such a region is defined, the desired response may be
defined using a range of factors.

In general, an advanced understanding of statistics is not necessary. One should be
familiar with the following concepts as described elsewhere in this book.

16.1.1 Planning Experiments

Common sense should prevail. Design and choice of variables are discussed later in this
chapter. In most cases, we have a reasonable idea of which variables are important, and
their effective ranges. But, we may be surprised. If everything were known, we would
not have to experiment. Also, we should be careful not to neglect potentially important
variables. Screening designs may be useful if little is known of the system

16.1.2 Variables

Variables may be considered as Independent and Dependent (X,Y). Dependent variables
(Y) are outcome variables (e.g., dissolution). Independent variables (X) are set in advance
(e.g., lubricant level). Variables can be continuous or discrete. The number of experiments
should be kept at a reasonable level. The more variables used, the more knowledge is
gained, but expense and time should be taken into consideration.

16.1.3 Variability or Experimental Error

It is important to have an idea about variability of response (Y) and/or ‘‘predicted re-
sponse.’’ Replication is typically needed to estimate variability, but this adds time and
cost to the study. Estimates of variance can be obtained from replication, from ANOVA
or from experience.
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16.1.4 Regression

For our purposes, regression is used to predict Responses, and/or to describe relationships.
Either simple linear or multiple regression may be used to obtain optimized systems. We
derive a response equation from the data (as described in this chapter), and predict a
response within the bounds of the fixed independent variables, X. Prediction outside of
the bounds of the independent variables are unreliable. Consider the following example.

Suppose that the theoretical response relationship (Y as a function of X1 and X2,
where we have two independent variables) is Y � 5 � 6 X1 � 7 X1

2 � 3 X2. We obtain
six values of Y as follows:

X1 X2 Y

1 1 21
2 1 48
1 2 24
2 2 57
3 1 89
1 3 45

Using multiple regression we obtain the following equation relating Y to the independent
variables.

Y X X X= − + + +7 7 2 7 11 41 1
2

2. .

This works well within the experimental space. But predictions outside are questionable.
For example, if X1 � 4 and X2 � 4

Predicted

Actual

=
=

179 4

153

.

16.2 OPTIMIZATION USING FACTORIAL DESIGNS

The basic principles of factorial designs have been presented in Chapter 9. In factorial
designs, levels of factors are independently varied, each factor at two or more levels. The
effects that can be attributed to the factors and their interactions are assessed with maximum
efficiency in factorial designs. Also, factorial designs allow for the estimation of the effects
of each factor and interaction, unconfounded by the other experimental factors. Thus, if
the effect of increasing stearic acid by 1 mg is to decrease the dissolution by 10%, in the
absence of interactions, this effect is independent of the levels of the other factors. This
is an important concept. If the levels of factors are allowed to vary haphazardly, as in an
undesigned experiment, the observed effect due to any factor is dependent on the levels
of the other varying factors. Generalities, or predictions, based on results of an undesigned
experiment will be less reliable than those which would be obtained in a designed experi-
ment, in particular, a factorial design. Screening designs use less runs, and estimate the
main effects of factors. The latter part of this chapter will introduce screening designs.
These designs are useful when a relatively large number of factors may affect the response
or process. From a regulatory viewpoint, the data derived from factorial designs can be
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useful to predict responses when confronted with formulation or manufacturing modifica-
tions.

The optimization procedure is facilitated by construction of an equation that describes
the experimental results as a function of the factor levels. A polynomial equation can be
constructed, in the case of a factorial design, where the coefficients in the equation are
related to the effects and interactions of the factors. For the present, we will restrict our
discussion to factorial designs with factors at only two levels, called 2n factorials, where
n is the number of factors (see Chapter 9). These designs are simplest and often are
adequate to achieve the experimental objectives. These designs estimate only linear effects.
That is, if there is a curved response as a function of factor levels or combination, such
effects will be missed. Sometimes, use of these smaller designs is imperative, for the sake
of economy. Increasing the number of factor levels dramatically increases the number of
formulations that are needed to complete the design. With a large number of factors, even
designs where factors are restricted to two levels may result in a very large number of
formulations to be prepared and tested. In such cases, fractional factorial designs may be
used. Some information is lost when using fractional factorial designs, but one-half, one-
fourth, or less of the formulations are needed compared to those needed to run a full
factorial design. A brief description of fractional factorial designs is presented in Sec. 9.5.
The theory and construction of these designs are presented in detail in The Design and
Analysis of Industrial Experiments, edited by O. L. Davies [1]. Also see Ref. 12 for an
example of optimization applied to an HPLC analytical method.

As noted above, the optimization procedure is facilitated by the fitting of an empirical
polynomial equation to the experimental results. The equation constructed from a 2n facto-
rial experiment is of the following form:

(16.1)
Y B B X B X B X B X X

B X X B X X B X X X

= + + + + +
+ + + +

0 1 1 2 2 3 3 12 1 2

13 1 3 23 2 3 123 1 2 3

…

… ++…

where Y is the measured response, Xi is the level (e.g., concentration) of the ith factor,
Bi, Bij, Bijk, … represent coefficients computed from the responses of the formulations in
the design, as will be described below. (B0 represents the intercept.)

For example, in an experiment with three factors, each at two levels, we have eight
formulations, a total of eight responses. The eight coefficients in Eq. (16.1) will be deter-
mined from the eight responses in such a way that each of the responses will be exactly
predicted by the polynomial equation. For the present, to illustrate this concept we will
look at the problem in reverse. Suppose that we already have an equation to predict the
experimental results derived from a factorial design as follows:

(16.2)
Y X X X X X X X

X X X X

= + + + − −
+ +

5 2 3 0 6 0 4

0 7 0 12
1 2 3 1 2 1 3

2 3 1 2

( ) ( ) . ( ) . ( )

. ( ) . ( XX3 )

From Eq. (16.2), we can reconstruct the original data from the 23 experiment. Suppose
that the levels (in mg) of the three factors in the design were as follows:

Low level High level

X1 � stearate 0 2
X2 � colloidal silica 0 1
X3 � drug 0 5
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Based on Eq. (16.2), the formulation with all factors at the low level will have a response
of five. All factors are equal to 0, and all terms containing X1, X2, or X3 are equal to 0.
If X1 is at the high level (2 mg), and X2, and X3 are at the low level (0), the predicted
response is Y � 5 � 2(X1) � 5 � 2(2) � 9. All other terms are equal to 0. If X1 and
X2 are at the high level, and X3 is at the low level, the response is

5 2 3 0 6 5 2 2 3 1 0 6 2) 1 10 81 2 1 2+ + − = + + − =( ) ( ) . ( ) ( ) ( ) . ( ( ) .X X X X

The results for all eight combinations (formulations) as predicted from Eq. (16.2) are
shown in (Table 16.1).

Table 16.1 shows the results of the factorial experiment which were used to construct
Eq. (16.2). The practical, more realistic problem is to construct the polynomial equation,
given the experimental results. To solve this problem, we find the solution to eight equa-
tions with eight unknowns [the unknowns are the eight coefficients in Eq. (16.2)]. For
example, in formulation 1 (Table 16.1),

X X X1 2 3 0= = =

Substituting X1 � X2 � X3 � 0 into the general equation [Eq. (16.1)] results in

Y B= 0 ( )all other terms are 0

Since the response (Y) for formulation 1 (where X1 � X2 � X3 � 0) is equal to 5,

Y B= =0 5

This is the simple solution for the first of the simultaneous equations.
In the second formulation, X1 � 2, X2 and X3 are equal to 0 and Eq. (16.1) reduces

to

(16.3)Y B B X= +0 1 1 (all other terms are 0)

The response, Y, for formulation 2 is 9 (Table 16.1). We can solve for B1, using Eq. (16.3)
(B0 � 5 and X1 � 2)

Table 16.1 Results of the 23 Factorial Experiment Which Led to the
Construction of the Polynomial Equation (16.2)

Factor level
Predicted

Formulation X1 X2 X3 response, Y

1 0 0 0 5
2 2 0 0 9
3 0 1 0 8
4 2 1 0 10.8
5 0 0 5 10
6 2 0 5 10
7 0 1 5 16.5
8 2 1 5 16.5
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9 5 2 21 1= + =B B( )

This procedure is continued, until we solve for all coefficients, Bi, Bij, Bijk, and so on.
In the example above, the solution for the coefficients for the polynomial equation

is very simple, because the low level of all factors is zero. In general, the solution would
be more difficult if the low level of all factors is not equal to zero. However, the general
solution for the polynomial coefficients is not difficult for 2n factorial designs, because
of the independence (orthogonality) inherent in factorial designs. The first step in the
solution is to code the levels of the factors so that the high level of each factor is �1,
and the low level of each factor is �1. This procedure requires a transformation of each
of the three variables, X1, X2, and X3 to X′1, X′2, and X′3, respectively, as follows:

For X1, let X′1 � X1 � 1. Note that when X1 � 2 (the high level), X′1 � �1, and
when X1 � 0 (the low level), X′1 � �1.

