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Preface 

NMR is an exciting and challenging experimental technique which is also 
intellectually demanding. The present booklet is intended for students taking 
the course FYS-KJM 4740 MR-theory and medical diagnostics in spring 2009 
and covers the first 12 hours of lectures. It gives a comprehensive introduction 
to the basic theory and concept of Magnetic Resonance (MR).  

The first lecture note was prepared in 1977 (in Norwegian) while the present 
document represents a fourth and significantly modified version of the first 
English edition. The content has been adjusted according to the MR equipment 
available at the Department of Chemistry and to the ongoing research activities 
at the Laboratory for Physical MR. In particular, application of MR spectroscopy 
(MRS) to probe diffusion is discussed more thoroughly in this last version of the 
lecture note.  

Since the application of gradient pulses has become a “must” in both MR-
spectroscopy (MRS) and MR-imaging (MRI), we find the theory of diffusion to 
represent a soft conceptual transition from the field of MRS to MRI.   

We will appreciate any response from the student concerning typographical 
errors or obscurities in the text. So please, send your remarks to: 
eddywh@kjemi.uio.no . 

 

Oslo, January 2014 

Eddy W. Hansn  

mailto:eddywh@kjemi.uio.no
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1. MR – Application and instrumental design  

1.1 Applications of magnetic resonance (MR) 

Since 1938 Nuclear Magnetic Resonance 
(NMR or MR1) has found an increasing 
number of applications, as illustrated on 
Figure 1.1. Chemical applications are 
found on the left and medical applications 
on the right. The two areas are not 
distinct, but are largely overlapping. 
However, the applications are becoming 
increasingly more specialized  
and are frequently divided into separate 
subjects and professions. In this course, 
however, we will concentrate on the more  
fundamental aspects of NMR and present                 Figure 1.1 Applications of MR/MRI  
some examples from the research activities 
of the authors NMR spectroscopy of substances in solution, often called high-resolution 
NMR, is the most frequently applied technique to probe the type of molecules, the number 
of molecules and the structure of molecules in solution. Also, the motional characteristics 
(translational, rotational) of the molecules and any dynamic equilibrium can be probed by 
NMR. Because the molecular motion averages out certain interactions, as will be 
explained later, the peaks observed in the spectra are very narrow. (The peaks are also 
called lines as in optical spectroscopy.). Thus, the technique is called high resolution NMR 
In contrast, the NMR peaks observed from solids are usually broad and featureless 
leading to the term: wide line NMR or solid-state NMR. By introducing some rather 
ingenious experimental modifications it is, however, possible to narrow the peaks from 
solids so the underlying fine structure can be made observable. NMR spectra of solids 
may also give information on the structure and motion (hindered rotation and diffusion) of 
the molecules, ions or atoms confined in the solid state.  

Additionally, MR is also capable of producing images of three-
dimensional objects with a resolution of 0.1 mm of large objects,       
like the human body (MRI) and down to 10 µm of smaller objects  
of dimension 1 cm (MR-microscopy). To extract this information one 
needs a radio transmitter and a radio receiver and the sample must 
be located in a magnetic field as illustrated on Figure 1.2. The 
magnet is the largest and most expensive part of the equipment 
making MR expensive comparedto other analytical equipment. 
Thanks to the development of micro-electronics that has given 
better and more sensitive radio-transmitters and receivers, 
combined with the development of new materials that has given 
stronger and more stable magnets , and the development                    Figure 1.2. Set up 
of cheaper computers that can collect and handle larger amounts 
of data, MR has improved immensely since the first NMR-signal was detected in 1938. 
During the last 35 years the sensitivity has increased by more than a million! At the end of 
this booklet we have briefly summarized the history of MR from the beginning of 1920-to 
the present day. Many scientists have contributed, and numerous surprising and 

                                                 

1 Nuclear Magnetic Resonance. In medicine nuclear is usually associated with radioactivity. Therefore the N is dropped. (The use of 
radioactive compounds for medical purposes is called nuclear medicine.) 
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unexpected breakthroughs have appeared during the years. Most importantly, however, 
this development has not yet reached the end. Very likely, there are still new methods to 
be developed and new applications to be found that may surprise both the scientific 
community, as well as people in general! 
Imaging (MRI) is mostly used in medicine as a forceful diagnostic tool, without the health 
risk connected to the use of ionizing radiation (X-rays) used in a CT (computer 
tomography). Moreover, MRI (also called a magnet tomograph) does not only acquire 
images. If necessary equipment is available, also 

1
H- and/or 

31
P-spectra of the object, or 

part of the object, can be recorded. The goal is to combine the two methods in order to 
first acquire a 3D-image which reveals the morphology of the object. Then to zoom in on 
the most interesting parts (f. ex. a small tumour) of this object in order to acquire a 
spectrum which may give further information on the chemistry taking place in this part. 

Due to the broad range of applications of MR, a large number of textbooks are available. 
In the university library (BIBSYS) 347 references containing the phrase magnetic 
resonance were found. 63 of these were published in 2000 and after (pr 10.01.2005). 
Some references are summarized at the end of this booklet. You can also find review 
articles in different journals and yearbooks. Your choice of book(s) to acquire will depend 
on your background and the goal(s) of your study. The lecturer may give you further 
information.  

1.2 A modern (MR) spectrometer 

Figure 1.3 shows the relevant parts of a modern solution-NMR-spectrometer with a super-
conductive magnet (right) to a computer (left). The sample is introduced from the top of 
the magnet and may be located within the magnet by an automatic sample changer. The 
basic rf-frequency is locked to the 
magnetic field by a 

2
H-lock and 

makes the system more stable to 
any drift in the magnetic field, or 
the rf-frequency. ADC is the 
analogue to digital converter. 
Usually the spectrometer is 
equipped with several probes 
tailored for different purposes. To 
study solids one needs to generate 
rf-pulses of large amplitude to 

reduce the 90
o
-pulse down to 1 s. 

This is because T2 may be of the 
order of microseconds                           Figure 1.3. Relevant parts of a solution-NMR-spectrometer 

and not seconds as for liquids. 
Hence, solid state NMR spectrometer necessitates more powerful radio-transmitters. 

 

1.3 MR - basic concepts 

1.3.1 The Spin 

MR is based on the fact that all materials are built up of electrons and atomic nuclei 
possessing angular momentum and magnetic dipole moment (Figure 1.4). The angular 
momentum L 
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Figure 1. 4. A nuclear magnetic dipolemoment , as formed by a combination of the internal spin and the the 
charge of the nucleus which resukts in a current i.    

 
is a characteristic property of the nucleus just like its mass and charge. Moreover, an 

atomic nucleus with angular momentum also possesses a magnetic dipole moment 2 The 

magnetic dipole moment  (a vector) is parallel to its angular momentum L (see Exercise 
1): 
 

           µ =  L                                                                                                                               (1.1) 

 

 is the ratio between the magnetic moment of the nucleus and its angular momentum.  is 
termed the gyromagnetic ratio. It has been determined experimentally for all isotopes and 
can be found in tables. In the literature it is common practice to call a particle possessing 
an angular momentum and a magnetic dipole moment, a spin.An example of a 
macroscopic object having a magnetic dipole moment is a small rod magnet and/or a loop 
of wire (with current). A loop of wire enclosing an area of b m

2
 and carrying a current of 1 

A (ampere) will have a dipole moment equal to 1 bA m
2
. Therefore the SI-unit for magnetic 

dipole moment is A m
2
. 

 

1.3.2 The MR phenomenon – classical mechanics 

                       In a magnetic field B a spin will attain a potential energy which  
                       depends on the orientation of the magnetic dipole moment µ 
                       relative to B.3 The potential energy is4:  
 

                              E = - µ · B = - µ B cos 



                          is the angle between µ and B as shown in Figure 1.5.  The equation that 

                         describes the motion of the dipole  in a magnetic field B (see Exercise 2)      
                         reads:                                                                
 
     Figure 1.5  

                          d/dt =  x B                                                                                       (1.3) 
 
This is a differential equation that can be solved when given the initial conditions. If B = Bo 

(constant, i.e. independent of time), and  makes an angle  with the magnetic field, the 

                                                 

2We use a bold letter for a vector as µ in this booklet.                
3The correct name for B is the magnetic flux density and the unit for B is tesla (T). Also the older unit gauss (G) some times is used: 
1 T = 104 G. Using the basic SI-units 1 T = 1 kg/(As2). The unit for µ is Am2. The product µB is then joule (J = kg (m/s)2 ). 
(Remember that µB is the potential energy of µ in B.)  
4  x B is called the vector product between  and B and is directed along a unit vector orthogonal to the plane determined by the 

two vectors  and B, respectively. It norm or length is defined by │ x B│= B.sin . The scalar- or dot product between  and B is 

definen by B.  

µ

 

 
 

B  

      

i    

   
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solution is that  rotates (precesses) about B0 with an angular velocity 0(see Exercize 
1.2)  given by: 
 

 = -Bo                                                                                                                                 (1.4) 

 

and represents a particularly important equation in MR. The equation shows that the 

angular velocity 0is proportional to the magnetic field strength B0 with a proportionality 

constant  the gyromagnetic ratio. This angular frequency is called the Larmor frequency.5 
 

 

 

 

 

 

 

 

 

 

 

 

MR-data for some of the most popular nuclei are given in Table 1. Using Eq 1.3 we notice 

that d/dt
.
B0 = d(

.
B0)/dt = ( x B0)

.
Bo = 0. i.e.,  in Eq 1.2 is constant. 

Classical physics tells us that the spin in a magnetic field will behave in the same way as a 
spinning top in the gravitational field (Figure 1.6). 

 

                                    Figure 1.6. Spinning in a gravitational field 

1.3.3 The NMR phenomemon – quantum mechanics  

Nature has shown us that a nuclear spin, defined by a spin quantum number I, can only 
take 2I+1 different directions in space.6 The quantum number I is known for all stable  

                                                 

5 Named after Sir Joseph Larmor (1857-1942) who first performed the classical calculation in 1895. 
6What nature has taught us is summed up in the quantum theory. 

