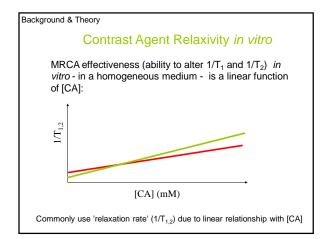

FYS-KJM 4740

MR-teori og medisinsk diagnostikk

Kap 11 (nytt) MR kontrastmidler



MR Contrast Agents on the market or in clinical development*

Short Name	Generic Name	Trade Name	Enhancement Pattern (prima
ECF agents:			
GdDTPA	gadopentetate dimeglumine	Magnevist	positive
GdDOTA	gadoterate meglumine	Dotarem	positive
GdDTPA-BMA	gadodiamide injection	Omniscan	positive
GdHP-DO3A	gadoterol injection	ProHance	positive
GdDTPA-BMEA	gadoversetamide	Optimark	positive
GdDO3A-butriol	gadobutrol	Gadovist	positive
GdBOPTA/Dimeg	gadobenate dimeglumine	MutliHance	positive
MnDPDP GdEOB-DTPA GdBOPTA/Dimeg AMI-25 SHU-555A* AMI-227# SHU-555 C*#	mangafodipir trisodium gadoxetic acid gadobenate dimeglumine ferumoxides (SPIO) ferrixan (SPIO) Ferumoxtran Ferucarotran	Teslascan Eovist MultiHance Endorem/Feridex Resovist Sinerem/Combidex	positive positive positive positive negative negative negative negative Positive/negative
Blood pool agents:		A	positive
MS-325		Angiomark	positive
gadomer-17 P792			positive

MR Contrast Agents (MRCA)

- A contrast agent is nothing more than a catalyst that decreases the T₁ and/or T₂ of the tissue protons
- T₁ and T₂ relaxation are NOT independent processes
- T₁ cannot be reduced without reducing T₂
- T₂ can be reduced without reducing T₁

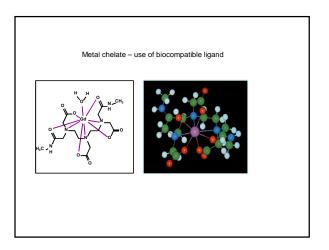
Background & Theory

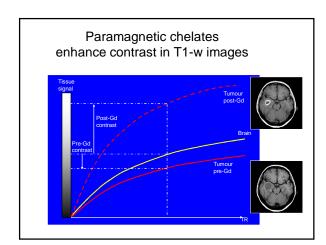
Contrast Agent Relaxivity in vitro

In vitro MRCA relaxivity, r₁ and r₂:

$$\frac{1}{T_{1,2}} = r_{1,2} \cdot [CA] + \left(\frac{1}{T_{1,2}}\right)_{pre}$$

- $r_1 = T_1$ relaxivity; $r_2 = T_2$ relaxivity
- r_{1,2} is due to dipolar (short range) interactions
- \bullet $r_{1,2}$ must be specified at a given temp, field stregth and medium


Contrast agents - basic principles


Two types of magnetic effects are used clinically to induce T_2 - and T_1 -shortening:

- Paramagnetism
- Superparamagnetism

Paramagnetic ions

- Metal ions with unpaired electrons:
 - →gadolinium (Gd³+)
 - →iron (Fe²⁺ /Fe³⁺)
 - →manganese (Mn²⁺⁾
- Magnetic moment of unpaired electrons is >> magnetic moment of protons
- Dipolar magnetic interaction between electrons and water protons

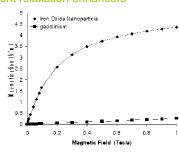
Paramagnetic ions

Typical in vitro relaxivity of small MW gadolinium chelates :

 $\begin{array}{l} r_1 \; \cong 4 \; mM^{\text{-}1}s^{\text{-}1} \\ r_2 \cong 4.5 \; mM^{\text{-}1}s^{\text{-}1} \end{array}$

- Relaxivity is limited by rapid tumbling rate of the Gd-
- T₁ relaxivity can be increased by selective binding to macromolecules (proteins) or by combinding multiple Gdions in a rigid structure (polymers)
- Will also modify biodistribution from extracellular to intravascular.