For X2, let X′2 � 2X2 � 1.
For X3, let X′3 � (2X3 � 5)/5.

In general, the formula for the transformation is

(16.4)
X − the average of the two levels

one-half the difference of tthe levels

After the transformation, the levels of the factors are as shown in Table 16.2 (see also
Chapter 9).

Table 16.2 also contains ‘‘transformed’’ values for the interactions, represented by
�1 or �1. These values are obtained by multiplying the values in the appropriate columns
of X1, X2, and X3. For example, in formulation 1, X1X2 is represented by �1, the product
of �1 for X1 and �1 for X2 [X1X2 � (�1)(�1) � �1]. X1X2X3 is represented by the
product of (�1)(�1)(�1) � �1, derived from the values in the columns headed by X1,
X2, and X3. (See also Chapter 9 to clarify this procedure.) The ‘‘total’’ column contains
only the value �1, and is used to calculate the intercept, B0.

The coefficients for the polynomial equation (16.1) are calculated as � XY/8
(� XY/2n, in general), where X is the value (�1 or �1) in the column appropriate for the
coefficient being calculated, and Y is the response. An example should make the calculation

Table 16.2 Transformed Levels of Factors Showing Signs to Be Used to Determine
Effects and Polynomial Coefficients

Formulation X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 Total Y

1a �1 �1 �1 �1 �1 �1 �1 �1 5
2 �1 �1 �1 �1 �1 �1 �1 �1 9
3 �1 �1 �1 �1 �1 �1 �1 �1 8
4 �1 �1 �1 �1 �1 �1 �1 �1 10.8
5 �1 �1 �1 �1 �1 �1 �1 �1 10
6 �1 �1 �1 �1 �1 �1 �1 �1 10
7 �1 �1 �1 �1 �1 �1 �1 �1 16.5
8 �1 �1 �1 �1 �1 �1 �1 �1 16.5

a Note that X1, X2, and X3 are at their low levels (0). Transformed values are �1, �1, and �1.
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clear. For the coefficient corresponding to X1 (B1), the calculation is performed as follows.
We multiply each value in the column headed X1 (�1 or �1) by the corresponding
response, Y. The sum of these products (� XY) divided by 8 (2n) is the coefficient, B1.

[( )( ) ( )( ) ( )( ) ( )( . ) ( )( ) ( )( )

( )

− + + + − + + + − + +

+ −

1 5 1 9 1 8 1 10 8 1 10 1 10

1 (( . ) ( )( . )]
.

.16 5 1 16 5
6 8

8
0 85+ + = =

The coefficient, B2, is calculated using the values (�1 or �1) in the second column, the
X2 column.

[( )( ) ( )( ) ( )( ) ( )( . ) ( )( )

( )( ) ( )

− + − + + + + + −

+ − + +

1 5 1 9 1 8 1 10 8 1 10
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The coefficient for X1X2X3 is B123, and is calculated using the values in the column headed
by X1X2X3 as follows.

[( )( ) ( )( ) ( )( ) ( )( . ) ( )( )

( )( ) ( )

− + + + + + − + +

+ − + −

1 5 1 9 1 8 1 10 8 1 10

1 10 1 (( . ) ( )( . )]
.

.16 5 1 16 5
1 2

8
0 15+ + = =

All of the coefficients are calculated in this manner. B0 is the sum of all of the observations,
Y, divided by 8 (10.725).* (Note that all of the values in the ‘‘total’’ column are �1; this
column is used to obtain B0 in the same manner as the other coefficients.) The final
polynomial equation for predicting the response, Y, is

(16.5)
Y X X X

X X X X

= + + +
− −
10 725 0 85 2 225 2 525

0 15 0 85
1 2 3

1 2 1 3

. . ( ) . ( ) . ( )

. ( ) . ( )) . ( ) . ( )+ +1 025 0 152 3 1 2 3X X X X X

This equation looks entirely different from Eq. (16.2), which also predicts the responses
in this experiment. However, the two equations predict the same response. Equation (16.5)
uses the transformed levels of X1, X2, and X3 (�1 or �1), and Eq. (16.2) uses the actual,
observed, untransformed values. For example, if X1 and X2 are at their high levels, and
X3 is at the low level, we can solve for the response, Y, using Eq. (16.5) and the transformed
values, �1, �1, and �1 for X1, X2, and X3, respectively.

Y = + + + + + − − + +
− +
10 725 0 85 1 2 225 1 2 525 1 0 15 1 1

0 85 1

. . ( ) . ( ) . ( ) . ( )( )

. ( ))( ) . ( )( ) . ( ) ( ) .− + + − + + − =1 1 025 1 1 0 15 1 1 10 8( )+1

The response with X1 and X2 at the high level is 10.8, exactly equal to the value obtained
from Eq. (16.2), where X1, X2, and X3 are the actual levels, 2, 1, and 0 mg, respectively.

To reiterate, the reason for the transformation (also called coding) is to allow for
calculation of the coefficients in the polynomial equation.** The transformation of the
high and low factor levels to �1 and �1 also results in easy calculation of the variance
of the coefficients. Using the transformed levels, the variance of a coefficient is

* B0 � Ȳ.
** The coded values also result in orthogonality (independence) of effects.
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�2/8 [�2/� (X � X̄)2]. With an estimate of the variance, S2, each coefficient can be tested
for significance, using a t test. These tests are exactly equivalent to the testing of the
effects of the ANOVA of a factorial design as explained in Chapter 9. If, for example,
the X1X2 interaction were found to be nonsignificant in an ANOVA, the coefficient of
X1X2, �0.15 in this example, will also be non-significant. Usually, when constructing the
polynomial equation, only those terms which are statistically ‘‘significant’’ are retained.
In the experiment above, an estimate of the standard deviation was available from previous
similar experiments; s.d. � 0.32 with 16 d.f. Therefore, the coefficients B12 and B123

(0.15) are not significant.

t P= = >
0 15

0 32 8
1 3 0 05

.

. /
. ( . )

Omitting the ‘‘nonsignificant’’ B12 and B123 terms, the final equation is

(16.6)
Y X X X

X X X X

= + + +
− +
10 725 0 85 2 225 2 525

0 85 1 025
1 2 3

1 3 2

. . ( ) . ( ) . ( )

. ( ) . ( 33 )

An advantage of the transformation described above is that the omission of the two coeffi-
cients, B12 and B123, does not affect the values of the remaining coefficients, that is,
recalculation of the polynomial equation results in the same coefficients. This result would
not occur if Eq. (16.2) were used to describe the data. Equation (16.2) used the untrans-
formed factor levels and would necessitate extensive computations if some terms were
omitted, probably requiring use of a computer as a computing aid. Using the transformed
values ensures that the factors are orthoganol. This means that the estimates of the coefi-
cients are independent.

Having derived an equation (16.6) that describes the experimental system based on
the results of the experimental formulations, we consider this equation to approximately
predict the response within the experimental space. Figure 16.1 shows the space described
by this design. The prediction of the response, Y, at X1 � 1 mg, X2 � 1 mg, and X3 �
2.5 mg is 12.95 [Eq. (16.6)] (see Exercise Problem 1). How do we know that Eq. (16.6)
will be a good predictor for responses other than those included in the factorial design?
Without actually testing some ‘‘extra-design’’ formulations, we have no way of knowing
that the derived empirical equation will be adequate to predict the results of yet-to-be-
tested formulations. If the response is ‘‘well behaved,’’ the in-between points should be
able to be accurately predicted from the response equation.

Usually, it is a good idea to test at least one formulation, not included in the design,
as a check point. The observed results of the checkpoint formulation can then be compared
to the predicted value to test the equation. In our example, a formulation was prepared
with X1 � 1 mg, X2 � 0.5 mg, and X3 � 2.5 mg. The transformed values are equal to
zero for the three variables (see the transformation equation (16.4). Using Eq. (16.6), the
predicted response is 10.725 (only the intercept term is not equal to 0). The factor values
for the check point are the average of the low and high levels of the factors (X variables),
and lie in the center of the cube in Fig. 16.1. This is called a ‘‘Center Point.’’ The
actual observation made on this formulation was 10.5, very close to the predicted value.
Extrapolation of predicted results outside the factor space, as shown in Fig. 16.1, is not
recommended. A two-level design can make predictions only in a linear fashion, usually
a gross approximation. If curvature is present, the response may be misrepresented both
inside and outside the confines of the design.
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Figure 16.1 Factor space for experiment with factor levels shown in Table 16.1.