Table 1.1. MR-data for some isotopes

Isotope I Abundance 

in % 

in 

100·radMHz/T 
1
H 1/2 99.985 2.67510 

2
H 1 0.015 0.41064 

13
C 1/2 1.108 0.67263 

14
N 1 99.63 0.19324 

15
N 1/2 0.37 -0.27107 

19
F 1/2 100.0 2.51665 

23
Na 3/2 100.0 0.70760 

31
P 1/2 100.0 1.08290 

39
K 3/2 93.10 0.12484 
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isotopes. In particular, isotopes with a spin quantum numer I equal to 0 have no magnetic 
dipole moment and do not precess, and is therefore invisible to MR. 

12
C and  

16
O are two such nuclei.7 An isotope with I = 1/2 can take two directions. 

1
H, 

13
C, 

15
N, 

19
F 

and 
31

P are examples of such spin-1/2 nuclei8 and are the simplest and also the most 
studied nuclei in MR.  

From a quantum mechanical point of view we may define an energy operator or 

Hamiltonian operator Ĥ according to the Schrödinger equation:  
 

   EĤ                                                                                                            (1.5) 

 

where E is the energy and  is the spin wave function. For a single spin interacting with 

a magnetic field B0 (directed along the z-axis) the Hamiltonian is denoted ĤZ, where Z 
stands for Zeeman9. From classical mechanics the energy E takes the form  

E= - µ · Bo and  = L. By replacing L by its quantum mechanical analogous I , where   
is Planck’s constant and I is the spin operator10, we may write Eq 1.5 in the form:  
 

                       ĤZ = - µ · Bo = -L
.
B0  = -BoħĪz

                                                                                                        (1.6) 
 

For I = ½ particles there are two eigenstates, defined by the spin wave functions |> and 

|>, respectively: 
 

                         Īz|> =    ½ |>  (1.7a) 
  

                         Īz|> = – ½ |> (1.7b) 
 

Hence, we may calculaties the corresponding two energies, according to: 
 

ĤZ|> = -BoħĪz|> = -Boħ/2|> = E+|> (1.7c)   

ĤZ|> = -BoħĪz|> =   Boħ/2|> = E- |>                                                                         (1.7d)
                                                                               

Hence,  

E+ = –½ B0ħ and E– = ½ B0ħ 
 
where E+ is the energy for the state where the magnetic dipole moment is parallel to the 
magnetic field and E- is the energy for the magnetic dipole oriented anti-parallel to the 
external field, as illustrated in Figure 1.7. To produce the actual resonance  

                                                 

7An isotope where the number of protons and neutrons is an equal number has I = 0. The explanation is that both protons and 
neutrons have angular momentum, but because they are paired antiparalell in the nucleus the result is 0.  
8An electron is also a spin 1/2 particle. So atoms with an unpaired electron can be studied with MR. Because the magnetic moment 
of an electron is about 2000 times larger than the proton magnetic moment the equipment used to study unpaired electrons are 
different from the equipment used for NMR (radio frequencies in NMR and microwave frequencies in ESR). Electron-MR is called 
ESR (Electron Spin Resonance) or EPR (Electron Paramagnetic Resonance). At UiO there are two EPR-spectrometers in the 
biophysics group in the Department of Physics (se http://www.fys.uio.no/biofysikk/eee/esr.htm ). They are located two stories above 
the Physical NMR Laboratory. 
9 The Dutch physicist Pieter Zeeman (1865-1943) discovered in 1896 that certain spectral lines split when the sample 
was placed in a magnetic field. That is called the Zeeman Effect.  

10h = 662.6176(36) · 10-36 Js. ħ = h/(2) 

http://www.fys.uio.no/biofysikk/eee/esr.htm
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phenomenon, an alternating magnetic field B1 is applied perpendicular to the static field 
Bo, which introduces a perturbing term in the Hamiltonian: 

 

                     Ĥpert = - B1ħĪz
                                                                               

            (1.7e) 
 

 
              Figure 1.7. Energy levels (E+, E-) and and spin-populations (N+, N-) of spin-states and    

 

Hence, using electromagnetic radiation with the correct frequency the spins will change 
orientation in space. The energy in electromagnetic radiation comes in packets called photons 

having energy h where  is the radiation frequency and h is Planck’s constant. Hence, the 
energy difference between the two eigenstates reads:  
 

E = (E- - E+) = ħ = h = B0ħ or  = 0 = B0 (note:  = 2   (1.7f) 
 
and defines the basic equation in MR, the Larmor equation. The radio stations, i.e., the Larmor 
frequencies in a “MR-radio” are wider spaced than in an ordinary radio,11 and can only be 
tuned to one type of nuclei at a time, for instance either protons or carbons. We notice that the 
basic equation describing the resonance phenomenon is the same whether derived from 
classical physics or quantum physics. One model is not better than the other. Actually, both 
models are used in tandem to explain different MR observations, making the MR-language 
somewhat special. 
 

The basic equation shows that when a nuclear spin in a magnetic field is exposed to 
electromagnetic radiation with the right frequency (Larmor frequency), an exchange of energy 
between the spins and the radiation takes place. This exchange of energy is called resonance 
and the frequency is denoted the resonance frequency.12  
In a 1.5 T field the resonance frequency for the protons is 64 MHz13. All other isotopes have a 
resonance frequency that is smaller, as shown in Table 1.2. However, all frequencies are in 
the radio frequency range (MHz). 
 
 
 
  

 

                                                 

11The FM-band stretches from 88 to 108 MHz 

12We are mostly acquainted with resonance in a mechanical system. When a glass scatters of a note it is because the note 
corresponds to one of the resonance frequencies of the glass.  
131 MHz = 106 Hz. 1 Hz = 1 s-1. Hz = hertz. 

B0 

                          N-                () 

E- = 1/2B0ħ       

 

 

 

N+              (                       

E+ = -1/2B0ħ     
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Table 1.2. Resonance frequency of 
1
H and some other isotopes in a 1.5 T magnetic field14. 

 
 

 
 

 
 
 

 

 

 

 

1.3.4 The spin system 

A sample will contain many spins (Avogadros number). Since each spin, or magnetic 
dipole, generate its own magnetic field, each spin in the system will experience the 
external magnetic field as well as the magnetic field set up by all its neighbouring spins. 
This local field will in general be smaller than the external field.15 However, we can 
continue to describe the collection of spins in the sample on the basis of the energy levels 
given for a single, isolated spin. If denoting the collection of spins of the same type in the 
sample a “spin-system” it may be uniquely described if knowing the number of spins (N+) 
in the lowest energy level since the number (N-) of spins in the highest energy level will 

then be equal N0 - N+  where N0 is the total number of spins in the system.  
Such a spin system can be described in a thermodynamic sense by the Bolzmann 
equation: 
 
             









 










 






kT

B
exp

kT

E
exp

N

N
0

                                                                                          (1.8a)  

 

Since B << kT, we may write: 
 

            








 




kT2

B
1

2

N
N

00
          (1.8b)                                                                 

            








 




kT2

B
1

2

N
N

00
          (1.8c) 

  
Moreover, because N+ + N– = N0 then: 
 

             
kT2

NB
NNN

00





         (1.8d) 

 
 

where ∆N is the difference in population between the two energy levels, i.e., the surplus of 
spins in the lowest energy level.  

                                                 

141 MHz = 106 Hz. 1 Hz = 1 s-1. Hz = hertz. 
15This is one example of a local magnetic field. In the next chapter we will present other local fields.  

 Table 1.2. The resonance 

frequency at 1.5 T 

Isotope Resonance 

frequency/MHz 
1
H 63.9 

2
H 9.8 

13
C 16.1 

14
N 4.6 

15
N 6.5 

19
F 60.1 

23
Na 16.9 

31
P 25.9 

39
K 3.0 
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We will later show that we can change the population in each level by irradiating the spins. 
By turning all spins 180

o
 the population difference will change sign. Thermodynamically 

the system can still be described by the Boltzmann distribution if accepting a negative 
absolute temperature (It requires energy to turn all spins). Consequently, a negative 
temperature is hotter than a positive temperature when the system is in thermal 
equilibrium!16 
 
We define a macroscopic magnetic dipole moment M as a (vector)-sum of all the dipole 
moments (or spins) in the spin system. At equilibrium M will be parallel to B0 and reads: M 

= (
.
k)k where k is a unit vector along B0 (defined as the z-axis). M is an important 

quantity in MR and forms the basis for the observable MR-signal. 
 
Einstein showed that when a photon passes through a spin system the probability for 
absorption of the photon will be equal to the probability that a similar photon is emitted. 
Hence, a signal is detectable only when a population difference exists (absorption when 

 > 0 and emission when  < 0). 

 

1.3.5 The Free Induction Decay (FID) 

The motion of the macroscopic magnetization M is governed by the same physical laws as 
for an individual magnetic dipole (Eq  1.3). Hence,  

 

      dM/dt = M x B0      (1.9) 
 

However, it can be shown (lecture) that the macroscopic magnetization component


M , 

normal to the static magnetic field B0, is zero. Since the receiver coils is placed normal to 
B0, there is no sample magnetization to be detected. So, how can we actually probe the 
NMR signal? 
The answer is that the macroscopic magnetization aligned along B0 (z-axis) must – 
somehow - be tilted, or flipped, or rotated into the xy-plane where the receiver coil is 
located. One way of performing this “tilt” is to apply a magnetic field B1 in the xy-plane, for 
instance, along the x-axis. Importantly, this magnetic field must oscillate with a frequency 

 (around the z-axis) which is close to the Larmor frequency This can be 

accomplished by sending an alternating current of frequency  and amplitude B1 into the 
coil, as illustrated on Figure 1.8. The oscillating magnetic field generated in this way may 
be regarded as composed of two rotating magnetic fields with opposite directions, as 
illustrated in Figure 1.8 (right). Only the B1-field component rotating in the same direction  
as M will influence M and suggests that the macroscopic magnetization M will experience 
two magnetic fields, one static magnetic field (B0) and one rotating magnetic field B1.  

                                                 

16 If you choose –1/T as a horizontal temperature scale you will get a better scale to understand this. The low temperatures will be to 
the left and the high temperatures to the right. Then it is also easier to understand that you will never get to 0 K as this will be at 
minus infinity. 
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Figure 1.8. left: Coil arrangement with a linearly polarized (alternating) current along the x-axis. 

right: Decomposition of the alternating current into two oscillating magnetic fields with frequency  and – 

 (rotating in opposite directions).  