Superparamagnetic Iron Oxide Particles;


- Iron oxide particles (nanoparticles) made up of several thousand magnetic ions in the form of magnetite or maghemite crystals
- Much larger magnetic moment than paramagnetic agents
- Developed as liver/spleen/lymph node specific (T₂) or blood pool (T₁,T₂) agents
- Imaging effect and biodistribution is size dependent

Typical in vitro relaxivity of iron oxide nanoparticles : $r_1 \,\cong 20 \,\, mM^{\text{-1}}\text{s}^{\text{-1}}$

 $r_2 \cong 40 \text{ mM}^{-1}\text{s}^{-1}$

Background & Theory

Iron oxides have much larger magnetic moment than gadolinium and are therefore much more potent relaxation enhancers

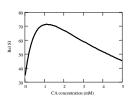
Dipolar relaxivity is a complex function of CA properties

$$r_1 = A \frac{q}{T_{1m} + \tau_m} \qquad \qquad r_2 = \frac{q}{\tau_m} \left[\frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-2} + \Delta \alpha_m^{-2}}{(\tau_m^{-1} + T_{2m}^{-2})^2 + \Delta \alpha_m^{-2}} \right]$$

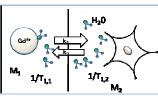
Important dependence of 'effective' correlation rate of molecule:

$$1/\tau_c = 1/\tau_r + 1/\tau_s + 1/\tau_m$$

 $1/T_{1m}$ and $1/T_{2m}$ dependent on spectral density functions of the form:


$$\frac{\tau_c}{1 + \omega_I^2 \tau_c^2}$$

$$\frac{\tau_e}{1 + \omega_S^2 \tau_s^2}$$


In vivo CA effects

e.g. spin echo sequence:

$$SI(C) = \rho (1 - \exp(-(R_1^0 + r_1 C)TR)) \exp(-(R_2^0 + r_2 C)TE$$

Water exchange effects

 $1/\tau = k_1 + k_2$

Fast exchange:
$$\frac{1}{r} \gg 1/T_{1,1} - 1/T_{1,2}$$

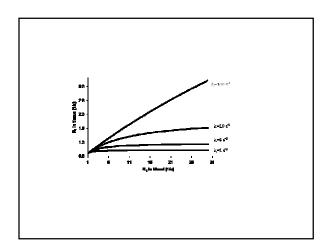
Slow exchange:
$$\frac{1}{\tau} \ll 1/T_{1,1} - 1/T_{1,2}$$

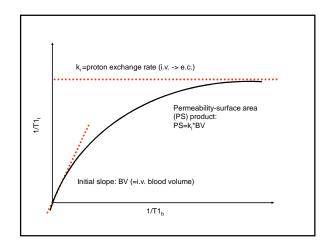
 $k_2 = k_\perp \frac{\xi_1}{\lambda - \xi_1}$

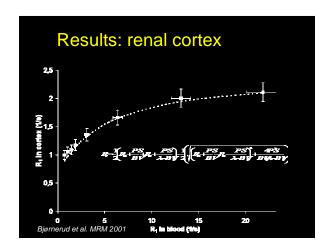
Water exchange influence T1-relaxation: Bloch equations including water exchange terms:

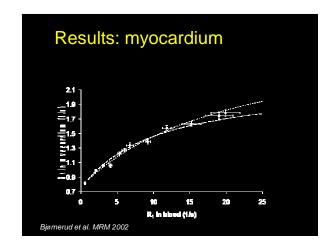
$$\frac{dM_1}{dt} = \frac{M_0 - M_1}{T_{1,1}} - k_1 M_1 + k_2 M_2$$

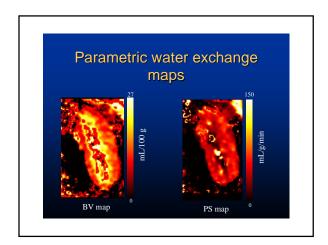
$$\frac{dM_2}{dt} = \frac{M_0 - M_2}{T_{1,2}} - k_1 M_1 - k_2 M_2$$