Once the polynomial-response equation has been established, an optimum formulation
(or a region of optimum formulations) can be found by various techniques. Sometimes,
inspection of the experimental results may be sufficient to choose the desired product. In
the example above, if large values of the response are desirable, Formulations 7 and 8 may
be chosen as ‘‘best’’ (Table 16.1). With the use of computers (programmable calculators
will often do), a ‘‘grid’’ method may be used to identify optimum regions, and response
surfaces may be depicted (see Fig. 16.2). The response surface is a geometrical representa-
tion of the response and the factor levels, similar to a contour map. For more than two
factors, response surfaces cannot be easily represented in two-dimensional space. However,
one can take slices of the surface, with all but two factors at fixed levels, as shown in Fig.
16.2. A computer can calculate the response, based on Eq. (16.1), at many combinations of
the factor levels. The formulation(s) whose response has optimal characteristics based on
the experimenter’s specifications can then be chosen. To illustrate the grid method, a very
rough grid with predicted responses based on Eq. (16.6) is shown in Table 16.3.

The experimental system analyzed above is a very simple example, but is a typical
approach to the optimization process. More sophisticated designs may be used, such as
the composite designs to be described below (Sec. 16.3), or fractional factorial designs.
The principles are the same. All of these designs have orthogonal properties to allow for
clear and simple estimation of the polynomial coefficients. For these designs, the magni-
tude of the coefficients is directly related to the magnitude of the response.

The polynomial coefficients may be calculated by techniques such as described here,
or by using a multiple regression computer program (see App. III). For two-level experi-
ments (2n factorials), the factor levels should be transformed so that the low level is equal
to �1 and the high level equal to �1, according to Eq. (16.4). (Experiments with factors at
more than two levels should be analyzed with the help of a statistician.) The transformation
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Figure 16.2 Response surface with drug (X3) constant (low level) [Eq. (16.6)].

considerably reduces the complexity of the computations, and aids in the interpretation
of the results. Each coefficient may be tested for significance discarding those coefficients
that are not significant, although there are no firm rules regarding this procedure. In
addition to the statistical criteria, scientific judgment may be used in making decisions
about the ‘‘significance’’ of the coefficients. In order to statistically test the coefficients
for significance, an estimate of the experimental error is required. This error estimate may
be obtained from previous experience, but is best estimated by replicating runs. Replica-
tion, however, may result in a large number of experiments, which could be very costly.
Replication, accomplished by performing duplicate assays on the same sample, for exam-
ple, is usually not sufficient. The best procedure for replication consists of preparing
each formulation or experiment in duplicate (or more), and randomizing the order of the
experiments, if all formulations cannot be prepared and tested simultaneously. Methods
are available to obtain an estimate of error from an unreplicated factorial experiment (e.g.,

Table 16.3 Grid Solutions for Responses (Y) Based on Eq. (16.6)

X1
a X2 X3 Y X1 X2 X3 Y X1 X2 X3 Y

�1 �1 �1 5.3 0 �1 �1 7 �1 �1 �1 8.7
�1 �1 0 7.65 0 �1 0 8.5 �1 �1 0 9.35
�1 �1 �1 10 0 �1 �1 10 �1 �1 �1 10
�1 0 �1 6.5 0 0 �1 8.2 �1 0 �1 9.9
�1 0 0 9.875 0 0 0 10.725 �1 0 0 11.575
�1 0 �1 13.25 0 0 �1 13.25 �1 0 �1 13.25
�1 �1 �1 7.7 0 �1 �1 9.4 �1 �1 �1 11.1
�1 �1 0 12.1 0 �1 0 12.95 �1 �1 0 13.8
�1 �1 �1 16.5 0 �1 �1 16.5 �1 �1 �1 16.5

a Transformed values.
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halfnormal plots [2,3], or from higher-order interactions as discussed in Chapter 9, but
these procedures will not be discussed here.

Replication (Sample Size)

We may only want to find optimum conditions, or we may want to know that effects are
real, and not just due to random error. In the latter case, we may want to perform statistical
tests (or confidence intervals). To determine the sample size for hypothesis tests, we may
use the approximate formula, N � 4(S2/delta2)(10), where N is the sample size for the
comparative groups (N � 4 for the 23 design), where alpha � 0.05 and beta � 0.8.
Usually a sample size between 10 and 20 should be sufficient.

Note that for two-level designs, the variance of an effect is 4S2/N, where N is the
number of runs.

Example:
A difference in response of 2.5 units is meaningful in a 23 experiment. The standard

deviation is expected to be 1.5. What size sample should we use?

N � 4(2.25/6.25)(10) � approximately 16

Extra (Center) Points

Often, it is useful to include an extra run as a ‘‘prediction’’ point, or to estimate curvature.
A center point should be equal to the average of the ‘‘run’’ points if there is no curvature.
If curvature is present, more runs will be needed to model the data.

The ANOVA for the following data set is shown below to illustrate the analysis of
replicated data.

LEVEL

Experiment A,B P D Resonse

1 (1) A 1 0.1 5,6
2 P B 1 0.1 7,11
3 D A 2 0.1 4,6
4 PD B 2 0.1 8,11
5 A A 1 0.2 12,12
6 PA B 1 0.2 16,21
7 DA A 2 0.2 11,12
8 PDA B 2 0.2 24,29
9 Checkpoint B 1.5 0.15 22

Analysis of Variance Table

Source Term DF Sum of Squares Mean Square F-Ratio Prob Level

P 1 162 162 40.50 0.000380*
D 1 5.555555 5.555555 1.39 0.277097
PD 1 10.88889 10.88889 2.72 0.142947
A: 1 304.2222 304.2222 76.06 0.000052*
AP 1 26.88889 26.88889 6.72 0.035802*
AD 1 5.555555 5.555555 1.39 0.277097
APD 1 5.555555 5.555555 1.39 0.277097
S 7 28 4
Total 14 456.9333

* p � 0.05
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In the absence of replication, there is no proper error term to test significance of the effects.
Sometimes we can use an estimate of error from previous experiments or pool the higher-
order interaction terms. If the runs are replicated, we would have a new term in the
ANOVA, residual or error. Then, we can perform F (or t) tests to test for significance.

We could also construct an equation to predict the response (assuming a linear re-
sponse with factors at two levels). This will be discussed later.

Fractional factorial designs use a fraction of the full factorials (e.g., 1⁄2, 1⁄4). The gain
is that we use less runs in the experiment. The loss is that we confound some effects. We
try to confound effects that we feel are not significant (or very small) with effects that
we wish to measure. In this example, the smallest fractional design is a 1⁄2 replicate, using
four of the eight runs. In four runs, we can only measure three effects. The logical choice
of effects to measure are A, P, and D. We assume that all interactions are negligible. If
our assumption is wrong, the measure of the main effects will be biased.

16.2.1 Optimization of a Combination Drug Product

The following example of a 22 factorial experiment is another illustration of the technique
of ‘‘optimization’’ using factorial designs. In this experiment, a combination drug product
was tested to obtain the dose of each drug which would result in an optimal response.
The product contained two drugs, A(X1) and B(X2). The experiment consists of formulating
combinations containing each drug at two dose levels. The doses for A were 5 mg and
10 mg; B was chosen at doses of 50 mg and 100 mg. These levels were carefully selected
to cover a range of doses which would include an appropriate dose to be chosen as the
prime candidate for the final marketed product. The full factorial consists of the four
experiments shown in Table 16.4

The product is a local anesthetic, and the response (Y) is the average time to anesthesia
for 12 patients per group. The high and low levels of drug A and drug B are transformed
to �1 and �1 [Eq. (16.4)]. For drug A, the transformation is

Potency
high level is 10; low level is 5)

− 7 5

2 5

.

.
(

For drug B, the transformation is

Potency
high level is 100; low level is 50)

− 75

25
(

The response equation has the form

Table 16.4 Factorial Design for the Drug Combination Study

Potency (mg) Potency (transformed)

Formulation A (X1) B (X2) A (X1) B (X2) AB (X1X2) Response, Y (min)

1 5 50 �1 �1 �1 9.7
2 10 50 �1 �1 �1 7.2
3 5 100 �1 �1 �1 8.4
4 10 100 �1 �1 �1 4.1
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Table 16.5 Predicted Values of Response to Anesthetic Combinations of Drugs A and
B Based on Eq. (16.8)

Dose of drug Aa

�1 �0.5 0 �0.5 �1

Dose of drug Ba �1 9.7 9.075 8.45 7.825 6.2
0 9.05 8.2 7.35 6.5 6.65

�1 8.4 7.325 6.25 5.17 4.1

a Coded values of drug potency.

(16.7)Y B B X B X B X X= + + +0 1 1 2 2 12 1 2( ) ( ) ( )( )

The coefficients are computed as described earlier in this section. For example, referring
to Table 16.4, B1 is:

Column A (X1) Y X1Y

�1 9.7 �9.7
�1 7.2 �7.2
�1 8.4 �8.4
�1 4.1 �4.1

�6.8/4 � �1.7

(B1 is the sum of X1Y /4 � �1.7.) The polynomial equation is calculated as

(16.8)Y X X X X= − − −7 35 1 7 1 1 0 451 2 1 2. . ( ) . ( ) . ( )

The response, Y, is the time to anesthesia. Formulation 4, which has the high levels
of both drugs, has the shortest time to anesthesia, and formulation 1 or 4 would be chosen
as optimal if either a long time or a short time to anesthesia is desired. However, an
intermediate time might be more desirable. For example, suppose that a time of 5 min is
the most desirable time based on considerations such as the administration of the product
and the type of conditions that are meant to be treated with the aid of the product. Table
16.5 is a rough grid of the predicted responses based on Eq. (16.8). Based on a time to
anesthesia of approximately 5 min, a formulation containing 0.5 of A and 1 of B would
be a candidate. Decoding the values result in a formulation containing 8.75 mg of A and
100 mg of B.