 
 
To vizualise the motion of the magnetization M in a system of two orthogonal magnetic 
fields B0 and B1 is not too complex. It is simply composed of two independent rotations 

of circular frequencies 0 (= -B0k) and 1 (= -B1i) around the z-axis and the x-axis, 
respectively. However, this motion can be significantly simplified if viewing the motion 

in a coordinate system (uvz) rotating around the z-axis with frequency  (= -k), i.e., 

the same frequency as the oscillating B1 field. In this rotating frame of reference B1 is 
directed along the u-axis and Bo is directed along the z axis. It can be shown that in 
this rotating frame of reference the magnetization can be considered to experience or 
sense an apparent or effective magnetic field Beff which can be written:  
 

                         Beff = B1u + (Bo – /)k                                                              (1.10) 

 

where 0 = B0 (Figure 1.9; left). We notice that in the rotating coordinate system all 
magnetic fields can be considered constant and independent of time. Of particular 

interest is the situation when on resonance (B0) because then only the B1 
field along the u-axis is non-zero. As long as B1 is turned on, this causes a presession 
(rotation) of the magnetization around the negative u- axis with a resonance frequency 

)(
11
uB


ω as illustrated on Figure 1.9 (right). It follows that the angle ( of rotation 

(phase angle) of M around the negative u-axis after time t is:  
 

                  = 1
.
t = B1t     (1.11)  

 

 

 

 

          

 

 

 

 
 
Figure 1.9. Rotation of a macroscopic magnetic moment M around the effective magnetic field Beff (left) 

and the corresponding rotation of M around B1 when on resonance (Bo - / = 0; right).   
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If the radio pulse is on for a time t90, which corresponds to the magnetization being rotated 

an angle  = /2 (a so called “90
0 

rf-pulse), the magnetization M will be directed along the 
v-axis in the rotating frame. This signal can then be detected by a receiver coil placed 
along the x- or y- axis in the laboratory frame.  

As Mz = 
z, the signal intensity will be proportional to 

kT4

NB
00

22


(Exercise 1.3). As a 

consequence, the signal intensity increases with the strength of the external magnetic field 

B0 and it will become stronger for those nuclei that have the larger . This latter implies 
that 

1
H and 

19
F will give a stronger signal than 

13
C and 

15
N (see Table 1.1). Furthermore 

the signal is proportional to N0, the number of spins confined in the receiver coil. N0 will be 
proportional to the density of spins, which in turn depends on the isotopic abundance of 
these spins (see Table 1.1). The abundance can be increased by isotope enrichment. We 
will return to this point in a later chapter when discussing the signal-to-noise ratio.   
 
Also, a 90

o
- pulse that last a few microseconds (µs) is called a hard or non-selective pulse, 

while a 90
o
- pulse that last a few milliseconds (ms) is called a selective or soft pulse.17 A 

hard pulse covers a larger frequency range and will be commented on in a later section. 
 

1.3.6 MR detection 

How then can we detect the x- and y-components of the oscillating (magnetization) 

signal:  tiII
S

 exp
0

 (= jtIitI


 sincos
00

 ) when only one receiver coil (along the x-

axis) is applied? That is, only the signal tII
R

S
cos

0
 along the x-axis is sampled. One 

option is to have two coils, one along the x-axis and the other along the y-axis. However, 
such an arrangement is practically difficult to realize. There exists, however, an internally 

generated oscillating signal IREF of frequency , i.e.,  tiI
REF 0

exp   (= jtit


00
sincos   )  

By mixing (multiplying) the two signal (see Figure 1.10) and filtering out the high frequency 

component (), we obtain the twe rotating frame signals ))cos((
00

tIS
U

   and 

))sin((
00

tIS
V

  which are stored in two separate channels, denoted U and V, 

respectively (see Problem 1.6). As can be noted, the two signals SU and SV are phase 
shifted by 90

0
. 

 

  

 Figure 1.10. Illustration of the local oscillator signal, the sample signal and the resulting two signals U and V stored 
in the computer. 

 

 

                                                 

171 µs = 10-6 s 
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1.4 Exercises 

 

1.1)  Try to argue why µ = L by applying the well known result that the magnetic 

dipole moment () formed by a closed current loop (i) is proportional to the current 

times the area(A) defined by the current loop, i.e.,  = iA (assume a circular current 
loop).   

 

1.2)  Discuss the motion of a magnetic dipole  in a magnetic field B0, i.e.,  

        derive the equation; d/dt = x B0 by combining the angular momentum L (= r x mv)     

        and the torque  = (r x F = x B0). 
 
1.3)  Show that  the macroscopic magnetization M can be approximated by the formula:    

        
00

2
)(

4

1
NBh

kT
M   

 

1.4)  Describe the motion of the magnetic dipole moment  in the rotating frame of 
reference by solving the Equation:  

                     kBBμ
μ

)/(
0

  Bwhenx
dt

d

effeff
 

        where -k defines the frequency of the rotating frame of reference.  
 

1.5) What is the effect of a linearly polarized magnetic field B1= B1cost i (in the laboratory  

       frame (xyz)) on the magnetic dipole moment , when “on resonance”, i.e., 0.   
       (Hint. Use the rotating frame concept) 
 

1.6) An internally generated oscillating signal ))exp((
0
tiI

RX
 ) of frequency  is 

multiplied by the detected sample signal )exp()exp()cos(2
000

tiItiItII
S

  . 

Show that the resulting mixed signal S takes the form: 

   tIitIS )(sin)(cos
0000

 


. 

(Hint: The high-frequency component  
0

is filtered out by using a low-pass filter. 

See also notes from the lecture!) 
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2. Bloch equation and relaxation 

2.1 Spin-spin relaxation time - T2 

From the discussion above, we found that after a 90°-pulse M will precess around Bo, and 
will induce a current in the coil. This current will be an alternating current which varies with 
the resonance frequency. It also follows that the amplitude of the current will stay constant. 
This is, however, unreasonable since “nothing can last for ever”. What will then make the 
signal decay? We know that M will be directed along Bo when the system is at equilibrium. 
Since the 90°-pulse has brought the system out of equilibrium, how will the spins find their 
way back to equilibrium? We will now try to give the answers to these two questions.  

M represents the vector sum of all spins in the sample. The magnetic field experienced by 
each spin is the sum of the external field (Bo) and a local field from the neighbouring spins 
(Blok). The external field is the same for each spin, but the local field may vary from one spin 
to another because it depends on the relative orientation of the neighbouring spins. (We will 
describe the local field in more detail in the next chapter). Because the resonance frequency 
is proportional to the magnetic field experienced by the actual spin (Bo + Blok), the spins 
sensing a large local field will necessarily precess faster than spins experiencing a smaller 
local field. This means that the components of M in the rotating coordinate system will spread 
out in the xy-plane with time, due to loss of phase coherence, causing the resultant M to 
decay. A simple assumption is that M will decay exponentially with time (Figure 2.1)  

 

M = Moe-t/T2                                                                                                        (2.1)  

 
T2 is called the spin-spin relaxations time and is an important time parameter in NMR. 
 

 
Figure 2.1 Signal decay after application of an rf-pulse  

 
 
We note that when t = T2 the signal intensity will be reduced by a factor e

-1
 (e = 2.7183) 

relative to its initial value. 

 

2.2 Spin-lattice relaxation - T1 

The other question we asked was how long time it takes for a spin-system to relax to 
equilibrium after being perturbed. The answer is related to moelcular motion through 
the time variation of the local magnetic field Blok. For instance, the local magnetic 
field set up by the combined effect of electron currents within the molecule and the 
molecular motion will fluctuate with time. Of particular importance, the fluctuation 
frequency of these local magnetic fields which accurately matches the larmor 
frequency of the spins will be the most effective source of relaxation. For simplicity,  
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we will assume the macroscopic magnetization to return to equilibrium exponentially 
with respect to time, after being perturbed by for instance an rf-pulse (Exercise 2.7)  
Actually, it can be shown that after the magnetization is first perturbed by an rf-pulse 

which tip the magnetization an angle  relative to the external field, the magnetization 
MZ along the static magnetic field will increase with time according to: 

 

Mz = Mo(1-(1 – cos) e-t/T1)          (2.2) 

 

where T1 is called the spin-lattice relaxation time and is an important MR-parameter. 

 

Within the rotating frame of reference, we may summarize: Before a 90°-pulse Mz = Mo 
and Mx =My = 0. Immediately after applying a 90°-pulse Mz = 0, Mx = 0, and My = Mo. 
After a time t >> T1 it follows that Mx = My = 0 and Mz = Mo and the system has returned 
back to equilibrium. 

 

The signal detected in the radio receiver will be at a maximum immediately after the rf-
pulse and later decay as shown in figure 2.2. Because the signal is detected after the 
transmitter has been turned off the signal is called a free induction decay (fid). 
Interestingly, we can determine T2 by analyzing the decay of this fid. 
 
One frequently approach to measure T1 is to expose the spin system to a 90°-rf-puls, a 

time after applying a 180
0
 pulse, and then monitor the time behaviour of Mz as a 

function of Figure 2.3). This is denoted an Inversion Recovery pulse sequence and is 
illustrated in Figure 2.2).  
 

 
Figure 2.2. Inversion recovery pulse sequence. The initial magnetization M0 directed along the positive z-

axis (static magnetic field direction) is inverted by a -rf-pulse. During time  the magnetization is growing 

steadily until a second rf-pulse (/2-pulse) is applied for detection.  
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For instance, the first rf-pulse will be a 180°-pulse. Immediately after such a pulse Mz will 
be equal to - Mo and no signal will be detected in the xy-plane (Mx = My = 0). However, if 

applying a 90°-puls a time  after the 180
0
-pulse the magnetization in the xy-plane will be 

different from zero and equal to Mz.  

An example showing how Mz() varies with  
is depicted on Figure 2.3. The points 
represent 

13
C-signal intensities from a 

sample of benzene at room temperature. 
The solid curve represents a non linear 
least-squares model fit to the observed data 
with T1 equal to 22.5 s. 
 
 
 
 

Figure 2.3. Model fitted curve (Mz = Mo(1-2 e-/T1)) to the 
observed spin-lattice relaxation data of benzene as obtained 
by an inversion recovery pulse sequence(Figure 2.2).  

