Lecture 2011-03-15

- Multislice acquisition (MS, 3D)
- GRE: Simple Steady-State model
- RF pulse train (multiple echoes)
 - Eight-Ball Echo
 Stimulated Echo
 - Stimulated Echo
 Multiples echoes

FYS-KJM 474

- GRE FID and ECHO components
- Mathematical Model of GRE
- · GRE contrast properties and techniques

Stimulated Echo two 90° pulses → eight-ball echo The 2nd 90° pulse flipped x' component of the transverse magnetization along z-axis (this z-magnetization carries magnetization history from before 2nd RF pulse, i.e. gradient dephasing as function of position)* 3rd 90° pulse then flips back this longitudinal component into the transverse plane. The 3rd Gx gradient will refocus these components previously stored along z-axis * The longitudinal component is not affected by the second gradient after RF pulse

FYS-KJM 4740

3/15/2011

3/15/2011