16.3 COMPOSITE DESIGNS TO ESTIMATE CURVATURE

In general, when looking for optimality, the response equation will be more reliable if it
contains terms that reflect curvature. Physical systems are less satisfactorily described by
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Figure 16.3 Figure showing linear response as a function of a single variable (factor).

empirical equations containing only linear terms. Figure 16.3 shows an example of a single
factor, X, at two levels. Clearly, to interpolate the response, Y, at values of X between the
low and high levels requires an assumption of linearity. These predictions would be very
much in error if the response is curved, as shown in Fig. 16.4.

In order to estimate curvature, more than two levels of the factor must be included
in the experiment. The presence of curvature would be reflected in the presence of terms
with a power greater than 1 (e.g., X 2

1) in the response equation. Such equations are known
as polynomials of order 2, and have the following form for a two-factor design:

(16.9)
Y B B X B X B X

B X B X X

= + + +

+ + +
0 1 1 11 1

2
2 2

22 2
2

12 1 2
…

Composite designs are effective designs to estimate second-order terms. These designs
have a number of desirable features. In addition to allowing an estimate of curvature,
composite designs give orthogonal estimates of the polynomial coefficients, and allow for
the possibility of proceding with the experiment in a stepwise fashion rather than perform-
ing the entire experiment at once. The theory underlying composite designs is beyond the

Figure 16.4 Figure showing curved response as a function of a single variable (factor).
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Table 16.6 Orthogonal Composite Design with Two Factors (32 Design)

Coded level

Formulation X1 X2 X1X2 X2
1 � 2/3 X2

2 � 2/3 Response, Y Predicted response

1 �1 �1 �1 �1/3 �1/3 9.7 9.3
2 �1 0 0 �1/3 �2/3 9.0 9.4
3 �1 �1 �1 �1/3 �1/3 8.4 8.4
4 0 �1 0 �2/3 �1/3 5.3 5.6
5 0 0 0 �2/3 �2/3 4.8 5.0
6 0 �1 0 �2/3 �1/3 3.8 3.3
7 �1 �1 �1 �1/3 �1/3 8.2 8.3
8 �1 0 0 �1/3 �2/3 7.5 6.9
9 �1 �1 �1 �1/3 �1/3 4.1 4.6

scope of this book. An excellent description of this design and optimization procedure
can be found in Chapter 11 of Ref. 1.

Although the following discussion is somewhat more advanced than the bulk of mate-
rial presented in this book, for those who are interested in this subject, an example of a
two-factor composite design will be presented to illustrate the technique. A two-factor
composite design is identical to a 32 factorial design, that is, two factors each at three
levels, a total of nine combinations (see Table 16.6).

In general, composite designs are not full factorials of the class 3n, where n is the
number of factors. These full factorial designs require a larger number of experiments.
For example, a 3n design with three factors requires 27 runs (27 formulations, for example),
33. With more than two factors, composite designs consist of the 2n design, plus extra-
design points. The extra points include a center point and 2n extra points, appropriately
chosen to maintain orthogonality of the design [1]. The two-factor composite design is
shown in Fig. 16.5.

The coded values �1, 0, and �1 in Table 16.6 for the factor levels represent three
equally spaced levels of each factor. The coded values in the column headed X1X2 are

Figure 16.5 Two-factor composite design (32 factorial).
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obtained by multiplying the corresponding values in the first two columns (X1, X2) as
previously described. The values in the columns X 2

1 � 2/3 and X 2
2 � 2/3 are derived so

that the product of corresponding values in any two columns of Table 16.6 sum to zero,
resulting in orthogonality (independence) of effects. The special orthogonality obtained
by transforming X 2

i to X 2
i � 2/3 allows for easy calculation of the coefficients and their

variances. With this transformation, Eq. (16.9) is modified to

(16.10)
Y B B X B X B X B X

B X X

= + + − + + −
+ +

0 1 1 11 1
2

2 2 22 2
2

12 1 2

2 3 2 3( / ) ( / )
…

The data in Table 16.6 consist of the four formulations from Table 16.4 plus five new
runs to complete the composite design. The doses of each drug (X1 and X2) were chosen
such that the three doses are at equally spaced intervals. Thus the third dose, in addition
to the two doses chosen for the 22 factorial, is 7.5 mg for X1 (A) and 75 mg for X2 (B).
The experiment consists of evaluating the nine combinations of doses, 5, 7.5, and 10 mg
for X1 (A) and 50, 75, and 100 mg for X2 (B). Note that the center point for the composite
design is the combination 7.5 mg and 75 mg of X1 and X2, respectively.

The results of the nine runs are shown in Table 16.6. The results are shown schemati-
cally in Fig. 16.6A. The plane at the bottom of the figure shows the combinations of X1

and X2. The vertical ‘‘sticks’’ are the responses at each combination of X1 and X2. We
will compute an equation of the form of Eq. (16.10) which represents a smooth curved
surface based on the experimental data. In general, the equation can be obtained through
the use of a multiple regression computer program.

The coefficients can also be calculated by ‘‘hand’’ (calculator) using the coded values
in Table 16.6. The sum of the products of the coded values times the responses divided
by the sum of the squared coded values in the column of interest gives the coefficient.
For example, the coefficient B11 in Eq. (16.10) is calculated as follows:

X�2
1 � X2

1 � 2/3 Y (X�2
1 )(Y)

�1/3 9.7 3.23
�1/3 9.0 3.00
�1/3 8.4 2.80
�2/3 5.3 �3.53
�2/3 4.8 �3.20
�2/3 3.8 �2.53
�1/3 8.2 2.73
�1/3 7.5 2.50
�1/3 4.1 1.37

� X�2
1 � 2 sum � 6.37

The sum of squared values in the (X 2
1 � 2/3) column is 2. Therefore, the coefficient, B11,

is 6.37/2 � 3.18. The intercept, B0, is the average of the nine responses, Ȳ, equal to 6.756.
The response equation is

(16.11)
Y X X X

X

= − + − −

− − −

6 756 1 22 3 18 2 3 1 15

0 52 2 3 0 7
1 1

2
2

2
2

. . ( ) . ( / ) . ( )

. ( / ) . (XX X1 2 )
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Note that Eq. (16.11) is not an exact fit to the experimental data, as was the case with
the polynomial fit described for factorial designs in Sec. 16.2. Had we included three
more terms representing various interactions, the equation would exactly fit the data.
Equation (16.11) is computed with the assumption that interactions are negligible. Because
of the larger number of experiments and the estimation of only six coefficients, we have
2 d.f. for error. Although such an error estimate is not very reliable, it does gives us some
information, albeit small. The response surface described by Eq. (16.11) is shown in Fig.
16.6B. If this equation does not adequately represent the experimental observations, more
terms may be needed in the polynomial equation [Eq. (16.9)] to improve the fit.

The contour plot (similar to contour maps) shown in Fig. 16.6B allows the selection
of combinations of X1 and X2 to satisfy given levels of the response. If a maximum response

Figure 16.6 Results of composite design experiment from Table 16.6 and response sur-
face computed from Eq. (16.11).
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is desired, the X1, X2 combinations are limited to a small area of the X1 � X2 space. If a
response of approximately 5 min is desired, various combinations of X1 and X2 will satisfy
the requirements. The ultimate choice will probably depend on other factors, as well, such
as cost, toxicity, and so on.

Use of factorial designs in tablet formulation optimization has been presented by
Schwartz et al. [4], Fonner et al. [5], and Lindberg et al. [6]. These papers discuss designs
somewhat more complex than that presented here. However, for those interested in pursu-
ing this topic further, these papers and the books The Design and Analysis of Industrial
Experiments [1] and Statistics for Experimenters [3] are recommended.

16.4 THE SIMPLEX LATTICE

Response surfaces and optimal regions for formulation characteristics are frequently ob-
tained from the application of simplex lattice designs. This class of designs is particularly
appropriate in formulation optimization procedures where the total quantity of the different
ingredients under consideration must be constant. Therefore, these are also called ‘‘Mixture
Designs.’’ For example, suppose that in a liquid formulation, the active ingredient and
solvent compose 90% of the product. The remaining 10% of the formulation consists of
preservatives, coloring agents, and a surfactant. We wish to prepare a formulation with a
certain optimal attribute(s) which is dependent on the relative concentrations of preserva-
tive, color, and surfactant. In order to determine optimal regions, we vary the concentrations
of these three ingredients in a systematic manner, with the restriction that the total concen-
tration of these ingredients is 10%. This approach differs from the previous procedures
(Secs. 16.2 and 16.3) in that a constraint is imposed on the total amount of the varying
ingredients. In this example, the total amount of the varying components is maintained at
10%. Given the concentration of two of the ingredients, the third ingredient is fixed where
in this example C � 10% � A � B.