 

2.3 Molecular dynamics 
Generally, a molecular motion can be characterized by some correlation time denoted by 

C
 . For instance, the motion of a water molecule may 

be characterized by a rotational correlation time 

R
 (the time needed to rotate one radian) and a 

translational correlation time 
T

 (the time needed to 

diffuse one radian). We may then define a “memory” 
function: 
 

Cef
C




/
)(


                                                         (2.3) 

                  

                       Figure 2.4                      

 

which simply tells us that after a time of the order of
C

t 5  all motial memory is lost. By 

fourier transforming Eq 2.3 we obtain the characteristic frequency spectrum )(J of the 

molecular motion (fluctuations of the internally generated magnetic fields caused by 
molecular tumbling) which reads: 
 

                                    
22

1

2
)()(

C

Ci

C
defJ









 





                                                        (2.4) 
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The frequency fumction J() is denoted a spectral 
function in which  dJdN )(  simply represents 

the probability of finding a molecule with a 

frequency of motion between  and +d. This 
function is illustrated in Figure 2.4 for three 

different values of c (from Claridge 1999) where 

the inverse of the correlation time 1/c is the jump 
frequency. The molecular motion results in a 
fluctuating magnetic field in the position of the 
spins and will induce transitions between energy 
levels and thus affect both T1 and T2. Figure 2.5 
illustrates how T1 and T2 depend on the correlation 

                         Figure 2.5                         time C; For instance: 
 

                
22

1

2
)(

1

1

c

c
J

T







                                                                                            (2.5) 

  
It is, however, outside the scope of this work to derive Eq 2.5. The graph shows that T1 
goes through a minimum (Exercize 2.4).  At the T1-minimum (Figure 2.5) the jump 

frequency 1/c can be assigned and is identified with the Larmor frequency, as illustrated 

by curve b in Figure 2.4. For slower motion (longer C; curve c in Figure 2.4) T1 will 
increase while T2 will decrease and subsequently reach a constant value, the rigid-lattice 
T2.(Figure 2.5). For faster motions, T2 will be equal to T1 (Figure 2.5) and both relaxation 
times will will increase with decreasing correlation time (faster motion). Since there is an 
intimate relation between correlation time and temperetaure (ref. Arrhenius equation), 
short correlation times are often associated with motions at high temperature. Hence, from 

Eq 2.5 we notice that at high temperature )1(
22
 , T1 (and T2) will be independent on 

the resonance frequency and proportional to C.  
 

2.4 Fourier Transformation (FT) 

In practical NMR spectroscopy it is easier to analyze a frequency spectrum F() rather 
than the time signal f(t), or the fid. The spectrum and the fid contain the same information, 
but is presented in different ways. It is possible to calculate the one from the other by a 
mathematical operation called Fourier Transformation.  

If we denote the fid by: 

 

         f(t) = tiTt
eeM 02

/

0

                 (2.6) 

 

its fourier transform F() can be derived (see Exersice 2.5) and reads: 

 

)()()()( 


iIRdtetfF
ti

 





  ‘ 
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  

02

20

2

20

02

2o

2
M

)T)((1

T)(
iM

T1

T
)(F








                                                 (2.7) 

 

where the real component R() represents the absorption mode (Lorenzian function) and the 

imaginary component I() represents the dispersion mode, respectively. 

 

The opposite is also true, i.e., the fid is the Fourier transform of the (frequency) spectrum: 

 

f(t) = 









 d

ti
eF )( = 2

/
0

Tt
eM
   (2.8) 

 

We notice from the real part R() of the spectrum (Eq 2.7) that the width () at half height 

is related to the decay rate 1/T2 of the fid, i.e.,  =
2

T/1  . When T2 is short, the fid will 

decay fast and the frequency peak will become broad.  

The FT is quickly performed using a dedicated computer. In principle the relation between 
the fid and the frequency spectrum has been known from the early days of NMR. 
However, it was first when computers got cheap enough that it became advantageous to 
transform the fid by FT. 

It is important to know that actually two time-signals, differing in phase by 90
o
, are 

sampled and that the two spectra are mixed in an operation called phasing in order to 
obtain a pure absorption spectrum.   

Because a computer is a digital sampling device, it is necessary to chop the fid. This is 
done in an analogue-to-digital converter. After the fid has been digitized, the fid consists of 
a series of points. It is necessary to select a sufficiently large number of points to get the 
shape sufficiently accurate. A least 4 points are needed to define a peak. On the other 
hand: the calculating time increases with the number of points. To make the calculation 
faster the number of points is always 2

n 
(with n being an integer). In MRI one frequently 

apply 512 (n = 9) data points. In MR-spectroscopy the number of points is often set to 
16384 (n=14). It is also possible to use other tricks to improve the quality of the spectrum, 
for instance by filtering or selective weighting of parts of the   fid before FT. 

 
2.5 Signal-to-noise 

MR is not very sensitive compared to other 
spectroscopic techniques. This is due to the fact 
the energy of a photon is small compared to kT, 
making the difference between the numbers of 
spins in the two energy levels small, which in turn 
results in a weak signal (see Eq 1.8). However, in 
one respect this is an advantage. The amount of 
energy absorbed by the sample will be so small 
that                                                                                   
it will not significantly affect the sample  

                           Figure 2.6                             temperature. This is in contrast to other  
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spectroscopic methods where the irradiation may substantially heat the sample. A 
number of methods have been introduced to increase the signal-to-noise ratio in the 
MR-spectrum (see the figure where støy stands for 
noise). A closer analyses shows that the S/N-ratio is given by the following expression 
(Claridge 1999):  
 

S/N-ratio = (number of spins)x(Abundance)x(number of fids)
1/2

T

TB
o



2

2/32/5


             (2.9) 

A simple method to increase S/N is thus to sum the fids after acquiring a larger 
number of individual fids. After each fid the digitized fid is stored in the computer. The 
stored signal will increase proportional to the number of fids, while the (random) noise 
will only increase as the square root of the number of fids. The S/N-ratio therefore 
increases with the square root of the number of fids. For instance, the S/N-ratio after 
100 pulses will be enhanced  by a factor of 10. 

This increase in the S/N-ratio implicitly assumes that the spin system returns to equilibrium 
between each rf-pulse and implies that the time between each pulse must be set to 
approximately 5 times the T1. If this condition is satisfied the spectrum can be used for 
quantitative analysis as each peak in the spectrum will be proportional to the number of 
spins contributing to that peak. If the spectrum is needed to be recorded faster, a closer 
analysis shows that the best S/N-ratio is obtained by pulsing as fast as possible with a 
pulse angle shorter than 90

o
. However, this approach will introduce systematic errors. 

Since T1 may be different for different peaks in the spectrum, peaks with the longest T1 
will be systematically smaller. 
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2.6 Exercises 

 

2.1) Set up the general Bloch equation in the rotating frame of reference. Write down 

the Bloch equation when on resonance ( 

 

2.2) Assume that you have applied a B1 field such that My(0) = M0, Mx(0) = 0 and Mz(0) 
= 0 in the laboratory frame. Set up the Bloch equation (in the rotating frame) and find 

the solution for My(t) and Mz(t) when  = 0 (B1 field is turned off) and you are “on 
resonance”. Explain this experiment. 

 

2.3) You want to perform an Inversion Recovery experiment. Set up the Bloch equation 
(in the rotating frame of reference) and show that the final result is equivalent to Eq 2.2 

with cos = -1. Consider only the z-component (Mz) 

 
2.4) Show that T1 goes through a minimum when increasing the correlation time 
(decreasing the temperature). (Hint: use Eq 2.5) 
 
 

2.5) What is the frequency spectrum Fof the transversal magnetization My(t) in 
Exercise 2.2   
 
 

2.6) Set up the Bloch equation in the rotating frame of reference ( when a static 
gradient field G = g0zk is present along the external magnetic field B0 (z-axis). Assume 
B1 = 0 
 
 
2.7) If denoting the number of spins in the two possible energy levels of a spin-½ 
system by N

+ 
and N

-
, and we introduce the so called transition probabilities W

+
 and W-  

(W
+
 defines the probability for a spin going from the lower to the higher energy level 

and W
-
 represents the probability for a spin going from the higher to the lower energy 

level) we can set up an equation for how the population difference (N = N
+
 - N

-
) varies 

with time: Show that: )0()(
)(

NNWW
dt

Nd









 

What is the meaning of N0 ? 
Actually, the spin-lattice relaxation rate 1/T1 is defined by 1/T1 = W

+
 + W

-
 . 

Show that this leads to the famous result: 
1

0

T

MzM

dt

zdM 
  
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        3. Spin-echo and diffusion 

3.1 Local magnetic fields 

The magnetic field in the position of a spin is determined by the sum of the external 
magnetic field Bo and the local magnetic field Blok. There will be different types of local 
fields, some intrinsic to the sample, and some which may be more or less controlled. 
Some local fields shift the peaks in the spectrum while others are responsible for 
additional fine structures. As a consequence, the information obtainable from a MR-
signal depends on how successful these shifts and fine structures can be detected and 
analyzed.  

3.2 Spin echo 

The MR-signal originates from that part of the sample which is located within the 
receiver coil. Ideally, the external magnetic field does not vary over the sample volume. 
However, this is not the case in practise. In the real world the magnetic field will vary 
from one place in the sample to another. 
This variation in magnetic field over the 
sample volume is called inhomogeneity 
and may be reduced by shimming. All MR-
magnets are equipped with (correction) 
coils. When a current is introduced in 
these coils they set up magnetic fields 
which may partly counteract and hence 
reduce the inhomogeneities within the 
sample volume. How constant the 
resulting           magnetic field will be 
depends on the size                                                                   Figure 3.1 

 of the sample and the skills of the operator.                                                                             
In all modern MR spectrometers, this shimming may be performed automatically within 
a reasonable time.  For a liquid sample the width of the resonance peaks are generally 
determined by the residual magnetic field inhomogenities and implies that the 
experimentally determined T2 (from the fid) is shorter than the real and inherent T2. The 
former is therefore usually denoted T2*. 
 
The true T2 can be determined in an ingenious way by applying a series of rf-pulses in 

series. If we first apply a 90°-pulse and then, after a time  irradiate the sample with a 

180°-puls, a signal will appear after a further time as illustrated in Figures 3.1 and 
3.2. (The first rf–pulse is applied along the x axis and the second rf-pulse is applied 
along the y axis).  

