

clinical development*			
Short Name	Generic Name	Trade Name	Enhancement Pattern (primary)
ECF agents:			
GdDTPA GdDDTA GdDTPA-BMA GdHP-DO3A GdHP-DO3A GdDTA-BMEA GdDO3A-butriol GdBOPTA/Dimeg	gadopentetate dimeglumine gadoterate meglumine gadoteril injection gadoterol injection gadoversetamide gadobutrol gadobenate dimeglumine	Magnevist Dotarem Omniscan ProHance Optimark Gadovist MutliHance	positive positive positive positive positive positive positive
Organ specific agents MnDPDP GdEOB-DTPA GdBOPTA/Dimeg AMI-25 SHU 555A* AMI-227# SHU 555 C*#	mangafodipir trisodium gadoveitc acid gadovenate dimeglumine ferumoxides (SPIO) ferrixan (SPIO) Ferumoxtran Ferumoxtran Ferucarotran	Teslascan Eovist MultiHance Endorem/Feridex Resovist Sinerem/Combidex	positive positive negative negative negative Positive-inegative
Blood pool agents: MS-325 gadomer-17 P792		Angiomark 	positive positive positive

MR Contrast Agents (MRCA)

- A contrast agent is nothing more than a catalyst that decreases the $\rm T_1$ and/or $\rm T_2$ of the tissue protons
- T₁ and T₂ relaxation are NOT independent processes
- T₁ cannot be reduced without reducing T₂
- T₂ can be reduced without reducing T₁

Contrast agents - basic principles

Two types of magnetic effects are used clinically to induce T_{2} - and T_{1} -shortening:

Paramagnetism
Superparamagnetism

Paramagnetic ions

Typical in vitro relaxivity of small MW gadolinium chelates :

- $r_1 \cong 4 \ mM^{\text{-1}} s^{\text{-1}}$
- $r_2 \cong 4.5 \text{ mM}^{-1}\text{s}^{-1}$
- Relaxivity is limited by rapid tumbling rate of the Gdchelate
- T₁ relaxivity can be increased by selective binding to macromolecules (proteins) or by combinding multiple Gdions in a rigid structure (polymers)
- Will also modify biodistribution from extracellular to intravascular.

Superparamagnetic Iron Oxide Particles;

- Iron oxide particles (nanoparticles) made up of several thousand magnetic ions in the form of magnetite or maghemite crystals
- Much larger magnetic moment than paramagnetic agents
- Developed as liver/spleen/lymph node specific (T_2) or blood pool (T_1, T_2) agents
- Imaging effect and biodistribution is size dependent

Typical in vitro relaxivity of iron oxide nanoparticles : $r_1 \cong 20 \ mM^{-1}s^{-1}$

 $r_2 \cong 40 \text{ mM}^{-1}\text{s}^{-1}$

Dipolar relaxivity is a complex function of CA properties

$$r_1 = A \frac{q}{T_{1m} + \tau_m} \qquad r_2 = \frac{q}{\tau_m} \left[\frac{T_{2m}^{-\nu} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^{-\nu}}{(\tau_m^{-1} + T_{2m}^{-1})^2 + \Delta \omega_m^{-2}} \right]$$

Important dependence of 'effective' correlation rate of molecule:

$$1/\tau_{o} = 1/\tau_{r} + 1/\tau_{s} + 1/\tau_{m}$$

 $1/T_{1m} \, \text{and} \, 1/T_{2m}$ dependent on spectral density functions of the form:

$$\frac{\tau_c}{1+\omega_l^2\tau_c^2} \qquad \frac{\tau_e}{1+\omega_s^2\tau_s^2}$$