Implementation of the simplex design consists of preparing various formulations con-
taining different combinations of the variable ingredients. The combinations are prepared
in a manner such that the experimental data can be used to predict the responses over the
simplex space* in a simple and efficient manner. The combinations (formulations) in a
simplex design are chosen to cover the space of interest in a symmetrical manner. The
experimental results are used to compute a polynomial (simplex) equation which can be
used to estimate the response surface. As is true with all optimization and so-called re-
sponse surface procedures, extrapolation to combinations outside the range included in
the experimental design is not recommended. The equation resulting from the experiment,
the simplex equation, is an empirical equation which approximately describes the response
pattern in the simplex space. There is no reason to believe that the equation has any
physical meaning, other than the fact that the complex response patterns resulting from
the varying formulations can often be approximated by simple polynomial equations.

Figure 16.7 representing a two-component system (A and B) is useful to help clarify
some concepts of simplex designs. One can consider components A and B to be two
solvents, which together comprise the entire solvent system of a drug product. We wish
to mix A and B in the correct proportion to optimize the solubility of the drug.

* The simplex space is the region enclosed by the various combinations of ingredients chosen for
the experiment. See Fig. 16.8, for example.
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Figure 16.7 Two-component solvent system used to illustrate the simplex approach to
optimization.

Figure 16.7 is familiar as a solubility phase diagram. This system can also be visualized
as an elementary simplex system. The constraint is that the concentrations of A and B
must add to 100%. This experiment consists of observing responses (solubility) at three
points, 100%A, 100%B, and a 50�50 mixture of A and B, an elementary simplex design.
According to Fig. 16.7, the solubilities of the drug at the three simplex points, 100% A,
100% B, and 50% A�50% B, are 10 mg/ml, 15 mg/ml, and 20 mg/ml, respectively. In
the simplex approach, we construct an equation of the form

(16.12)Y B A B B B A B= + +1 2 12( ) ( ) ( )( )

where Y is the response (solubility in this example), and (A) and (B) are the concentrations
(proportions) of A and B, respectively. The coefficients, B1, B2, and B12, are calculated
from the experimental observations. The response, Y, can then be predicted for all combina-
tions of A and B, where (A) � (B) � 1.0 (100%). (The proportion of each component is
usually indicated as a decimal rather than as a percentage.) The form of the simplex design
allows for easy calculation of the coefficients. In this example, the coefficients are simply
calculated as follows:

B1 � response at (A) equal to 1.0 (100%) � 10
B2 � response at (B) equal to 1.0 (100%) � 15
B12 � 4 (response at 0.5�0.5 mixture of A�B) � 2 (sum of responses at A � 1.0

and B � 1.0)
B12 � 4(20) � 2(10 � 15) � 30

The response equation is

(16.13)Y A B A B= + +10 15 30( ) ( ) ( )( )

The solution above for the three coefficients is a result of the solution of three simultaneous
equations:



525Optimization Techniques and Screening Designs

With A � 1.0 and B � 0, from Eq. (16.12), B*1 � 10
With A � 0 and B � 1.0, from Eq. (16.12), B2 � 15
With A � 0.5 and B � 0.5, from Eq. (16.12),

20 0 5 0 5 0 25 4 20 2 301 2 12 12 1 2= + + = − + =. . . ( ) ( )B B B B B Bor

We will see that in more complex simplex designs, the polynomial coefficients are, simi-
larly, easily calculated as linear combinations of experimental results.

Equation (16.13) exactly predicts the observed points: a fit of a polynomial with three
terms to three experimental points. We can always construct an equation with N coefficients
which will exactly pass through N points. For example, for the 50�50 mixture,

Y � 10(0.5) � 15(0.5) � 30(0.5)(0.5) � 20

The response equation predicts responses at extra-design points, those formulations not
included in the experiment but which lie within the simplex space, 100% A to 100% B
in this example. For example, what solubility would be predicted in a solvent system
containing 75% A and 25% B? (Note that A � B must equal 100%.) Applying Eq. (16.13),
we have

Y = + + =10 0 75 15 0 25 30 0 75 0 25 16 875( . ) ( . ) ( . )( . ) .

See also Fig. 16.7. The entire response may be sketched in by predicting solubilities along
the curve, as shown in the figure.

The primary experimental objective in experiments such as that described above may
be the determination of the solvent combination that results in maximum drug solubility.
The optimum solubility can be computed by calculating the predicted solubility at many
solvent combinations so as to clearly define the response over the solvent mixture contin-
uum. This may seem an indirect and tedious approach, but with the ready availability of
computers, this is often the most expeditious route. The maximum solubility is predicted
to occur at 41.67% A. In this simple example, the maximum can easily be calculated by
setting the first derivative of Eq. (16.13) equal to 0 (see Exercise Problem 6).

In general, the simplex design is usually applied to formulation problems in which a
mixture of three or more components is to be investigated. The design is conveniently
represented by regular-sided figures, which can be visualized for three- or four-component
systems. For more than four components, a single figure cannot be conveniently con-
structed, but can be theoretically conceived as an N-sided figure in (N � 1)-dimensional
space. For example, Fig. 16.8 shows the three-component system which is represented as
an equilateral triangle in two-dimensional space. A regular simplex design for a three-
component mixture system consists of six or seven formulations:

Three formulations, one each at each vertex, A, B, and C. These formulations represent
formulations with the pure components, A, B, and C, respectively.

Three formulations are prepared with 50�50 mixtures of each pair of components,
AB, AC, and BC.

A seventh formulation may be prepared with one-third of each component. This lies
in the center of the design.

An example of a simplex design for four components consisting of 15 formulations is
shown in Fig. 16.8. The 15 formulations consist of:

* The response, Y, with A equal to 1.0 (100%) is 10.
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Figure 16.8 Three-component simplex lattice design and four-component simplex lattice
design.

Four formulations each with 100% of each of the four pure components Six formula-
tions of 50�50 mixtures of component pairs (AB, AC, AD, BC, BD, and CD)

Four formulations consisting of one-third mixtures of combinations of three compo-
nents (ABC, ABD, ACD, BCD)

A mixture containing 25% of each of the four components (ABCD)

The simplex design is arranged so that the experimental space is well covered in a symmet-
rical fashion. In addition, the symmetrical spacing of the points allows for an easy computa-
tion of the response equation coefficients. The general equation for the response based
on a simplex design contains terms for pure components and all mixtures of components
as follows:

(16.14)
Y B A B B B C B A B B A C

B B C B
a b c ab ac

bc abc

= + + + + +
+ + +

( ) ( ) ( ) ( )( ) ( )( )

( )( )

…

… (( )( )( )A B C +…

where (A), (B), and (C) are the proportions of components A, B, and C, and (A) � (B)
� (C) � … is equal to 1.0.
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The subscripted B’s (e.g., Ba) are coefficients which can be easily calculated from
the responses, Y, or using a multiple regression computer program.

After the coefficients have been calculated, the response equation [Eq. (16.14)] may
be used to predict the response of combinations of the N components in the system. With
the aid of a computer, responses may be calculated over the simplex space, and contour
diagrams printed (see also Fig. 16.6). The contour plot is a graphic description of the
response surface resulting from data derived from experimental designs such as the sim-
plex. For the two-component system (Fig. 16.7), the response surface is simply the solubil-
ity curve. With three components, a three-dimensional figure would be necessary to show
the response surface. A contour plot is a means of illustrating the response on a two-
dimensional surface, as is familiar to those who have been exposed to contour maps. A
computer may be programmed to produce two-dimensional figures (commercial programs
are also available), which are slices through the three-dimensional figure for a three-
component system. The slices are taken at a constant concentration of one of the compo-
nents. In computer outputs, the regions of equal response are indicated by a common
symbol, such as a letter or a figure. An example of a contour plot was shown in Fig. 16.6.
The contour plot will be discussed further in the example that follows. Examination of
the contour plot(s) allows the experimenter to choose formulations which have predicted
responses of some specified magnitude.

When constructing an empirical response equation based on a limited number of
experimental observations, one should understand that predicted values based on the equa-
tion may be in error for several reasons. For example, the empirical equation (or model,
as it is often called) rarely exactly defines the experimental system. The equation is an
approximation to the system. To understand this important concept, note that the same
problem would exist if we had only two points in the experimental space. The empirical
equation derived from the two points could only relate the observations by a straight line.
In-between points could only be predicted on the basis of the straight-line relationship
(see Figs. 16.3 and 16.4).