 

                                                                     Figure 3.2  

 

x y 
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The signal, which consists of two fids, is called an echo. We can apply a series of 180°-

pulses with a time separation 2Between each 180
o
-pulses an echo is formed. The 

envelope of these echoes will be an exponential function with time constant T2, as shown 
in Figure 3.2 (from Freeman, 2003). The actual pulse sequence is called a CPMG pulse 
sequence after the people who developed it,Carr, Purcell, Meibom and Gill.  
Actually, the appearance of an echo was first observed and reported by Erwin Hahn 
around 1950. An important property of the echo, utilized in MRI, is that it appears far 
from the transmitter pulse in the time domain. The echo is much stronger than the fid, 
because the latter is not observable during the time when the receiver is turned off. The 
receiver is blanked for a few micro seconds to avoid break through of the transmitter 
pulse.  

We will now explain why an echo appears. To make it simple we will assume that the 

local magetic field only has two values  b. M is then the sum of two components. After 
a 90°-pulse about they-axis M is located along the x-axis.  

 

Figure. 3.3. Illustration of the spin-echo experiment. After the magnetization is rotated into the xy-plane by 
a 90

0
-pulse (around the y-axis), it looses phase coherence (due to inherent T2-effects and/or magnetic field 

inhomogeneities) and is exemplified by the formation of different local magnetic fields (+b), which in turn 
causes the spins to presses with slightly different frequencies.   

 

After a time  the faster rotating component will have dephased an angle +  (= 

bwhile the other component will have moved an angle - . If we now apply a 180°-
pulse to the spin system about the y-axis, the component that rotates faster will make 

an angle – with the y-axis after the pulse, while the one that rotates slower will make 

an angle + with the y-axis. However, since they both have the same angular velocity 

they will both be located along the y-axis after a further time  and will thus generate an 
echo.  

 

= b   





= - b        

x 

y 

                      t = 0                                    t = (before the pulse)















t (after the pulse)t 
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If we assume a normal distribution of local magnetic fields, M will consist of a 
continuum of components. After the 90

o
-pulse the components will be spread out in 

the xy-plane. As the fid is a measure of this spread, the fid will die out with a time 

constant of T2
*
. If we after a time (>T2

*
 but <T2) apply an 180

o
-pulse we will get a 

situation where the fastest components suddenly are lagging behind and the slower 
components are ahead. Since they still rotate with the same speed as before the 

pulse, they will again meet at the y-axis after time echo. The actual reduction in 
signal intensity of the echo is due to the inherent and true T2-processes. 

This pulse experiment may be compared to a track-race, i.e., before start the runners 
are all positioned on the same line. After start they will spread out because they run 
at different speeds. If the starter fires again, and everybody has to turn and run in the 
opposite direction, at their earlier speeds, they will cross the start line simultaneously. 

If some of the runners change speed or give up, the number of runners coming back 
to the start line at the same time will be reduced.  

It follows from this explanation that the echo will consist of two fids (as shown in 
Figure 3.2); one fid building up to an echo maximum, and the other fid decaying from 
the time of the echo maximum.   

An advantage with the echo technique is that the complete fid is observed. The fid 
observed immediately after an rf-pulse is truncated because the receiver is turned off 
during the rf-pulse and for a short time afterwards (to circumevent breaktrhroughof 
the rf-pulse). The time between the end of the transmitter pulse and the opening of 
the receiver is called the dead time. The echo on the other hand, is recorded in a 
situation where the transmitter has been turned off for a long time. It is therefore an 
advantage to use the echo and not the initial fid in situations where T2 is short. This 
is used in whole body MRI where the magnetic field is fairly inhomogeneous.  
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3.3 Diffusion. 

The equation describing the time (t) and spatial (z) dependence of the transversal 

magnetization M̂ )iMM(
yx

 during diffusion, normal to this plane reads (see 

Excersice 3.1):  

yiMxMMwith

MD
T

M
Mzgi

t

M








ˆ;

ˆ2

2

ˆ
ˆ

ˆ



                                                                  (3.1) 

where D is the diffusion coefficient and 1/T2 is the spin-spin relaxation rate.  
After some complex and elaborate calculations using inverse Laplace transformation 
R.F. Karlicek and I.J. Lowe presented a solution to this equation:   
 












  





2

0

'

0

22

20
')'')''((/expˆ)2(ˆ

t

dtdttgDTtMM                                       (3.2) 

 
In Excercises 3.2 and 3.3 we justify that Eq 3.2 actually represents a solution to Eq  3.1 

where )2(ˆ M is the signal amplitude at the echo maximum. In particular, we note that 

the z-parameter is eliminated in Eq 3.2 (see Exercise 3.2). We will in the next section 
illustrate the applicability of Eq 3.2. 
 

3.4 Spin-echo in a constant magnetic field gradient  

The pulse sequence applied is illustrated on Figure 3.4 with g =G0 representing a 
constant gradient field across the sample.  
 
 

 

Figure 3.4 Spin-echo pulse sequence performed in a static magnetic field gradient g = G0  where  is the 

time at which a /2-pulse is applied with a subsequent occurence of an echo at time 2.  

 

Before applying Eq. 3.2, we note that in a rotating frame of reference (on  

resonance), the integral term 

'

0

0
'')''(

t

dttgz   represents the phase of the 

 magnetization at time t’, at position z0. Without loss of generality we may set z0 =  

1, which implies that the integral 

'

0

'')''()'(

t

dttgtg  in Eq 3.2 is identical to (or  

proportional to) the phase angle. Figure 3.5 illustrates how this phase angle  
changes during time when applying the pulse sequence in Figure 3.4. Again,  
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assuming on resonance conditions and describing the phase abgle in the rotating frame  
of reference we can easily determine the phase angle as a function of time (Figure 3.6) 
by referring to Figure 3.5.  
 

 

 

 

 

 

Figure 3.5. Phase angle as a function time when applying the pulse sequence shown in Figure 3.4. 

   

 

Figure 3.6. Schematic view of the phase angle g(t’) as a function of time (t’) when applying the pulse   
sequence shown in Figure 3.4.    

 

A more detailed numerical analysis is shown in the Table 3.1.  

 

Table 3.1. Derivation of the phase term  '')''()'( dttgtg  as a function of time t’ by referring to Figures 3.5  

and 3.6. 
Time 
interval  
nr. (i) 

Time interval Gradient 
g(t’’) 



'

0

'')''()'(

t

dttgtig

 



'

0

2
)'')''((

t

dttg  

1  t1= 0, t2 =  G0 '
0
tG  22

0
'tG  

2 t2= t3=2 G0 )2(
0

 tG  22

0
)2( tG

 

 

We can now easily calculate the last exponential term in Eq. 3.2 by insertion, i.e.: 

  3/2)3/)2(3/

')'')''((')'')''((')'')''((

32

0

23'

0

3'2

0

'

0

2

2'

0

2

0

'

0

2

2

0














GttG

dtdttgdtdttgdtdttg

ttt



 
                                                (3.1) 

 

The first echo intensity will thus have the intensity; 

 





       
 

 

                        0, 2         

 

         

         + 
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)3/2/2exp(
)0(

)2( 322

02



DGT

I

I
                                                                                                  (3.2) 

Likewise, the n’th echo intensity reads: 

)3/2/2exp(
)2(

)2)1(( 322

02





DGT

nI

nI





                                                                         (3.3) 

It follows from Eq 3.3 that: 

 

 )3//1(exp)3/2/2exp(

)3/2/2exp(
)0(

)(

)0(

)2(

222

02

322

02

322

02






DGTtnDGTn

DGT
I

tI

I

nI

n







                                      (3.4) 

 

3. 5 Example.  

 

3.5.1. Diffusion in bulk water. 

Figure 3.7 (left) shows the signal intensity of bulk water for different diffusion times tD as 
a function of the gradient field strength squared (g

2
). The dotted curves represent non 

linear least squares fit to Eq 3.4. The derived diffusivity as a function of diffusion time is 
plotted on Figure 3.7 (right) and suggests that for bulk water the diffusivity is independent 
on diffusion time and equals (2.58 +0.08)

.
10

-9
 m

2
/s18. 

 

 

Figure 3.7. Left: Observed echo intensity (normalized) of bulk water as a function of diffusion time (tD) 
and the gradient field strength squared g

2
. Right: Bulk water diffusivity as a function of diffusion time. 

 

3.5.2 Diffusion of bulk water within pores.  

For distilled water containing no oxygen, the relaxation times T1 and T2 are expected to 
be identical. However, for bulk water confined in a porous matrix the spin-spin relaxation 

rate 1/T2 depends on the inter-pulse time 2 (Figure 3.9A) in much the same way as 
observed for bulk water in a static gradient field, as discussed in the last section.   

                                                 

18 Hansen, E.W and coworkers,  Microporous and mesoporous Materials, 2005, 78, 43-52.  
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Figure 3.8. A train of spin-echo pulses illustrating the Carr-Purcell-Meiboom-Gill-pulse sequence (CPMG).  

 

 

Figure3.9 A) The echo signal intensity of bulk water as obtained from a CPMG pulse train with different time 

distances (2) between successive -pulses. The solid curves represent non-linear least squares fits to a 

single exponential function M =exp(-t/T’2). B) The apparent spin-spin relaxation rate (1/T`2) versus 
2
. The 

true spin-spin relaxation rate (1/T2) is determined from a second order polynomial fit in 
2
 at  = 0, resulting 

in T2 = (3156 + 50) ms. 

 

Actually, the observed relaxation rate 1/T2 of the pore confined water shows the same 

quadratic -dependence as for water diffusing in a constant gradient field (Figure 3.9B, 
Eq 3.4) suggesting that a gradient field exist across the sample volume is formed. We 
tentatively believe that this gradient magnetic field originates from a discontinuity of the 
magnetic field lines at the interface between the solid matrix (glass beads) and the (pore 
confined) water or/and due to a inhomogeneous external magnetic field B0.  

The dotted (red) curve in Figure 3.9B represents a non-linear least squares fit to a 

second order polynomial in 
2 

and explains semi-quantitatively the experimental data. The 

true T2 is derived from the intercept of this curve with  = 0 and reads T2 = (3156 + 50) 
ms, showing that T1 ≈ T2, as expected for bulk water.   

 

3.6 Spin-echo in a pulsed magnetic field gradient. 

Let us return to a more complex pulse sequence shown in Figure 3.10. Using the  
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Figure 3.10. Illustration of the simplest pulsed field gradient pulse sequence used to measure diffusivity. g 

represents the strength of the pulsed gradient field of duration . The timing of both rf-pulses and gradient 
pulses is shown along the time axis.  