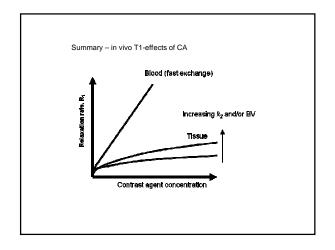

$$M(t) = M_0 + c_1 \exp(-u_1 t) + c_2 \exp(-u_2 t)$$

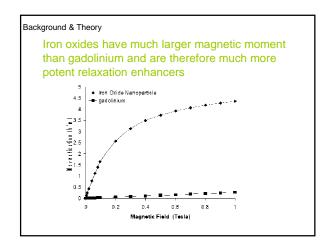

$$M(t) = M_0 + c_1 \exp(-u_1 t) + c_2 \exp(-u_2 t)$$

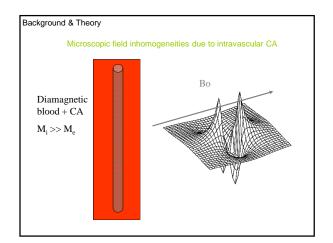

Mono-exp approximation:

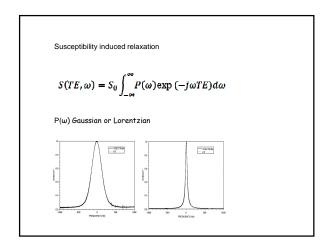

$$M(t) = M_0(1 - 2\exp(-R_1 t))$$

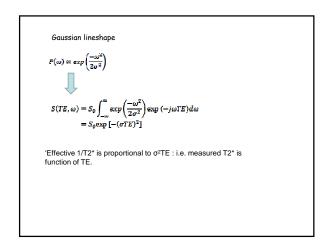

$$\begin{split} R_1 \approx u_2 &= \frac{1}{2} \big(R_{1,1} + k_1 + R_{1,2} + k_2 \big) \\ &- \frac{1}{2} \sqrt{ \big(R_{1,1} + k_1 - R_{1,2} - k_2 \big)^2 + 4 k_1 k_2 } \end{split}$$

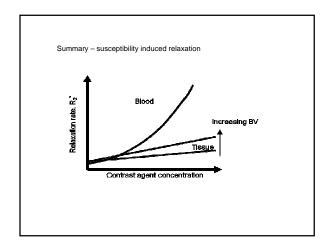


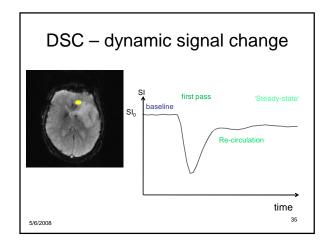


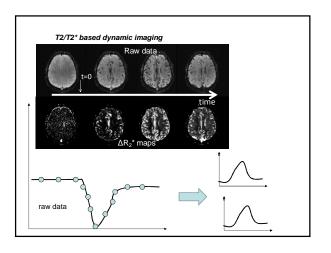


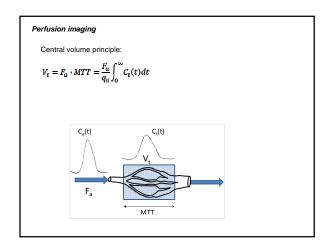


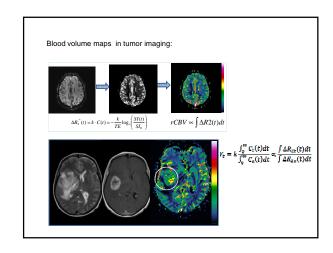

Susceptibility induced relaxation: $M_z = \chi H_0 \text{ (H=B}_o/\mu_0).$ Langevin equation: $M = Nm \left[\cot \left(\frac{\mu_c m H_c}{k_B T} \right) - \left(\frac{k_B T}{\mu_c m H_c} \right) \right]$ For paramagnetic agents, Curie law approximation valid < 50 T ... $M = \frac{Nm^2 \mu_c H_c}{3k_B T} = \chi H_b$ $\chi = \frac{Nm^2 \mu_0}{3k_B T}$ Susceptibility constant