If the true relationship of the X, Y variables were curved, the linear interpolation
would be in error. In the simplex design, we used a limited number of points to define a
relatively large region of response. Even if the model represented by the empirical equation
is a reasonable representation of the true surface, other sources of variation can contribute
to error in the prediction equation and predicted responses (e.g., error in measuring the
response). Thus, in these systems, we have at least two obvious sources of variability:
that due to the empirical model and that due to observational errors.
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How can we protect ourselves from inadvertantly proceeding with predictions when
the derived equation is indeed inaccurate? As insurance against such a possibility, it is a
good idea to run one or more extra-design points. These points are not used to estimate
the coefficients in the simplex equation [Eq. (16.14)] but will be used as checkpoints.
Once the simplex equation is derived, the result at the extra-design checkpoint(s) is pre-
dicted based on the equation, and its agreement with the observed value assessed. If the
agreement is close, we have increased faith in the predictive power of the response equation
(see Sec. 16.2). If we have an estimate of error from replication or other means, we may
wish to perform a statistical test to test the adequacy of the model (a statistician may be
consulted for this calculation).

The calculation of the simplex equation coefficients is easily accomplished using the
following formulas. These formulas are an extension of those discussed previously for
the two-component system as applied to a three-component system. The general formulas
for calculation of coefficients for an N-component system may be found in Ref. 6.

(16.15)

B Y

B Y

B

1 1

2 2

3

=
=

,

,

the response at 100%  A

the response at 100% B

==
= − +

Y

B Y Y Y Y
3

12 12 1 2 124 2

,

( ) ( ),

the response at 100% C

where is  the response at 50 50 

where is 

−
= − +

AB

B Y Y Y Y13 13 1 3 134 2( ) ( ), tthe response at 50 50 

where is t

−
= − +

AC

B Y Y Y Y23 23 2 3 234 2( ) ( ), hhe response at 50 50 −
= − + + +

BC

B Y Y Y Y Y123 123 12 13 23 127 12 3( ) ( ) ( ++ +Y Y

Y A B C
2 3

123 1 3 1 3 1 3

),

/ / , /where is the response at  and 

The discussion above has been based on an experimental situation where the components
being varied in the simplex design comprise the entire mixture (100%). In pharmaceutical
formulations, a more common situation is one in which part of the formulation must
remain fixed (e.g., drug concentration in a tablet). The remaining components, which may
be varied, therefore do not make up 100% of the mixture. In addition, the lower limit for
the varying components is often not equal to 0. For example, some components must be
present in some minimal quantity in order that a marketable product can be manufactured.
This is known as a design with constraints. For tablets, some minimal amount of a lubricat-
ing agent may be necessary in order to obtain an acceptable product. These modifications
in the simplex design present no problem, however, because we can restrict the treatment
of the simplex to those components which are varied, and with suitable transformations,
treat the data in exactly the same way as described above. For example, if the components
to be varied make up 60% of the total formulation ingredients, we can appropriately
transform the actual percentages of these components so that the transformed percentages
total 100%. In a three-component mixture containing 20% of each of three components,
each component can be transformed to 33.3% (1/3) for purposes of the simplex analysis.
Transformations can also be made where the components have a lower limit greater than
0% and an upper limit less than 100%, as will be explained in the following worked
example.

The example presented below is an experiment in which a simplex design was used
to obtain a formulation with optimal properties. This example should clarify the concepts
and procedures described above. This experiment was prompted by problems with tablet
hardness for a large-volume marketed product. Although the reason for the problem was
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Table 16.7 Results of a Three-Component Simplex System for Tablet Hardness

Formulation components Transformed proportion

A B C A B C Average hardness, Y

55 10 10 1.0 0 0 6.1
10 55 10 0 1.0 0 7.5
10 10 55 0 0 1.0 5.3
32.5 32.5 10 0.5 0.5 0 6.6
32.5 10 32.5 0.5 0 0.5 6.4
10 32.5 32.5 0 0.5 0.5 6.9
25 25 25 0.33 0.33 0.33 7.3
32.5a 21.25 21.25 0.5 0.25 0.25 7.2

a Extra-design checkpoint.

not obvious, the pharmaceutical product development scientists felt that the cause could
be traced to three components of the tablets, which we will denote as ingredients A, B,
and C. Together, these components consisted of 25% of the original formulation, or 75
mg of the total tablet weight of 300 mg. A careful evaluation of the product ingredients
indicated that the three components had to be present in an amount equal to at least 10
mg each in order for the tablet to be satisfactorily compressed. Thus the recommended
simplex design to obtain a satisfactory tablet hardness consisted of varying the three
components with the constraint that the sum of the components must be 75 mg, and that
each component be present in an amount equal to at least 10 mg.

In order to apply the simplex equation to be derived from this experiment in a conven-
ient manner, the actual concentrations used should be transformed such that the minimum
concentration (10 mg) corresponds to 0% and the highest concentration corresponds to
100%.* In our example, the transformation is the same for all three components because
each component is subject to the same restrictions. The minimum quantity is 10 mg and
the maximum is 55 mg. (The other two components, each at 10 mg, make up the 20-mg
difference, a total of 75 mg.) The transformation is as follows:

(16.16)

Transformed proportion
Amount used minimum

maximum minimum
= −

−

= AAmount used 10

55 10

−
−

Thus a formulation prepared with a 50�50 mixture of components A and B would actually
contain 32.5 mg of A, 32.5 mg of B, and 10 mg of C. Note that from Eq. (16.16), if a
component is at a concentration of 32.5 mg, the transformed proportion is (32.5 � 10)/
(55 � 10) � 0.5. A formulation with ‘‘100%’’ A would actually contain 55 mg of A,
10 mg of B, and 10 mg of C.

The three-component simplex design was run with one checkpoint, as shown in Table
16.7. The hardness values represent the average hardness of 20 tablets taken at random

* If there are no constraints on the upper and lower limits, the highest concentration would ordinarily
be 100% and the lowest 0%.
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from the experimental batches. The simplex coefficients are computed as described previ-
ously [Eq. (16.15)], resulting in the following equation:

(16.17)
Y A B C

A B A C B C A

= + +
− + + +

6 1 7 5 5 3

0 8 2 8 2 0 15

. ( ) . ( ) . ( )

. ( )( ) . ( )( ) . ( )( ) ( )(( )( )B C

For example, the coefficient B123 is calculated as follows:

27 7 3 12 6 6 6 4 6 9 3 6 1 7 5 5 3 15( . ) ( . . . ) ( . . . )− + + + + + =

(A), (B), and (C) in Eq. (16.17) are the transformed proportions. The extra-design check-
point (the final formulation in Table 16.7) has a response of 7.2. The predicted value based
on Eq. (16.17) is 7.09, very close to the observed value, 7.2. This is some confirmation of
the adequacy of Eq. (16.17) as a predictor of tablet hardness. Figure 16.9 shows a contour
plot of the results of the experiment based on Eq. (16.17). Tablets with high hardness are
found in the region with relatively larger amounts of component B. If a tablet hardness
of 7 or more is satisfactory, the pharmaceutical scientist has a choice of formulations. The
final composition may then be dependent on other factors, such as cost or other tablet
properties.

The following example shows data (Table 16.8) and analysis from a replicated simplex
design that gives an estimate of experimental error. The design is a basic three-component
(A, B, and C) simplex design with a center point consisting of 1/3 of each of the three
components. This example is set up for a computer analysis. Note that the interaction term
coefficients are the product of the main effect coefficients. For example for Run �7, the
ABC interaction is 0.333 � 0.333 � 0.333 � 0.037. The computer analysis gives the

Figure 16.9 Contour plot of three-component simplex system (Table 16.7).
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Table 16.8 Example of a Replicated Simplex Design

Run A B C AB AC BC ABC Response

1 1 0 0 0 0 0 0 38
2 0 1 0 0 0 0 0 27
3 0 0 1 0 0 0 0 46
4 0.5 0.5 0 0.25 0 0 0 33
5 0.5 0 0.5 0 0.25 0 0 51
6 0 0.5 0.5 0 0 0.25 0 32
7 0.333 0.333 0.333 0.111 0.111 0.111 0.037 48
8 1 0 0 0 0 0 0 42
9 0 1 0 0 0 0 0 28

10 0 0 1 0 0 0 0 41
11 0.5 0.5 0 0.25 0 0 0 35
12 0.5 0 0.5 0 0.25 0 0 47
13 0 0.5 0.5 0 0 0.25 0 32
14 0.333 0.333 0.333 0.111 0.111 0.111 0.037 50

Independent Regression Lower Upper Standardized
variable coefficient Standard error 95% C.L. 95% C.L.

A 40 1.535299 36.36959 43.63041
B 27.5 1.535299 23.86959 31.13041
C 43.5 1.535299 39.86959 47.13041
AB 1 7.521398 �16.78528 18.78528
AC 29 7.521398 11.21472 46.78528
BC �14 7.521398 �31.78528 3.78528
ABC 277.1 52.90734 151.9937 402.2056

Analysis of Variance Section

Source DF Sum of squares Mean square Prob F-Ratio Level

Intercept 0 0 0
Model 7 22461 3208.714 680.6364 0.000000
Error 7 33 4.714286

regression coefficients for the response equation, and an ANOVA to estimate the experi-
mental error. The variance estimate is 4.71.
A check point was run at A � 0.25, B � 0.25, and C � 0.5 with a response of 46. The
model predicted 49.2.