  

same approach as outlined in section 3.2.1 the phase angle 

'

0

'')''()'(

t

dttgtg  as a 

function of time t’ can easily be derived (Figure 3.11). A more quantitative numerical 
analysis is shown in Table 3.2  

 

 

 

 

 

 

 

 

Figure 3.11. Illustration of the phase angle g(t’) as a function of time t’ when applying the pulse sequence 
shown in Figure 3.10.  

 

Table 3.2. Effective gradients and integrals
1)

 

 

        

 

 

 

 

 

 

 

 

1)
Generally we have that: btatg

i
)'( where a = 0 or + g, depending on whether the gradient is on or off. 

The parameter b is determined from the continuity at the various intersection ponts.   

We can then easily calculate the integral ')'')''((

'

0

2

0

2

dtdttg

t





as follows:  

Time 
interval 
nr. (i) 

Time interval  G(t’’) 



'

0

'')''()'(

t

dttgtig  

'

0

2
)'')''((

t

dttg  

1 t1=0, t2= 0 0 0 

2 t2= t3= G 2/)(   gtg  [ 2/)(   gtg ]
2
 

3 t3 t4= 0 g  22

g   

4 t4 t5=3/ 0 - g  22

g   

5 t5 t6=3/ G =gt΄- g(3 =[gt΄- g(3]
2
 

6 t6 t7=2 0 0  0 

 

t΄ 



-g 

2 

g(t΄) 

g 





 

28 
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2




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




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

g

ggg

ttg

ttgttgdtdttg

t

                       (3.5) 

 

Hence, from Eq 3.2: 

 

   D)3/(gexpT/texp

'dt)''dt)''t(g(DT/texp
)0(M

)2(M

222

2

2

0
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0

22

2


















 



                                                                (3.6) 

                                                                                                          

3. 7 Tomography 

We have seen that the width of a liquid-peak in a MR-spectrum is determined by the 
inhomogeneity in the external magnetic field. Inhomogenity means that the field varies 
from one point to another in space and is unwanted in MR spectroscopy. However, it 
may be turned into something very useful. If introducing a magnetic field that varies 
across the sample, we can observe a signal from a restricted part of the sample. The 

basic equation tells us that if we apply an rf-pulse of frequency  then only the spins in 

the magnetic field B (= 2π ) will be irradiated and contribute to a signal. The simplest 
case is to let the added magnetic field increase linearly in one direction (x), B = Bo + 
xGx, i.e., a constant gradient field along the x-axis.  

The upper figure show two capillaries filled with ordinary 
water in a test tube containing heavy water. We note that 
the observed MR-spectrum depends of the direction of the 
gradient. Each spectrum is a projection of the sample 
along the direction of the gradient. From a set of such 
spectra it is possible to construct an image of the sample. 

The lower figure show the picture constructed from these 
spectra and represents the first MR-picture published in 
the literature.19 A more detailed outline of this technique 
will be addressed in the second part of this course.  

Field gradients are also used in MR-spectroscopy to measure 
diffusion, as discussed in a previous section. Also, in ordinary 
solution NMR spectroscopy the application of gradient fields is 
found to be of significant advantage (see Claridge 1999). 

 

 

 

                                                 

19Lauterbur in Nature 242(1973)190  
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3.8 Exercises 

 

3.1) You apply a gradient field ( kzgg


 0 ) along the z-axis which is parallel to the external 

magnetic field )0( kBB


 B. If applying the Bloch equation, show that the transversal 

magnetization, i.e., the complex magnetization M̂ ( yiMxMM ˆ ), satisfies the following 

relation; 
2

2

2

0

ˆˆˆ

z

M
D

T

M
Mzgi

t

M








 
  

 
3.2) Show that a general solution to the above equation can be written: 

2

2

0

/
ˆ

ˆ
ˆ

),(ˆ),(ˆ 2

z

m
Dmzgi

t

m
withtzmetzM

Tt












  

3.3) If introducing the following trial function: 
















 

t

dttgzitm

0

')'(0exp)(ˆ   

Solve for (t) and argue that this function actually describes the echo attenuation in a 

Pulsed Field Gradien Spin Echo experiment, i.e.; 










  

t t

dtdttgDt

0

'

0

22
')'')''((exp)0()(   

3.4) Go through sections 3.4 and 3.6 on your own and perform all calculations. 
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4. Shielding and coupling 

 

4.1 Chemical shift 

All atoms in a molecule are surrounded by electrons which bind the atoms together. The 
electron distribution can be regarded as a charged cloud. When such an electron cloud is 
placed in a magnetic field B0 a current will be induced which in turn generates a local 
magnetic field Bloc (according to Lenz’ law this magnetic field will oppose the static 
magnetic field B0). We say that the electron cloud shields the spins. When the cloud has 
spherical symmetry this induced field will be directly proportional to the external field (Bloc = 

-Bo) .The proportionality factor  is called the shielding constant and the actual magnetic 

field sensed by any nucleus may be expressed by: 

B = B0 + Bloc = (1-)Bo (4.1) 

which can be rewritten in the form form: 

Bo (4.2) 

In a molecule or ion the shielding 
constant will vary from one spin to 
another if they are chemically different. 

For example in ethanol (CH3CH2OH) - the electric 
cloud around the methyl carbon (CH3-) is 
different from the electric cloud around the 
methylene carbon (-CH2-).                                                         Figure 4.1  
The 

13
C-MR spectrum of ethanol therefore 

Is expected to consist of two peaks with resonance frequency 1 and 2 (plus three small 

peaks from the solvent (deuterated chloroform (DCCl3)) as shown in Figure 4.1. Using Eq 
4.2, the frequency difference between the two peaks can be written:   
 

1 - 2 = (2 - 1)o  where o = B0/2   (4.3) 

 

We see that the frequency difference is proportional to the frequency 0 of the 
spectrometer. To be able to compare data recorded in spectrometers with different 

magnetic fields a dimensionless parameter denoted the chemical shift  was introduced:  

 = 



MHzi









   (4.4) 

It is common practise to measure the chemical shift relative to a peak in a reference 
compound. For 

1
H- and 

13
C, this reference compound is tetramethyl silane (TMS; 

(CH3)4Si) as indicated on the spectrum in Figure 4.1. In TMS the spins are well shielded so 
the peak does not generally interfere with the peaks from common organic molecules.  

Conventionally the TMS-peak is to the right in the spectrum and the  axis increases to the 

left. In our example,  for the methyl carbon is 18.0 ppm and for the methylene carbon 57.3 
ppm. The shift difference in frequency units in the magnetic field applied is (4.7 T; 200 MHz 
for 

1
H) is ca 2 kHz ((57.3-18.0)x50). 

 For a solid, the chemical shift is described by a tensor. However, for a liquid the tensor is    

chemical shift () 

shielding ()  
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averaged to a scalar. The shielding tensor is analogous to the moment of inertia of a body. 
It is possible to find a coordinate system where all off diagonal elements are zero and the 
sum of the diagonal elements is zero. The shielding tensor may therefore be uniquely 

characterized by by two parameters: z and the asymmetry factor  (the largest of the 

diagonal elements is chosen to be z) and   is a number between 0 and 1:  
 

xyz (4.5) 

 

4.2 Indirect spin-spin coupling (J coupling) – 1. order spectral analysis 
 
In the 

13
C-MR spectrum of ethanol (Figure 4.1) all interactions between the protons and the 

carbon are removed by what is called 
1
H-decoupling. However, if these interactions are not 

removed, the 
13

C-MR spectrum looks quite different. For instance, Figure 4.2 shows the 
13

C 
spectrum of the -CH2- group in ethanol (the scale is 30 Hz/division).  

and demonstrates that the single peak from the -CH2- 
carbon (Figure 4.1) is split up in triplets of quartets. It 
can be shown theoretically (see next section) that this 
appearance of fine structure in the spectrum originates 
from an interaction between the proton spins and the 
carbon spins. This fine structure of the carbon 
resonance in methylene can be simply explained by the 
following arguments: In the methylene group  

                            Figure 4.2                          (- CH2-) there are two 
1
H-spins directly bonded to the  

                                                                       
13

C nucleus. Each of these proton spins can take two 

orientations with respect to the external field, up () or down (). For two 
1
H-spins there are 

four combinations of spin orientations: 
 

 

( and  ) 

() 
 

These different proton spin orientations generate different local magnetic fields at the 
13

C 
nucleus and give rise to a triplet peak with an intensity distribution 1:2:1. In addition, the 
methylene carbon is also coupled to three 

1
H-spins located on the methyl group (-CH3). By 

a similar reasoning, as for the coupling to two 
1
H-spins, we obtain the following four different 

spin-orientations of a three-proton-spin system: 
 

() 

( and  and ) 

( and  and ) 

() 
 
Since these four different proton spin-orientations generate different local magnetic fields at 
the metylene carbon, the latter is further split into four peaks (quartet). The conclusion is 
that when the protons are not decoupled they split the methylene carbon peak into a triplet, 
which in turn is split into a quartet.  

We can generalise these findings to what is called the “(n+1)”-rule. When a spin-1/2 
nucleus is coupled to n equivalent spin-1/2 nuclei, the resonance peak of the former is 
split up in (n+1)-peaks with an binominal intensity distribution (1:1, 1:2:1, 1:3:3:1, 
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1:4:6:4:1 for n     = 1, 2, 3, 4,….etc). The distance (Hz) between the resolved peaks 
define the coupling constant J and it is found to be independent on the external magnetic 
field strength B0.  
The above simplified spectral analysis is correct as long as the chemical shift difference 

(in Hz)  between the coupled nuclei is larger than the coupling constant J between 
them. We call such spectra “1. order spectra”.  

As already pointed out in a previous section, the “n+1”-rule is valid as long as the 

chemical shift difference  (Hz) between the nuclei is large compared to the coupling 

constant J between them, i.e., (in Hz) >> J. When (in Hz) ≈ J, the intensity 
distribution of the peaks will not be as predicted by the “n+1”-rule. The positions of the 
peaks are changed and the multiplet may contain additional peaks. The general analysis 
of MR spectra necessitates a rigorous quantum mechanica approach and is shown in 
Appendix B for a two-spin system (two interacting nuclei). 

Generally, the coupling constant J is ordered after how many chemical bonds there are 
between the coupled spins. In the above example, the coupling between the methylene 
carbon and protons is a one bond coupling of size 120 Hz. The two-bond coupling 
between the methylene carbon and the methyl proton is smaller, approximately 4 Hz. 

