

The Bloch equation

$\frac{d \mathbf{M}}{d t}=\gamma(\mathbf{M} \times \mathbf{B})$

The magnetic moment \mathbf{M} rotates around the static B -field at the Larmor frequency

Rotating frame of reference

Laboratory frame

FYS-KIEM 4740
\square

Flipping away the Magnetization from its equilibrium
In MRI, short RF pulses are used to
To change the direction of the magnetization
M
To get M to rotate around x or y axis, A linearly polarized magnetic field B1 is used during short time (pulse) to get M to rotate around B1 axis \rightarrow

Baseline, no phase coherence in transverse (X, Y) plane

Additional B1-field induces phase coherence in transverse (X, Y) plane

Rotation

The magnetic field due to
the RF pulse, B_{1}, is generated
by two circularly polarized
fields with opposing direction

frequency $+/-\Omega$

The RF-coil generates a magnetic field B1 along the x-axis

Bloch equation

The 'rotating frame' ($x^{\prime}, y^{\prime}, z^{\prime}$-coordinates)

$$
\frac{d \mathbf{M}}{d t}=\gamma \mathbf{M} \times \mathbf{B}_{\text {eff }} \quad \mathbf{B}_{\text {eff }}=\mathrm{B}_{0}+\mathrm{B}_{1}+\boldsymbol{\Omega} / \mathrm{Y}
$$

$$
\boldsymbol{\Omega}=\left[\begin{array}{c}
0 \\
0 \\
-\Omega
\end{array}\right]
$$

RF-eksitasjon med Larmor frekvens (rotating frame)
$\frac{d \mathbf{M}}{d t}=\gamma \mathbf{M} \times \mathbf{B}_{\text {eff }}$
$\Omega=\gamma \mathbf{B}_{0}$
$B_{\text {eff }}=B_{1}$

Using Matrix formalism

$$
\begin{aligned}
\frac{d \mathbf{M}}{d t} & =\gamma\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & B_{1 x} \\
0 & -B_{1 x} & 0
\end{array}\right)\left(\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right) \\
M_{y^{\prime}} & =A \sin \left(\gamma B_{1 x} t\right)+B \cos \left(\gamma B_{1 x} t\right)
\end{aligned}
$$

RF pulse
$\omega_{1}=-\gamma B_{1}$
RF pulse duration is proportional to the
wanted flip angle, α.
$t_{B_{1}}=\alpha / \gamma B_{1}$

$\mathbf{M}(t)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\varphi t) & \sin \left(\omega_{t}\right) \\ 0 & -\sin \left(\left(\omega_{t}\right)\right. & \cos \left(\varphi_{t}\right)\end{array}\right)\left(\begin{array}{l}M_{x}(0) \\ M_{y}(0) \\ M_{z}(0)\end{array}\right)=\mathbf{R} \cdot \mathbf{M}_{0}$
$\omega_{1}=-\gamma B_{1}$
Using the boundary conditions $M_{y}=M_{y^{\prime}}(0)$ and $M_{z}=M_{z}(0)$ at $t=0$, we get

Relaxation

$\frac{d M_{x}}{d t}=-\frac{M_{x}}{T_{2}}$
$\frac{d M_{y}}{d t}=-\frac{M_{y}}{T_{2}}$
$\frac{1}{T 2 *}=\frac{1}{T 2}+\gamma \Delta B_{0}$
Relaxation

Relaxation

$$
\begin{aligned}
& \frac{d \mathbf{M}}{d t}=2 \mathbf{M} \times \mathbf{B}_{e f f}-\mathbf{R}\left(\mathbf{M}-\mathbf{M}_{0}\right) \\
& \mathbf{R}=\left[\begin{array}{ccc}
\frac{1}{T_{2}} & 0 & 0 \\
0 & \frac{1}{T_{2}} & 0 \\
0 & 0 & \frac{1}{T_{1}}
\end{array}\right] \quad \mathbf{M}_{0}=\left[\begin{array}{c}
0 \\
0 \\
M_{0}
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]
\end{aligned}
$$

Condition: relaxation during RF excitation is neglected
$\frac{d \mathbf{M}}{d t}=-\mathbf{R}\left(\mathbf{M}-\mathbf{M}_{0}\right)$
$M_{z}(t)=M_{0}\left[1-\exp \left(-t / T_{1}\right)\right]+M_{z}(0) \exp \left(-t / T_{1}\right)$
$M_{x y}(t)=M_{x y}(0) \exp \left(-t / T_{2}\right)$