In my experience, this approach gives excellent results.

16.5 SEQUENTIAL OPTIMIZATION

Sequential optimization was developed as a means to optimize a process in a stepwise
fashion. Evolutionary operation (EVOP) uses factorial type designs and usually requires
a large number of experiments [8]. A relatively simple approach to sequential optimization
is a stepwise application of the simplex procedure [9,10]. The procedure consists of first
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generating data from n � 1 experiments where n is the number of independent variables
or factors. Based on the n � 1 responses and predetermined rules, one result is eliminated
from the set and a new experiment is performed. A decision is made as a result of the
most recent experiment, generating another new experiment, and so on, eventually termi-
nating the design at an ‘‘optimal’’ response. Thus each new experiment leads the researcher
on a path towards an optimum. The procedure and rules are illustrated in the following
example. For further details and illustrations, the reader is encouraged to study Refs. 9–11.

16.5.1 An Example of Sequential Simplex Optimization

This example is based on the presentation by Shek et al. [11] using the simplex procedure
to optimize properties of a capsule formulation. They were interested in optimizing dissolu-
tion and compaction rates as a function of the factors (or variables) drug, disintegrant,
lubricant, and fill weight. In this synthetic example, we will look at a single response,
dissolution at 30 minutes, as a function of 3 variables: disintegrant, lubricant, and fill
weight.

We start with 4 experiments (we have 3 variables). There are no firm rules regarding
the design of these experiments, but principles of good experimental design should prevail.
For example, a 1/2 replicate of a 23 factorial design can be used for the initial 4 experiments.
This requires setting low (�) and high (�) levels for each factor; see Table 16.9.

Let W � vector of worst response
Let S � vector of second worst response
Let B � vector of best response
Let Rw � worst response
Let Rs � second worst response
Let Rb � best response
Let P � average vector after elimination of worst response among formulations under

consideration

Note that since Formula 2 shows the worst response (the longest dissolution time) P̄
is the average of experiments 1, 3, and 4 and is equal to (33.3, 0.87, 300). For example,
the first vector element refers to the average disintegrant � (�50 �0 �50)/3 � 33.3.
Procedure:

Step 1. Eliminate W, the vector of the worst response from the data set and compute
R [Eq. (16.18) below], the formulation for the new experiment.

(16.18)
R P P W= + −

+ − = −
( )

( . , . , ) ( , . , ) ( . , . , )33 3 0 87 300 33.3 1 33 200 66 6 0 46 500

Table 16.9 Initial Four Experiments for Simplex Experiment

Experiment Disintegrant Lubricant Fill weight Response

1 �(50)* �(0.2) �(100) 37
2 �(0) �(2.2) �(100) 58
3 �(0) �(0.2) �(400) 46
4 �(50) �(2.2) �(400) 40

* Parenthetical value is the amount of ingredient in the formulation.
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In this example, we need 66.6 of disintegrant, �0.46 of lubricant and a fill weight of
500. We will interpret this result after the rules are specified and we proceed with the
optimization.

If the response from experiment R, Rr, is better than the second-worst response, Rs,
but worse than the best response, retain Rr and proceed to Step 1, evaluating a new
formulation with the new set of 4 formulations.

If the response to Rr is better than the best response, proceed to Step 2.
If the response to Rr is worse than the second-worst response, go to Step 3.
If the response to Rr is worse than the worst response, go to Step 4.
Step 2. Compue E [Eq. (16.19) below] and evaluate Re.

(16.19)E P P W= + −2( )

If Rr is better than the response to E, Re, retain R. If Re is better than Rr, retain E.
Step 3. Compute Cr [Eq. (16.20) below] and evaluate the response to Cr, Rcr.

(16.20)C P P Wr = + −0 5. ( )

Retain Cr. However, if Rcr is worse than Rs (the next-to-worst response), then set Rw

� Rs and W � S. (This means that the worst response is set equal to the next-to-worst
response.) Set Rcr as the next to worst response, i.e., S � Cr and Rs � Rcr.

Step 4. Compute Cw [Eq. (16.21) below] and evaluate Rcw. Retain Cw. However, if
Rcw is worse than Rs (the next-to-worst response), then set Rcw � Rs and W � S. (this
means that the worst response is set equal to the next-to-worst response.) Set Rcw as the
next to worst response, i.e., S � Cw and Rs � Rcw.

Summary of Calculation of New Formulations
(16.18)

(16.19)

(16.20)

(16.21)

1

2 2

. ( )

. ( )

R P P W

R R
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=
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4

. . ( )

.

= + −
=

== − −
=

P P W

R Ccw w

0 5. ( )

The response to Formula

r

Although this procedure may appear confusing, if one follows the example, the process
will be clarified.

We have already calculated the vector for the first new formulation using Step 1 above:
(66.6, �0.46, 500). The response to this formulation will replace the worst formulation, W,
which is formulation 2. Unfortunately, we cannot prepare this formulation because of the
negative quantity of lubricant. We will make a rule that in such impossible situations we
consider the response to this new formulation to be worse than the remaining formulations
under consideration (formulations 1, 3, and 4).

This sends us to Step 4 according to our rules. The formulations under consideration
are 1, 3, 4, and 5 in Table 16.10. According to Eq. (16.21)

Cw = − − −
=

( . , . , ) . ( . , . , )

( , . , )

33 3 0 87 300 0 5 33 3 1 33 200

50 0 20 400
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Table 16.10 Sequential Experiments in Optimization Process

Experiment Disintegrant Lubricant Fill weight Response

1 50 0.2 100 37
2 0 2.2 100 58 (W1)a

3 0 0.2 400 46 (W3)
4 50 2.2 400 40
5 66.6 �0.46 500 � (W2)
6 50 0.20 400 44 (W4)
7 100 1.54 200 42 (W6)
8 83.3 2.42 67 43 (W5)
9 58.4 0.75 316 36

10 8.5 0.07 416 41 (W7)
11 39 0.56 344 44 (W8)
12 56.2 0.8 308 35

a W1 means that this result was eliminated after the first evaluation.

The response, Rcw, to Cw is 44. According to Step 4 above, we retain this result. This is
shown as experiment 6 in Table 16.9. We now operate on experiments 1, 3, 4, and 6;
experiment 3 is the new worst result.

We go to Step 1 and compute our new formulation R from Eq. (16.18):

R = + − =( , . , ) ( , . , ) ( , . , )50 0 87 300 50 0 67 100 100 1 54 200

The response R, is 42 (represented by experiment 7 in Table 16.9). This is better than the
second worst response (44 for experiment 6) and we retain Rr as directed in Step 1 above.
We recompute R for the set of experiments 1, 4, 6, and 7:

R = + − =( . , . , ) ( . , . , ) ( . , . , )66 7 1 31 233 16 7 1 11 167 83 3 2 42 67

The response, Rr, is 43. This is worse than the second-to-worst response, 42.
Therefore we go to Step 3:

C P P W

C

r

r

= + −
= + − −
=

0 5

66 7 1 31 233 0 5 16 7 1 11 167

58 4

. ( )

( . , . , ) . ( . , . , )

( . ,, . , )0 75 316

The new response (experiment 9) is 36.
According to our rules, we go to Step 2:

E P P W

E

= + −
= + − −
=

2

69 5 1 05 272 2 30 5 0 49 72

8 5 0 07 41

( )

( . , . , ) ( . , . , )

( . , . , 66)

The response to E is 41. According to Step 2, we retain R in lieu of E because R gave
the better response. We compute a new R from Step 1:

R = + − −
=

( . , . , ) ( . , . , )

( , . , )

69 5 1 05 272 30 5 0 49 72

39 0 56 344
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The response is 44. Our new set of 4 experiments is numbers 1, 4, 9, and 11, with number
11 the worst.

We go to Step 4 and compute Cw because the value of R is worse than Rw:

Cw = − −
=

( . , . , ) . ( . , . , )

( . , . , )

69 5 1 05 272 0 5 30 5 0 49 72

54 2 0 8 308

The response was 35 (see experiment 12).
The experiments may continue as described above until repeated experiments do not

show improvement. We are searching for an optimal response in the presence of variability.
In the present case, a formula containing approximately 55 of disintegrant and 0.75 of
lubricant with a fill weight of 300 mg appeared to show minimal dissolution time; the
study was stopped after experiment 12.

As with other optimization procedures presented in this chapter, studying details in
the literature references is essential to understand the procedure and calculations [8–11].

16.6 Screening Designs

Usually, we know the factors that we wish to investigate, from our experience. However,
in new, unknown, situations, it is possible that we may consider a number of factors to
investigate, to see if any of these may affect the response or outcome. If there are only a
few such variables (or factors), we may wish to use a factorial or fractional factorial
design. If there are many potential factors of interest, screening designs are available that
use less runs, but do give us insight into effects of interest. The most popular of such
designs are the Plackett-Burman designs.