One may ask why we do not see a coupling between the carbon nuclei in the molecule. 
The answer is that only 1.1% of the carbon atoms (

13
C) possess a spin while the rest 

(
12

C) have no spin (I = 0). The observed carbon peaks are from the 98.9% of the ethanol 
molecules in which the neighbouring carbon nucleusis 

12
C 20.  

Moreover, why does no coupling show up between the methylene carbon and the –OH 
proton in ethanol, since the latter nucleus is also located two bonds away from the 
methylene carbon. This is due to molecular motion, i.e., the proton nucleus on the –OH 
group is hydrogen bonded to other ethanol molecule and hence may jump (or exchange) 
quickly between different sites which averages out any chemical shift difference due to 
coupling21.  

 
4.3 Molecular structure 
A typical MR-spectrum (of a liquid) consists of various peaks grouped in multiplets. 
The number of multiplets tells us how many functional groups are involved in the 
molecule. For instance, a 

1
H-decoupled 

13
C-spectrum will tell how many different 

carbon atoms there are in a molecule. If the molecule is symmetric, the spectrum will 
reveal an analogous symmetry.  
For instance, a benzene molecule consists of six carbon atoms, but because the 
molecule has six-fold symmetry the carbon atoms have the same chemical shift and 
consequently the spectrum will contain only one peak. If one of the protons is replaced 
by a Cl-atom the molecule will have mirror symmetry and the spectrum will consist of 
four peaks, two peaks of intensity “1” and two peaks of intensity “2”.  
As pointed out previously, the molecular motion may average out chemical shift 
differences. The molecular symmetry found by MR can therefore be higher than the 
real symmetry of the molecule.  

                                                 

20This is true at first sight. If the signal/noise is good small multiplets may be observed symmetrically about the main 
peaks.  

21 The jump rate depends on traces of acid present and the temperature. In pure 100 % ethanol the coupling to the H 
atom in the –OH group can be seen at room temperature. 
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The magnitude of the chemical shift depends on the molecular structure and what 
functional groups exist and where they are located in the molecule. Through the years a 
large empirical material has been collected and systematized in different ways, 
originally in form of tables and collections of typical spectra, recently in the form of 
computer databanks and data programs. This material can be used in the interpretation 
of MR-spectra of molecules with unknown structure.  

Also, the coupling constants give structural 
information, mainly how the different atoms 
or functional groups are connected together 
to form the molecule. Especially the so 
called vicinal coupling, that is a three bond 
coupling. The vicinal coupling in an ethane 
fragment (-H2C-CH2-) epends on the 
dihedral angle as shown in the graph. The 
gauche coupling (ø = 60°) is small ca 2 Hz, 
but the trans-coupling (ø = 180°) is much 
larger 9 Hz. This variation has been used  
to determine the confor-mation of molecular rings.                 Figure 4.5 

The vicinal coupling does not only depend on the 
dihedral angle, but also on the electronegativity of the substituents.             
Electronegative substituents will reduce the vicinal coupling constant so the derived 
coupling constant must be used with caution. The coupling constants have also been 
systematized and the material is accessible in various data bases.  
 

In many cases it is rather trivial to interpret MR-spectra to obtain chemical shifts and 
coupling constants, in particular regarding 1. order spectra. However, when chemical 
shift differences and coupling constants are of the same order of magnitude, the 
analysis becomes much more complex and difficult to analyze without sorting to some 
kind of simulation. Also, use of two dimensional MR may be advanegous, however, this 
is outside the scope of this course (see Claridge 1999). 
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4.4 Exercises  
 

4.1) Show that the secular determinant (Eq 4.9b) takes the form: 
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4.2) Why does the secular determinant have the above “form” or “symmetry”? 
 

4.3) From the “structure” of the secular determinant one can immediately conclude that 

the eigen-functions 2 and 3 are linear combinations of f2 and f3. Explain why.  
 

4.4) Solve the secular determinant in Exercise 4.1 and compare your results with the 
energies (Ei; i = 1-4) presented by Eq 4.9c.  
 

4.5) Calculate the expected resonance frequencies and compare with the results 
presented in Table 1.  
 

4.6) From quantum mechanical principles, the signal intensity Iij between two 

eigenstates i and j can be written: )
2221

(
2

 jxIijxIiijI  . Calculate these 

intensities when knowing that Ix| = 1/2| and Ix| = 1/2|>. Compare your 
calculations with the results presented in Table 1.  
 

4.7) Make a sketch of the proton spectra of the following structural fragments and 
explain your results (use a 1.order approximation). 
a) –CHC- b) –CH2CH- c) CH3CH2- d) CH3CH- f) -CH3.   
 

4.8) How will the 
13

C-NMR spectrum of b) and f) look like? 
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      5 NMR history 

 

5.1 The development of NMR - Nobel prizes 

How did it start? Who has contributed? Did it start in 1925 when 
two Dutch Ph.D.-students, Uhlenbeck (1900-88) and Goudsmit 
(1902-78), found fine structure in the optical spectra they studied 
and explained it by proposing that the electron is a particle with 
angular momentum and a magnetic dipole moment? Or did it start 
a year earlier when Wolfgang Pauli (1900-54) proposed that the 
atomic nuclei had angular momentum. At least it started in 1938 
when Isidore Isaac Rabi (1898-1988) used magnetic resonance to 
improve the accuracy of his measurement. He discovered 

7
Li- and 

35
Cl-NMR in LiCl-molecules in the gas phase.                                   Isidor Isaac Rabi  

 
The experiment was proposed by the Dutch C. J. Gorter (1907-
80) when he visited Rabi´s laboratory. Rabi got the Nobel Prize in 
physics  in 1944; Gorter only got acknowledged in the paper Rabi 
published.22 This is the first case of many in the history of 
magnetic resonance. Many contribute, but not more than 3 get a 
Nobel Prize.  
Furthermore it is always the boss who gets the prize not the ones 
that build the equipment and do the experiments.                               C. J. Gorter 
 
It really started in 1945 when the physicists took up basic research 
again after the Second World War. Felix Bloch (1905-83) at Stanford 
and Henry M. Purcell (1912-97) at Harvard discovered independent  
of each other magnetic resonance in a condensed phase: Bloch in 
liquid water and Purcell in paraffin wax.  They knew that Gorter had 
tried both before and during the war, but in vain. Afterwards it was 
found that the T1 of his samples was too long because his samples                                       
F. Bloch were too pure and the temperature was too low!                         Felix Bloch 
 
Bloch was not interested in magnetic resonance per se, but was 
looking for a method to measure magnetic field. He used two 
orthogonal coils and called his method nuclear induction. Due to the 
brothers Varian, who had earned money on making klystrons during 
the war, he patented his method and the brothers founded a  
company that in the early 1950-ties marketed the first commercial  
NMR spectrometers. What the company Varian continues to do.23  
Bloch published his famous’ equations in 1946.24 Purcell 
used micro waves in his first measurements. But soon after his             H.M.Purcell 
colleagues/students built spectrometers using radio equipment. 

 

                                                 

22 Rabi et al Phys. Rev. 53(1938)677. 
23 http://www.varianinc.com/cgi-bin/nav?/ The most serious competetor is Bruker-biospin http://www.bruker-biospin.de. Another is 
Jeol – a jabanese company. Most of the spectrometers presently at the institute are from Bruker, only one older from Varian. 
24 F. Bloch Phys Rev 70(1946)460 

http://www.varianinc.com/cgi-bin/nav?/
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Purcell got a Dutch Ph.D.-student, Niels Bloembergen25, and they developed a simple 
theory for magnetic relaxation known as BPP after the authors (see Figure 2.5).26   

 
The limitation in the first  
years after the discovery 
was not the electronics, but 
the magnets. They used iron 
magnets – large heavy beasts 
The problem was the 
homogeneity and stability.                  
But when fine structure in 
the spectra was discovered  
work to improve the magnet 
speeded up.                                K. Wütrich 

 
In 1948-50 fine structure due 
to dipole coupling, chemical shift, J-
coupling and quadrupole coupling 

was discovered. Erwin Hahn, Bloch’s PhD-student, built the first pulse NMR spectro-
meter also before 1950 and discovered spin echo. The pulse methods worked even if 
the homogeneity was bad!  

The graph shows the development of magnetic field 
strength since the first commercial magnets were put on 
the market in 1952 to the present. The graph is valid for 
magnets with a gap of 5 cm. Such magnets are used for 
solution NMR. Maximum field for a commercial magnet 
to day is 21 Tesla (900 MHz for 

1
H). If we extrapolate 

the straight line in the graph we can predict that the 
1000 MHz (= 1 GHz) magnet will be put on the market 
in 2008. Starting from the 200 MHz-magnet all later 
magnets are not iron magnets but a superconducting 
coil at 4 K or lower. 

The same magnet technology gives a smaller field for a 
larger gap. In solid state NMR 9 cm gap are used and the maximum field is pt 600 MHz. In 
MRI for humans the gap is much larger. Commonly a magnetic field of 1.5 T is used, but 3 
T magnets are now increasing in number. (3 T corresponds to 128 MHz for 

1
H). 

Higher fields give better sensitivity. That means that the recording time gets shorter or that 
a good enough spectrum of a smaller amount of sample may be obtained. Also the 
chemical shift gets higher so the resolution improves. However, high  
field magnets are expensive. A 900 MHz NMR-spectrometer (figure) 
costs ca 50 MNOK. There is no such instrument in Norway (but in all 
the other countries in Scandinavia). One problem with high field 
magnets is their stray fields and implies that they occupy a lot of space.  
However, shielded magnets have come available which reduces the 
required space (but increasescost). With better magnets the electronics  
became the limiting factor. Transistors replaced radio tubes, and                     R. R. Ernst 

 

                                                 

25 He was born in 1920 and got the Nobel Prize in physics in 1981 for his contribution to the development of laser spectroscopy.  
26 N. Bloembergen, E.M. Purcell and R.V. Pound  Phys Rev 73(1948)986 
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Integrated circuits were developed.                                                               
In the middle of the 1960-ties came the first Digital  computers that were cheap enough to 
be build into a spectrometer. In the 1970-ties the cw-method was replaced by the rf-pulse 
method. The man who got the honour for this was the Swiss scientist Richard Ernst (1933- 
), professor at ETH in Zürich. Before this time it was mainly 

1
H that 

was studied (at least by chemists). Due to the invention of the rf-pulse 
technique, natural abundance spectra of Both 

13
C as well as 

15
N could 

be acquired.  
Ernst also developed 2D-methods in the 1970-ties. The idea came  
From The Belgian thermodynamics Jean Jeener, although it was 
Ernst that did the development work.  
These methods made it possible to interpret increasingly more complex    
spectra of larg molecules.The Swiss scientist Kurt Wütrich (1938- ),            
professor at ETH in Zürich, received one half of the Nobel Prize in 2002      P. Lauterbur 
for his development of nuclear magnetic resonance spectroscopy for 
determining the three-dimensional structure of biological macro- 
molecules in solution. 
 
