

Class of product	Examples	Biological effects	
Enzyme	Eosinophil peroxidase	Toxic to targets by catalyzing halogenation Triggers histamine release from mast cells	
	Eosinophil collagenase	Remodels connective tissue matrix	
Toxic protein	Major basic protein	Toxic to parasites and mammalian cells Triggers histamine release from mast cells	
	Eosinophil cationic protein	Toxic to parasites Neurotoxin	
	Eosinophil-derived neurotoxin	Neurotoxin	
Cytokine	IL-3, IL-5, GM-CSF	Amplify eosinophil production by bone marrow Cause eosinophil activation	
Chemokine	IL-8	Promotes influx of leukocytes	
	Leukotrienes C4, D4, E4	Cause smooth muscle contraction Increase vascular permeability Increase mucus secretion	
Lipid mediator	Platelet-activating factor	Attracts leukocytes Amplifies production of lipid mediators Activates neutrophils, eosinophils, and plateiets	

Arachido

Leukotriene synthesis • "LINEAR PATHWAY"

- Not inhibited by NSAIDs
- Lipoxygenases
- convert arachidonate to leukotrienes
- present in leukocytes, heart, brain, lung, spleen
- also present in plants

Prostanoid receptors

· Prostanoids exert their actions via membrane receptors on the surface of target cells [Narumiya et al., 1999]. We cloned a family of eight types and subtypes of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP), four subtypes of the PGE receptor EP1, EP2, EP3, and EP4, the PGF receptor (FP), PGI receptor (IP) and TXA receptor (TP). They all are G protein-coupled rhodopsin-type receptors with seven transmembrane domains. Using homologous recombination, we have generated mice deficient in each of the prostanoid receptors individually, and subjected them to various models of human diseases

EP4-/- and skin

Immune response in the skin is triggered by uptake of exposed antigens by Langerhans cells, a type of dendritic cells (DCs). Langerhans cells then migrate to draining lymph nodes, and activate naive T cells to initiate immune response, it acts on Langerhans cells to modulate their functions. Using mice deficient in each EP subtype, we examined this issue [Kabashima et al., 2003a]. We found that, while Langerhans cells express all four PGE receptor (EP) subtypes, their migration to regional lymph nodes after antigen uptake was decreased only in EP4-/- mice. Impairment in migration sereproduced in wild type mice trated with an EP4 antagonist, whereas an EP4 agonist promoted the migration of Langerhans cells. EP4 stimulation further increased expression of costimulatory molecules in Langerhans cells must be migration and maturation of Cangerhans cells and hemitation of skin immune responses. Consistent with this hypothesis, contact hypersensitivity to antigen was impaired in EP4-/- mice as in wild-type mice trated with a the Haclintates initiation of skin immune responses. Consistent with this hypothesis, contact hypersensitivity to antigen was impaired in EP4-/- mice as well as in wild-type mice trated with the EP4 antagonist during sensitization.

PGE2-EP4 signaling in inflammatory bowel disease

Human inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, relapsing, and remitting condition of unknown origin, and is characterized by inflammation means, and leukocytosis [Fieckh. 1998]. Studies in humans have implicated imparted mucosal barrier function, pronounced immate immunity, production of profinalmantory and immunoregulatory cytokines, and the activation of CD4+ T cells in the pathogenesis of IBD. It is known that PGE2 is produced the statistical and the activation of the pathogenesis of IBD. It is known that PGE2 is produced the statistical and the activation of the pathogenesis of IBD. It is known that PGE2 is produced the statistical and the activation of CD4+ T cells in the pathogenesis of IBD. It is known that PGE2 is produced the statistical and the pathogenesis of IBD. It is known that PGE2 with disease initiation and progression. However, the identity of the EP receptor and mechanism of such prevention remain unknown. We subjected mice deficient in cach of the eight types and subtypes of prostanoid receptors to dextran sodium sulfate (DSS)-induced colitis, an animal model of IBD, and count data, anong the eight strains of knockour mice, only EP44-deficient mice developed severe colitis with 3% DSS treatment. This susceptibility in the absence of EP4 signaling was confirmed by reproducing this phenotype in wild type mice treated with an EP4-selective antagonist. We further found that the EP4 deficiency impaired mucoal barrier function, and induced epithelial loss, crypt developed baryersion of genes associated with nume response and reduced expression of genes swith mucoal repair and remodeling were found in the colon of EP4-deficient mice. Thus our study revealed that EP4 maintains institual homeostasis by preserving mucoal integrity and downregulating immune response.