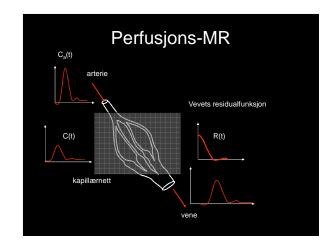


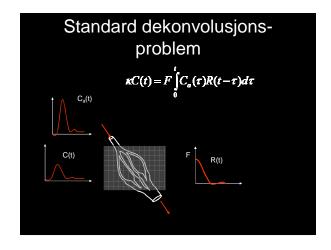

Lorentzian lineshape $p(\omega) \approx \left| \frac{\sigma}{\sigma^2 + \omega^2} \right|$ $S(TE, \omega) = S_0 \int_{-\infty}^{\infty} \left[\frac{\sigma}{\sigma^2 + \omega^2} \right] \exp\left(-j\omega TE\right) d\omega$ $- S_0 \exp\left(-\sigma TE\right)$ 'Effective 1/T2* is proportional to linewidth of spectrum => monoexponential signal decay

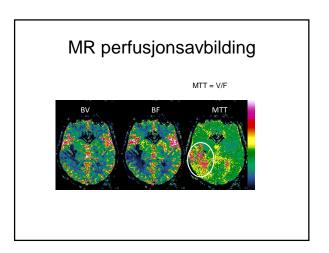


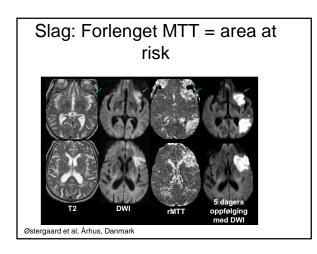


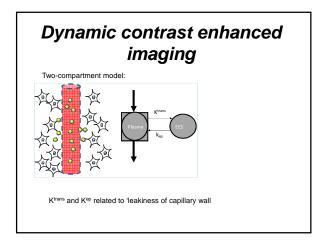
Advanced Applications of MR Contrast Agents General requirement: estimate contrast agent concentration in vivo (at least to within a scaling constant) T_1 -based dynamic imaging Most accurate approach: quantification of $1/T_1$ $\Delta R_1(t) = R_1(t) - R_1^0 = C_t(t)r_1$ Then, assuming fast water exchange: $C(t) = k\Delta R_1(t)$ Estimation of C(t) from T1-GRE sequence: Requirement: TR<<T1 and TE<<T2* then: $SI \propto \frac{M_0 TR}{T_1}$









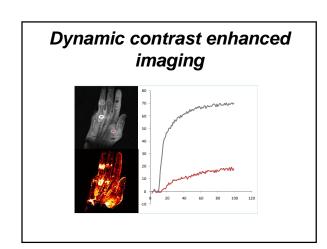

Measurement of flow (perfusion) and MTT: $Introducing \ the \ tissue \ residue \ function \ R(t)$ $C_t(t) - F_t \int_0^t R(t-\tau) C_a(t) d\tau - F_t R(t) \otimes C_a(t)$

Dynamic contrast enhanced imaging

Two-compartment model:

$$\frac{d\mathcal{L}_t}{dt} = K^{trans}\mathcal{L}_p(t) - k^{ap}\mathcal{L}_t(t)$$

$$C_t(t) = K^{trans} \int_0^t C_p(\tau) \exp[-k^{sp}(t-\tau)] d\tau$$


Transfer constants can be determined if C(t) can be measured in tissue and artery (AIF)

Dynamic contrast enhanced imaging

If not, need to assume $C_p(t)$ to be monoexponential

$$\frac{dC_t}{dt} = K^{eyans}C_{y,0}\exp\left(-\frac{t}{T_{\frac{1}{2}}}\right) - k^{ey}C_t(t)$$

$$C_{\varepsilon}(t) = \frac{K^{evans}C_{p,0}}{T_{1/2} - k^{ep}} \left[exp(-k^{ep}t) - exp\left(\frac{-t}{T_{1/2}}\right) \right]$$