Summary with excitation and relaxation
$\frac{d \mathbf{M}}{d t}=\gamma \mathbf{M} \times \mathbf{B}_{e f f}-\mathbf{R}\left(\mathbf{M}-\mathbf{M}_{0}\right)$
$\frac{d M}{d t}=\left[\begin{array}{ccc}-1 / T_{2} & 0 & 0 \\ 0 & -1 / T_{2} & \gamma B_{1 x} \\ 0 & -\gamma B_{1 x} & -1 / T_{1}\end{array}\right]\left[\begin{array}{l}M_{x^{\prime}} \\ M_{y^{\prime}} \\ M_{z^{\prime}}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ M_{0} / T_{1}\end{array}\right]$

Chap. 2

Slice-Selective RF excitation Image formation

Gradients \rightarrow coding in space

Principles of Slice Selection

Effect of Magnetic Field Gradient

Slice selective RF excitation

$$
\mathbf{B}_{\text {eff }}=\mathbf{B}_{0}+\mathbf{G} \cdot \mathbf{r}+\mathbf{B}_{1}+\frac{\boldsymbol{\Omega}}{\gamma}=\left[\begin{array}{c}
B_{1} \\
0 \\
B_{0}+G_{z} z_{1}-\frac{\Omega}{\gamma}
\end{array}\right]
$$

If we set: $\Omega=\gamma\left(B_{0}+G_{z} z_{1}\right)$, then the effective field at $z=z_{1}$ becomes

$$
\mathbf{B}_{\text {eff }}=\left[\begin{array}{c}
B_{1} \\
0 \\
0
\end{array}\right] \square \text { Slice-selective excitation @ } \mathrm{z}=\mathrm{z}_{1}
$$

What would happen if $B_{0}+G_{z} z_{1}-\Omega / y \gg B_{1}$??

All effects together: excitation, precession and relaxation
$\Omega=\omega_{L} ; B_{\text {ett }}=B_{1 x}$
$\frac{d \mathbf{M}}{d t}=\left(\begin{array}{ccc}-1 / T_{2} & \gamma \mathbf{G} \cdot \mathbf{r} & 0 \\ -\gamma \mathbf{G} \cdot \mathbf{r} & -1 / T_{2} & \gamma B_{1 x} \\ 0 & -\gamma B_{1 x} & -1 / T_{1}\end{array}\right)\left(\begin{array}{l}M_{x^{\prime}} \\ M_{y^{\prime}} \\ M_{z^{\prime}}\end{array}\right)+\left(\begin{array}{c}0 \\ 0 \\ M_{0} / T_{1}\end{array}\right)$

All effects together: excitation, precession and relaxation

Transverse Magnetization, $\mathrm{Mxy}_{\mathrm{xy}}$, Excitation and Precession

$$
M_{T}=M_{x}+j M_{y} \quad T_{2}=\infty
$$

Condition: $\mathrm{M}_{2} \approx \mathrm{M}_{0}$ (How can this be achieved?)
$\frac{d M_{T}}{d t}=-j \gamma(\mathbf{G} \cdot \mathbf{r}) M_{T}+j \gamma B_{1} M$

$$
\square \text { General Solution: }
$$

$$
M_{T}=A(t) \exp \left(-j \gamma \boldsymbol{r} \cdot \int_{t_{1}}^{t} \mathbf{G}\left(t^{\prime}\right) d t^{\prime}\right)
$$

$$
M_{z}(t)=M_{0}\left[1-\exp \left(-\frac{t}{T_{1}}\right)\right]+M_{z}(0) \exp \left(-\frac{t}{T_{1}}\right) \quad \begin{aligned}
& \text { As we have seen } \\
& \text { before }
\end{aligned}
$$

Transversal magnetisering, $\mathrm{M}_{x y}$. Eksitasjon og presesjon
$\mathrm{T}_{2}=\infty$

Dersom vi sier at RF puls starter ved -T/2 og varer i T
sek:
$M_{T}(T / 2, \mathbf{r})=j \gamma M_{0} \int_{-T / 2}^{T / 2} B_{1}(t) \exp \left(-j \gamma \mathbf{r} \cdot \int_{t}^{T / 2} \mathbf{G}\left(t^{\prime}\right) d t^{\prime}\right) d t$

FYS-KUEM 4740

For a constant gradient along the z-axis: $G(t)=G_{z}$
$M_{T}(T / 2, z)=j \gamma M_{0} \exp \left(-j \gamma z G_{z} T / 2\right) \int_{-T / 2}^{T / 2} B_{1}(t) \exp \left(j \nsim G_{z} t\right) d t$

Slice profile $=$ Fourier transform of $B_{1}(t)$
The phase of $M_{T}(z)$ in the $x-y$-plane is a function of z

Elimination of the phase dispertion in $x-y$ plane use of an extra gradient of opposite polarity and half the length: $-G_{z}$

$$
M_{T}(T, z)=j M_{0} \int_{-k_{T}}^{k_{T}} \frac{B_{1}(k)}{G_{z}} \exp (j k z) d k
$$

$k=\gamma G_{z} t$ and $k_{T}=\gamma G_{z} T / 2$.