species and	cDNA			Expression	
tone name	source	Unique sequence	Signal transduction	cell line	Reference
luman					
	Uterus	•EEFWGN	1 cAMP, †Ca2*	СНО	91
E	Intestine	•EEFWGN	1 cAMP	JE0-3	82
b	Uterus	•EEFWON	1 cAMP, † Ca ^{2*}	BHK-12	83
	Kidney	•EEFWON	Not determined		147
	Kidney	+EEFWGN	1 cAMP	COS-7/CHO	148
Rabbit 72A	Kidney	•EEFWEK	1 CRE	HEK293	9,99
luman					
d	Uterus	 MRKRRLREQEEFWEGN 	1 cAMP	BHK-12	83
N	Uterus	+MRKRRLREQEEFWEGN	1 cAMP (weak), 1 Ca2+	CHO	91
ľ∨'	Kidney	+MRKRRLREQEEFWEGN	LCAMP TCAMP	COS-7/CHO	148
F	Intestine	•MRKRRLREQ	Not determined		82
	Uterus	 MRKRRLREGLICSLRTLRYRGGLHMGKYKPIVC 	1 cAMP	BHK-12	83
f	Uterus	 MRKRRLREGAPLLPTPT/IDPSRFCAGPFRWFLD 	1 cAMP	BHK-12	83
		LSFPAMSSSHHPOLPLTLASFKLLREPCSVOLS			
Pabbit 74A	Kidney	RYHTNNYASSSTSLTHQCSST	1 CRE	HEK293	9,99
luman					
1	Uterus	RYHTNNYASSSTSLPCQCSSTLMWSDHLER	1 cAMP, 1 Ca2+	CHO	91
1	Kidney	RYHTNNYASSSTSLPCNCSSTLMWSDHLER	not determined		147
1	Kidney	RYHTNNYASSSTSLPCQCSSTLMWSDHLER	1 cAMP 1 Pg	COS-7/CHO	148
A	Intestine	RYHTNNYASSSTSLPCQCSSTLMWSDHLER	1 cAMP	JEG-3	82
			MAP kinase	C0S-7	149
8	Uterus	RYHTNNYASSSTSLPCQCSSTLMWSDHLER	1 cAMP, 1 Ca2*	BHK-12	83
douse α	P815	RDHT-NYASSSTSLPCPGSSALMWSDQLER	1 cAMP	CHO	86

Pharmacological Reviews Brink et al. 55 (1): 195 - Microsoft Int	ernet Diplorer				
Edit View Pavonites Tools Help					
lack = + - 🔘 🗇 🖄 🕄 Search 🕞 Favortes 🛞 Media (3				
ess 🗿 http://phamrev.aspetjournals.org/cg/content/Ful/55/1/195/T1	▼ <i>∂</i> 60				
TABLET					
lajer biological actions of leakotrienes and lipexins					
Actions	References				
	Dihydrwsy leukatrienes (LTBg)				
eukocyte activation.	Bray et al., 1900; Ford-Hutchinson et al., 1900; Ocetal and Ficket, 1900; Sedhan et al., 1902				
ytokine secretion.	Luscinskus et al., 1990; Rola-Fleanerynski et al., 1993				
Judear transcription (FPARt)	Devchand et al., 1996				
gli synthesis	Odlander et al., 1988; Yamanki et al., 1994				
	Cysteinyl-leukotrienes (LTC 4. LTD 4. LTE 4)				
loschogam.	Druzen et al., 1960, Weiss et al., 1962, Barnes et al., 1964, Jones et al., 1965; Dwridson et al., 1967, Smith et al., 1993				
farma enudation	Woodward et al., 1983; Ewans et al., 1985; Obata et al., 1992				
7 as construction	Smedegard et al., 1982; Filep et al., 1985; Fiedler and Abram, 1987; Oarria et al., 1987; Evans et al., 1989				
Varodilation.	Secret et al., 1985; Salcama and Levi, 1988; Lawron et al., 1989; Pawloski and Chapwick, 1993b; Oriz et al., 1995				
Eosinophil recruitment	Foster and Chan, 1991; Luitinen et al., 1993; Smith et al., 1993; Spada et al., 1994; Underwood et al., 1996				
Cardio-depression.	Levi et al., 1900; Buzke et al., 1902; Letts and Piper, 1903; Bittl et al., 1905; Roth et al., 1905				
Imooth muscle proliferation	Wang et al., 1993; Panettieri et al., 1998				
Mucus secretion	Shelhamer et al., 1980, Coles et al., 1983; Labat et al., 1999				
Lipexins	(LX) and Aspiris-Triggered Lipsain Analogs (ATLa)				
Regulation of cellular function	Fiore et al., 1994; Chiang et al., 2000; Kang et al., 2000; Geonert et al., 2001				
inhibition of PMN-mediated inflammation in skin, hung and kidney	Bude et al., 1909; Takano et al., 1990; Clinh et al., 1999; Chiang et al., 2000; Oodron and Brudy, 2000				
Protection in reperflusion initiaty	Chiang et al., 1999				
Inhancement of macrophage phagocytosis of leukocytes	Oodson and Brady, 2000				
Redirection of chemolane, cytokine expression and gene regulation	Oewirtz et al., 1990; Hachicha et al., 1999; Sodin-Senzl et al., 2000; Qui et al., 2001				
Enhancement of clearance and accelerate resolution of pulmonary edema.	Bandeira-Melo et al. 200				
Anti-augiogenic properties	Fierro and Sethan, 2001				
Reduction of COX 2 traffic in pain responses	Sethan et al., 2001				
Inhibition of cell proliferation	Clária et al., 1996				
inte	and Internet				
and the first free free free					