Magnetic field gradients were introduced in the 1960-ties to study 
diffusion and makes the NMR-signal dependent on position.  
Paul Lauterbur (1929- ) got the idea in 1973, i.e., that a field gradient 
can applied to image an object,  as pointed out in section 3.5. Also,  
Peter Mansfield (1933- ) had the same idea at the same time, but he 
used pulse methods. In 2003 they sheared the Nobel Prize in medicine  
for their discoveries Concerning magnetic resonance imaging.  
This is a rather short NMR history, covering more than 70 years.              Sir. P. Mansfield 

For a longer Version, see Grant, 1995. More updated information about 
the Nobel laureates can be found at http://www.nobel.se/.                                                                     
 
5.2 NMR in Norway 

The first NMR spectrometer came 
to Norway in 1960. It was a 60 MHz 
spectrometer from Varian (picture) 
placed at SI (now called Sintef-
Oslo). It came with all the extra 
equipment you could buy at that 
time and could be used for liquids 
and solids. A pulse spectrometer was also built at SI 
early in the 1960-ties. The NMR laboratory was closed 

in 1980, and the activity transferred to the 
Department of Chemistry at the University of 
Oslo. 
 

The organic chemists at the 
Department of Chemistry got the 
first NMR-spectrometer in 1965 
(Varian A-60 shown in the picture). 
A-60 has now the same status 
among NMR users as a T-Ford for 
a car enthusiast. A-60 was made 
for a mass market as the T-Ford. The A-60 was exchanged with a 100 MHz-

http://www.nobel.se/
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second spectrometer, also from Varian, came in 1970 and was a more 
advanced, and  
complex spectrometer. The first pulse spectrometer with a computer (24 k memory!) 
came in 1975 (Jeol FT-60), and the first superconducting instrument was bought in 
1981 (CPX-200 in 1981 see the picture. The magnet is still in use, but the console is 
new). In 1989 the organic chemist got a 300 MHz-spectrometer from Varian for 
solution-NMR. The great year of NMR in Norway was 1995, in which 12 new NMR 
spectrometers was bought from the German company Bruker and placed in Bergen, 
Oslo and Trondheim. Oslo got four new spectrometers, 3 for solution NMR (200, 300 
and 500 MHz) and a new 200 MHz-consol for solid state NMR. 
 
There is a Laboratory for organic NMR in the east wing wing of the Chemistry 
Department lead by Frode Rise and Dirk Petersen. They recently got a new 600 
MHz-spectrometer which is coupled to a liquid chromatograph (LC) whicn is  
denoted “LC-NMR”. In the west wing a Laboratory for physical NMR (solid state-
NMR) is located and lead by Eddy W. Hansen. Hansen is studying morphological 
properties, structure and molecular dynamics of solid polymers and also molecular 
dynamics (diffusion) of liquids in porous solids. They have one low field NMR 
instrument operating at 22 MHz (Maran Ultra from the British company Resonance). 
In addition, they have access to a 500 MHz, solid state NMR spectrometer located at 
Sintef. The two institutions A major collaboration within solid state NMR between the 
two institutions was established during 2010.  
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Appendix A. The “13-interval pulse sequence” 

When measuring the diffusivity of fluid molecules confined in porous materials the effect of 
internal gradients, eddy currents (caused by strong gradient pulses) and unwanted echoes 
(when applying more than a single rf-pulse) must be taken into account. Also, the 
observation that T2 is frequently much shorter than T1 must be considered. This calls for a 
more complex pulse sequence, the so called “13-interval pulse sequence” (Figure A1). A 
formula relating the phase angle as a function of time based on the pulse sequence shown 
in Figure A1 can be derived by implementing the same approach as discussed in the text. 
However, It is beyond the scope of this course to detail this any further. Actually, we leave 
this to the interested reader and simply present the final result, Eq A1.  

 

 

 

 

 

 

Figure. Illustration of the “13-interval pulse gradient stimulated echo sequence” using bipolar gradients with g 

representing the strength of the gradient field of duration . The timing of both rf-pulses and gradient pulses 
are illustrated aong the time axis.  
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The above equation shows that the self diffusion (D) of a pore confined fluid depends on 
the diffusion time tD and is in contrast to a bulk solution, in which D is independent on tD. 
Due to the spatially restricted diffusion of a pore confined fluid, a larger fraction of the fluid 
molecules will sense this restriction with increasing diffusion time. Hence, the effective 
diffusivity D will decrease with increasing diffusion time. For long diffusion times, D will 
approach a limiting value, corresponding to the long-range diffusivity limit. Using genera l 
physical arguments it can be shown that for short diffusion times the following equation 
applies27. 
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where 1/R0 represents the curvature of the restricting geometry and defines the surface 
relaxation strength. For even shorter diffusion times, the above equation simplifies further 
to; 
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27 P.P. Mitra, Sen, L.M. Schwartz, Phys. Rev. B, 1993, 47, 8565 
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Appendix B. A general approach to spectral analysis (two-spin system) 

As pointed out in the previous section, the “n+1”-rule is valid as long as the chemical shift 

difference  (Hz) between the nuclei is large compared to the coupling constant J 

between them, i.e., (in Hz) >> J. When (in Hz) ≈ J, the intensity distribution of the 
peaks will not be as predicted by the “n+1”-rule. The positions of the peaks are changed 
and the multiplet may contain additional peaks. Before considering some simple cases, 
we need to discuss the nomenclature.  

Spins with the same chemical shift have the same letter in the alphabet. Spins that are 
separated by small chemical shift differences have letters that are close in the alphabet. 
Some examples: A2, AB and AX. A2 and AX will give first order spectra: A2 - singlet, AX - 
two doublets. AB will give a more complex spectrum, which we will now calculate. We 
start with two spins, 1 and 2, which generate four spin-functions according to: 
 

               f1 = |> f2 = |> f3 = |>         f4 = |>            (B1) 
 

Actually, we should have written (1)(2) to identify the two nuclei 1 and 2, however, to simplify, 
the first wave function in each pair is assigned to spin 1 and the second one to spin 2). The 
Hamiltonian takes the form: 
 

 Ĥ = ĤZ + ĤJ                   (B2) 

 

By writing the operator in frequency units (Hz): 
 

             ĤZ = ν1Ī
z
1 + ν2Ī

z
2                                                    (B3) 

 

ν1 and ν2 define the chemical shift (Hz) of the two spins. The term ĤJ in Eq B2 
which defines the coupling Hamiltonian can be written: 
 

 ĤJ = J Ī
z
1 Ī

z
2 + (J/2)(Ī

+
1 Ī

-
2 + Ī

-
1 Ī

+
2)            (B4) 

 

By introducing the raising and lowering operators (i = 1 ): 

  

 Ī
+
 = Ī

x
 + iĪ

y
 Ī

-
 = Ī

x
 - iĪ

y     (B5a)   
 

  Ī
+
|> = 0, Ī

+
|> = |>, Ī

-
|> = |>, Ī

-
|> = 0    (B5b) 

 

we will look for solutions of the Schrödinger equation (
iii

Eˆ  ) of the form: 

|j> = 



 if

i

jic

4

1

 for j =1,2,3,4     (B6a) 

From the theory of linear algebra, we can find the energies (Ei) by solving 

the following “secular” determinant: 
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with 
jiij

fHfH    

The solution to Eq 4.9b (see Exercises 4.1 – 4.4): 

E1 = - V/2 + J/4 |1> = |> 

E2 = - C/2 -  J/4 |2> =  cos|> + sin|>            (B6c) 

E3 =   C/2 -  J/4 |3> = -sin|> + cos|> 

E4 =   V/2 + J/4 |4> = |> 

 

We have introduced the parameters C, V and  to simplify the equations: 

V = 1 + 2               (B6d)  

C =   22
21 J             (B6e) 

           

sin2 = J/C ( cos2 = (1 - 2)/C)                                                                          (B6f) 

 

The calculated spectrum will consist of 4 lines, symmetrically distributed about 

the mean value 1/2(1 + 2). The frequencies and intensities are given in the Table 1. 

 

                    Table 1. Frequency and relative intensity of the resonances within an AB-spin system.    

Transition (n m) Frequency (En-Em) Relative intensity 

2 1 (V - C – J)/2 (1 - sin2)/4 

4 3 (V – C + J)/2 (1 + sin2)/4 

3 1 (V + C – J)/2 (1 + sin2)/4 

4 2 (V + C + J)/2 (1 - sin2)/4 

 

We will discuss two limiting cases. 

Case 1: (1 - 2) >> J 

Then C = (1 - 2)/2 and  = 0. The spectrum 
consists of two doublets. One doublet is centred 

at 1 with a distance between the two lines equal 

to J. The other doublet is centred at 2 with the 
same distance J between the two lines. All lines 

have the same intensity when (1 - 2) >> J. The 
figure shows the calculated spectrum for J = 4 

and (1 - 2) = 3J. The  
                      Figure 4.3                         intensity of the outer lines is reduced. 
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Case 2 1 = 2 

Then C = J and  = /4The spectrum is 
then a singlet. The figure shows the 

calculated spectrum for J = 4 and (1 - 2) = 
J/2. Compared to case 1 we see that the 
outer lines disappear when the chemical 

shift (1 - 2) gets small compared to the 
coupling constant J. The distance between 
the two outer lines is J can be found  

                                                                  directly from the spectrum and reads:  
                         Figure 4.4 

 

J = (1-2) = (3-4)                                                                                                          (B7a)   

 

The value of the chemical shift can be calculated from this equation:  

(in Hz) = 


                                                                                        (B7b) 

 

To check that the four lines really belong to an AB-quartet we can test the 
assumption by calculating the intensity distribution. In an AB quartet the intensity 

ratio of the inner lines and the outer lines is (1-4) / (2-3). 
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