We wish to have a 'block' excitation: $M_{T}(z)=M_{0} \sin (\alpha)$ between $-\mathrm{d} / 2$ og $\mathrm{d} / 2$ og $\mathrm{M}_{\mathrm{T}}=0$ resten

Find the $\mathrm{B}_{1}(\mathrm{t})$ profile from the Fourier integral
Develop at home!
$B_{1}(t)=G_{z} \int_{-d / 2}^{d / 2} \exp \left(j \gamma G_{z} t \cdot z\right) d z=G_{z} d \cdot \frac{\sin \left(\gamma G_{z} t \cdot d / 2\right)}{\gamma G_{z} t \cdot d / 2}$

Slice selective RF excitation

RF pulse generation

... in practice

Gradient can not be perfectly rectangular (Hardware limitations
Slew rate = Gradient strength $/$ Time to reach the strength
Slew rate ($\mathrm{mT} / \mathrm{m} / \mathrm{ms}$)

YS-KJEM 4740
Frédéric Courivaud (PhD) 42

Slice profile \& "cross-talk"

Slice selective 180° inversion RF pulse

Slice Selection

Slice Selection

Exercise

- We want a slice excitation with a given slice thickness of 3 mm and a gradient strength of $10 \mathrm{mT} / \mathrm{m}$. We Assume the use of a sinc pulse shape for $\mathrm{B} 1(\mathrm{t})$.
- Find the half-width duration of the $\mathrm{B} 1(\mathrm{t})$ envelope (shape)
- Now, having this B1(t) envelope, find the intensity of B1 ($\mu \mathrm{T}$) to get a 90 degree RF pulse.

Image formation principles
and digital sampling

Gradients \rightarrow coding in space

Slice selective excitation: done!
Linear combination of gradients \boldsymbol{x} and \boldsymbol{y}

The precession of the spins depends on the field gradients
$G_{x} x$ and $G_{y} y$
the precession depends on the position

Reminder: spin-echo experiment

SE magnetization evolution

Use of gradients to make an image

Combination of G_{x} and G_{y} to "rotate" the total gradient orientation \rightarrow reconstruction by back projection

1st 2D MR image

Zeugmatography

Relationship betwen a thre-dimensional object, its two-dimensional projection along the Y -axis,
and four onedimensional projections at 45° interval si n the X X--lane. The arrow indicate the ead
.

From last Chap.: definition of k variable
$B_{1}(t)=G_{z} \int_{-d / 2}^{d / 2} \exp \left(j \gamma G_{z} t \cdot z\right) d z=G_{z} d \cdot \frac{\sin \left(\gamma G_{z} t \cdot d / 2\right)}{\gamma G_{z} t \cdot d / 2}$
This equation can be simplified by introducing the following notation
$k=\gamma G_{z} t \quad$ in general, this can be written $\quad \mathbf{k}=\gamma \int_{0}^{6} \mathbf{G}(\tau) d \tau=\left[\begin{array}{l}k_{x} \\ k_{y} \\ k_{z}\end{array}\right\rfloor$
$B_{1}(t)=G_{z} d \cdot \frac{\sin (k \cdot d / 2)}{k \cdot d / 2}$

Phase effect given by a gradient

 pulse (e.g. y direction)$$
\alpha(\mathbf{r}, t)=-\gamma \int_{0}^{t} G_{y}(t) \cdot \mathbf{r} \cdot d \tau
$$

From Bloch's equation, the Transverse magnetization is then given by (Assume negligible relaxation here):

$$
M_{x y}=M_{T}(\mathbf{r}, t)=M_{T}(\mathbf{r}, 0) \cdot \exp \left(-j \gamma \int_{0}^{t} G_{y}(t) \mathbf{r} d \tau\right)
$$

MR signal = integral of transverse

 magnetization over entire volume$$
M_{T}(t) \propto S(t) \propto \iiint_{\rho(\mathbf{r}) \exp }\left(-j \gamma \int_{0} G_{y}(t) \mathbf{r} d \tau\right) d \mathbf{r}
$$

NB: Fourier transform
$F(k)=\iiint_{R} f(\mathbf{r}) \exp (-j k \mathbf{r}) d \mathbf{r}$ Fourier transform from k space to geometric "space" of a continuous function $f(r)$
k-space illustrations

$\mathbf{k}=\gamma \int_{0}^{f} \mathbf{G}(\tau) d \tau=\left[\begin{array}{l}k_{x} \\ k_{y} \\ k_{z}\end{array}\right]$

