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Over 40 different lysosomal storage diseases have been
described in humans , with an overall prevalence of
approximately 1 in 7000-8000 live births . Diagnosis is
based on clinical symptoms followed by demonstration of
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Figure 1 Molecular mechanisms underlying synaptic vesicle exocytosis. A reserve pool of synaptic vesicles (1), linked to

actin by synapsin, is recruited to docking sites at the active zone by vesicle detachment followed by movement via myosin
motors. Following vesicle docking at the presynaptic active zone (2), vesicles are rendered fusion-competent by a series of
priming steps (2 — 5 or 6) that may involve ATP-dependent, NSF-mediated disassembly of cis SNARE complexes (2 — 3),
ATP-dependent synthesis of PI(4,5)P, (2 — 3), munci8 dissociation from syntaxin possibly catalysed by munc13 (3 — 4),

and the formation of loosely assembled (4 — 5) or fully assembled (4 — 6) trans SNARE complexes. Ca2* triggering of fusion

is depicted as mediated through synaptotagmins on either vesicle or presynaptic membrane. Ca2* binding to synaptotagmins
could promote formation of fully assembled trans SNARE complexes and fusion (5 — 7). Alternatively, a fully assembled trans
SNARE complex that initiated hemi-fusion (6) could be acted upon by Ca*-bound synaptotagmin to promote transition to
fusion pore formation and full fusion (6 — 7). Subsequent dilation of the fusion pore and release of neurotransitter is depicted
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Panel 1. Translational repression of myotrophin by miR-375. - (a) The dsDNA gene for myotrophin (Mtpn) and its transcribed
mRNA, showing both the 5'-unstranated region (UTF) and open reading frame (ORF). (b) In the wild type setting, the single-
stranded miR-375 microRNA anneals to a portion of the 5'-UTF and represses downstream translation. (c) Upon the addition of
small interfering (si) RNAs (SIRNA), specifically ones (si-375) that are sequence analogues to miR-375, the effective
concentration of miR-375 increases and anneals to more Mtpn 5™-UTFs, further repressing Mtpn expression. However, when an
antisense RNA (antisense to miR-375) is added, it anneals to miR-375 and prevents it from annealing to the 5*-UTR, thereby
enhancing Mtpn expression. Mtpn is a component of insulin exocytosis.
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