Screening designs may be useful if little is known of the system. In most cases, one
should have a reasonable idea of which variables are important, and their effective ranges.
But, we may be surprised. If everything were known, experimentation would not be beces-
sary. Also, one should be careful not to neglect potentially important variables.

Screening designs, in general, are fractional factorials of 2n designs that estimate main
effects, but not interactions. If results of such experiments point to specific factors, one
can follow up with more complete designs to evaluate specific interactions.

A twelve-run design is shown in Table 16.11. Note that the � and � signs refer to
the low and high levels of the factor, respectively. Thus, for example, Factor 1 in Run 1

Table 16.11 Twelve-Run Plackett-Burman Design

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 � � � � � � � � � � �
2 � � � � � � � � � � �
3 � � � � � � � � � � �
4 � � � � � � � � � � �
5 � � � � � � � � � � �
6 � � � � � � � � � � �
7 � � � � � � � � � � �
8 � � � � � � � � � � �
9 � � � � � � � � � � �

10 � � � � � � � � � � �
11 � � � � � � � � � � �
12 � � � � � � � � � � �
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is at the high level. (See Chapter 9 for further explanation of terminology.) For other
designs, e.g., higher-order or more complex designs, a statistician should be consulted. In
general, variability cannot be estimated without replication (run the design in duplicate,
for example) or partial replication. This would increase the size and cost of the experiment.
As in other design considerations, the cost and time considerations must be weighed against
the information gained from expanded experiments. If less factors than runs are used, an
estimate of variability can be provided. This is shown in the following example.

An example of a 12-run Plackett-Burman design is shown in Table 16.12. This design
estimates the main effects of six variables. This leaves 5 d.f. for estimating the error. The
estimates based on columns 7–11, inclusive, are only used to compute the variability, and
are not related to the six factors in the experiment. An example of an experiment using
this design could be as follows. The effect of six variables on the dissolution of a tablet
is to be investigated. The six factors are (X1) hardness, (X2) Level of disintegrant, (X3)
time of mixing granulation, (X4) level of lubricant, (X5) type of coating, and (X6) tablet
press pressure. The response is the percent dissolution in 30 min. Each factor is set at a
low (�1) and a high (�1) level. (Note that ‘‘type of coating’’ is arbitrarily set at �1
and �1.)

The analysis is most easily accomplished using a multiple regression computer pro-
gram. When designating values for the model in the computer program, it is convenient
to input �1 for the low level and �1 for the high level. Table 16.13 shows an example
of relevant computer output.
Note that only main effects are estimated. The error term is comprised of the five columns
that were not assigned to factors (columns 7–11). If only five factors were investigated,
columns 6–11 would be used to estimate error with 6 degrees of freedom. The estimate
of error allows us to test the main effects for significance. This is a conservative test
because the error will be, if anything, estimated on the high side. That is, if any interactions
are present, the error estimate will be too high. This means that we may miss some
significant effects if interaction is present. In this example, X2 just misses significance,
and X3 and X5 are significant. Again, the six factors are (X1) hardness, (X2) Level of
disintegrant, (X3) time of mixing granulation, (X4) level of lubricant, (X5) type of coating,

Table 16.12 Example of Twelve-Run Plackett-Burman Design

Dissolution X1 X2 X3 X4 X5 X6 Error Error Error Error Error

75 1 1 �1 1 1 1 �1 �1 �1 1 �1
104 1 �1 1 1 1 �1 �1 �1 1 �1 1

57 �1 1 1 1 �1 �1 �1 1 �1 1 1
54 1 1 1 �1 �1 �1 1 �1 1 1 �1
46 1 1 �1 �1 �1 1 �1 1 1 �1 1
58 1 �1 �1 �1 1 �1 1 1 �1 1 1

3 �1 �1 �1 1 �1 1 1 �1 1 1 1
98 �1 �1 1 �1 1 1 �1 1 1 1 �1
80 �1 1 �1 1 1 �1 1 1 1 �1 �1
12 1 �1 1 1 �1 1 1 1 �1 �1 �1

100 �1 1 1 �1 1 1 1 �1 �1 �1 1
13 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1
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Table 16.13 Multiple Regression Computer Output of Data in Table 16.12

Independent Regression T-Value
variable coefficient (Ho: B�0) Prob. level Decision (5%)

Intercept 58.33 13.3748 0.000042 Reject Ho
X1 �0.167 �0.0382 0.970996 Accept Ho
X2 10.33 2.3692 0.064013 Accept Ho
X3 12.5 2.8660 0.035158 Reject Ho
X4 �3.167 �0.7261 0.500353 Accept Ho
X5 27.5 6.3052 0.001477 Reject Ho
X6 �2.667 �0.6114 0.567651 Accept Ho

Analysis of Variance

Source DF Sum of squares Mean square F-Ratio Prob. level

Intercept 1 40833.33 40833.33
Model 6 12437.33 2072.889 9.0810 0.014
Error 5 1141.33 228.267
Total 11 13578.67 1234.424

and (X6) tablet press pressure. Therefore, we might wish to consider the level of disinteg-
rant, time of mixing, and type of coating if we wish to modify the dissolution. The type
of coating seems to have the greatest effect.

KEY TERMS

Checkpoint Optimization
Coding Orthogonality
Composite designs Plackett–Burman
Contour plot Polynomial equation
Extra-design points Replication
Factorial designs Response equation
Fractional factorial designs Response surface
Grid Screening designs
Independence Sequential optimization
Model Simplex design
Model error Simplex space
Multiple regression Transformation

EXERCISES

1. Calculate the predicted response from Eq. (16.6) for
(a) X1 � 1 mg, X2 � 1 mg, X3 � 2.5 mg
(b) X1 � 2 mg, X2 � 1 mg, X3 � 4 mg
[Note that Eq. (16.6) uses coded values; see Eq. (16.4).] For example, the coded
value for X1 � 1 mg is 0 � (1 � 1)/1.
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2. Show that the transformed values of X1 � 1, X2 � 0.5, and X3 � 2.5 are all equal
to zero for the three variables in Exercise Problem 1.

3. Calculate the coefficients for the polynomial equation, (16.8). The coefficients are
calculated from the data in Table 16.4.

4. Show that decoded values of A and B equal to 0.5 and 1, respectively, are equal
to 8.75 mg of A and 100 mg of B, for the data of Table 16.4 and Eq. (16.8). Calculate
the expected response of this combination of A and B using Eq. (16.8).

5. A formulation was to be prepared to optimize dissolution time. (The formulation
with the dissolution time of approximately 15 min is ‘‘optimal.’’) Stearic acid and
mixing time were varied according to a 22 factorial design with the following results:

Stearic acid

0.25% 1%

Mixing time (min) 15 10 23
30 21 25

(a) Construct a polynomial response equation [see Eq. (16.8)].
(b) What concentration of stearic acid and mixing time would you choose for the

final product?
**6. Calculate the maximum solubility based on Eq. (16.13), using procedures of calcu-

lus. [Hint: Set the first derivative equal to 0 after substituting (1.00 � A) for B.]
7. A total of 100 mg of three components, stearic acid (A), starch (B), and DCP (C),

are to be added to a tablet formulation. Dissolution time was measured in a simplex
design with the following results:

100% A: 292.0 min
100% B: 5.6 min
100% C: 50.4 min
50% A, 50% B: 25.6 min
50% B, 50% C: 15.6 min
50% A, 50% C: 124.5 min
1/3A, 1/3B, and 1/3C: 37.0 min

(a) Compute the simplex equation coefficients.
(b) Give a combination with very fast dissolution.
(c) Give a combination that has a dissolution time of 90 min.
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GLOSSARY

a calculated intercept in regression
ANCOVA analysis of covariance
ANOVA analysis of variance
b calculated slope in regression
BMS between mean square
BSS between sum of squares
C. T. correction term
CI confidence interval
CV coefficient of variation; relative error; relative standard deviation
CXR column � row interaction
df degrees of freedom
E expected number in chi-square table
F F value for F distribution
Ha alternative hypothesis
Ho null hypothesis
ln natural log
LSD least significant difference
O observed number in chi-square table
p estimated proportion (binomial)
p (A) probability that event will occur
p (A|B) conditional probability of A given B
po true or hypothesized proportion
q probability of failure in binomial
R range
r calculated correlation coefficient
r (Dixon) computation for outlier analysis
r2 square of correlation coefficient
RSD relative standard deviation
S sample standard deviation
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S2 sample variance
S2y.x estimated variance from line fitting
t t value for t distribution
Tn test for outlier
� true standard deviation of distribution
w weight in weighted least squares
WSS within sum of squares
Xi ith observation
Z normal standard deviate
�2 chi square
� delta, true change or difference
N sample size
� sum of observations
� alpha level or error for null hypothesis; error of first kind
	 beta error (1-power)
� observed change or difference
� true mean of distribution
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