The phase angle of the transverse magnetization vector before (a) and after (b) the application of a magnetic field gradient in the y-direction.

$$
\mathbf{k}=\gamma \int_{0}^{t} \mathbf{G}(\tau) d \tau=\left[\begin{array}{l}
k_{x} \\
k_{y} \\
k_{z}
\end{array}\right] \quad M_{T}(t)=\iint_{\text {slice }} \rho(\mathbf{r}) \cdot \exp (-j \mathbf{k} \cdot \mathbf{r}) d \mathbf{r}
$$

k-space

Limiting discussion to a slice ($2 D-x y$ plane), magnetization distribution is given by the 2-dimensional Fourier transform of the spin distribution across the slice
$M_{T}(t)=\int_{\text {JIfice }} \rho(\mathbf{r}) \cdot \exp (-j \mathbf{k} \cdot \mathbf{r}) d \mathbf{r}$
$\rho(r)$ is obtained from the inverse Fourier transform of $M_{T}(t)$ under the influence of a
known gradient configuration
$\rho(x, y)=\frac{1}{2 \pi} \int_{k_{x}} \int_{k_{x}} M_{T}\left(k_{x}, k_{y}\right) \exp \left(j\left(k_{x} x+k_{y} y\right)\right) d k_{x} d k_{y}$
k-space $=$ visualization of the distribution of spatial frequencies in the image k-space $=$ Fourier transform of the MR image

Reminder: Fourier... and frequencies

Repeated acquisition of profiles

Schematic of k-space acquisition

CONTINUE PPT FROM HERE

Discrete sampling

$$
\begin{aligned}
& \text { Sampling intervall: }-\mathrm{T}_{\text {read }} / 2-\mathrm{T}_{\text {read }} / 2
\end{aligned}
$$

Discrete sampling and PSF

K-space egenskaper

Resolution $(\mathrm{x}):$	Maximum frequency in read-out (x) direction
$\delta x=\frac{2 \pi}{\gamma G_{x} N_{x} t_{s}}$	$\pm \omega_{\max }= \pm \gamma G_{x} F o V_{x} / 2$
Field of view (x):	Min sampling rate (x):
$\lambda_{x, \text { max }}=\frac{2 \pi}{k_{x, \text { min }}}=\frac{2 \pi}{\gamma G_{x} t_{s}}=F o V_{x}$	$1 / t_{s} \geq \gamma G_{x} F o V_{x} / 2 \pi$
Field of view (y):	'Sampling rate ' (y):
$\lambda_{y, \text { max }}=F o V_{y}=\frac{\pi N_{y}}{\gamma G_{y_{-} \max } T_{y}}$	$N_{y}=\gamma G_{y_{-} \max } T_{y} F o V_{y}$

FFT 1D: Truncation Artefact

FFT 2D: Truncation artefact

Ringing- (or truncation) artifacts in regions with high spatial frequencies (edges) in a phantom. The artifacts are more evident in the right image due to a lower matrix ($\mathrm{N}=112$, vs $\mathrm{N}=256$ in the left image)

Truncation artifact

$B 1$ (t) for slice selective excitation
${ }_{B_{1}(t)=G_{z}}^{d / 2} \int_{-d / 2}^{\exp \left(j \gamma G_{z} t \cdot z\right) d z=G_{z} d \cdot \frac{\sin \left(\gamma G_{z} t \cdot d / 2\right)}{G_{z} t \cdot d / 2}}$

$\stackrel{\substack{B_{1}(t) \\ 1}}{\substack{n}}$

Definition of k variable
$B_{1}(t)=G_{z}^{d / 2} \int_{-d / 2} \exp \left(j \gamma G_{z} t \cdot z\right) d z=G_{z} d \cdot \frac{\sin \left(\gamma G_{G} t \cdot d / 2\right)}{\gamma G_{t} \cdot \cdot d / 2}$
This equation can be simplified by introducing the following notation
$k=\gamma G_{z} t \quad$ in general, this can be written $\quad \mathbf{k}=\gamma \int_{0} \mathbf{G}(\tau) d \tau=\left\lfloor\begin{array}{l}k_{x} \\ k_{y} \\ k_{z}\end{array}\right\rfloor$
$B_{i}(t)=G_{z} \cdot \frac{\sin (k \cdot d / 2)}{k \cdot d / 2}$

k notation

Use of k notation is VERY IMPORTANT in MRI, we will see why...
$\mathbf{k}=\gamma \int_{0}^{j} \mathbf{G}(\tau) d \tau=\left[\left.\begin{array}{l}k_{1}^{k_{1}} \\ k \\ k\end{array} \right\rvert\,\right.$

