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Preface

This booklet is designed to serve as a Solutions Manual to the exercises presented in the
NMR course FYS-KJM4740, Part | in “MR Spectroscopy and Tomography”. The major
reason for preparing such a booklet was a sincere request from the students. Also, such an
extensive and detailed collection of solved problems is believed to be of help to students
who meet the challenging world of MR for the first time.

During this first part of this course (Part I) Hansen will (for the first time) arrange a
“colloquium” each week (2 hours) in which solution to the exercises will be discussed. A
tentative solution of the problems will be submitted to the students after each colloquium.
| have no doubt, that in spite of strenuous efforts, there remain errors of one sort or
another. | will therefore appreciate any feedback from student who discovers errors in
this solution manual (eddywh@kjemi.uio.no).

Eddy W. Hansen
UiO January 2015



Exercise 1.1

A charge g moves in a circular loop with frequency v. According to classical electromagnetic
theory, a magnetic dipole moment p is generated, given by;

u=i-A 1)
where i represents the current and A the area enclosed by the circular loop (of radius r). Hence:

_Qu-2r _qo

I=qu= ?
| 2 2t

and A=m* = y:%qwr )

From the definition of the angular momentum (L); L = r x mv, we obtain;
L = rmv'sind = rmvsin(n/2) = rmv = rm'o r = mor? (see Figure 1) 3)

mv

Combining Egs 1 and 3;

p=otl=ik 4)
m



Exercise 1.2

We start by differentiating the angular momentum L with respect to time;

d—L:g[fme]:ﬂme+TxM:meV+?x|E:0+Tx|E:% )
dt dt dt d
The symbol F represents the force and t represents the torque (dreiemoment).

From classical physics we know that a magnetic dipole moment (u) within a magnetic field Bg
experiences a torque, given by;

T=uxBy (2
From the previous exercise;

p=vyL 3)

By combining Egs 1 — 3, we obtain;

i _

e B 4)



Exercise 1.2 continue
From:

du R
d—f=7ﬂ><l3 4)

Let us choose By = Bok. Upon inserting this into Eq. 4, we obtain;

i j k
duy . duy . d . .
th|+ dty j+ gtz k=7ylux ny wuz|=yuyBoi-yuxBoj+0k (5)
0 0 Bp
Resulting in the following 3 equations:
duy
—= = B 5a
@ MyBo (5a)
— = yuyB 5b
a - “xBo (5b)
duyz
—==0 5c
at (5¢)

If multiplying Eq. 5b by i (=+/~1) and adding Eq. 5a, the following result appears;

I
W = —iy(ux +iuy)By (6)

Since we can always write a complex number pi + ipy in the form;
My +ipty = iy = 1€ ™ (= 11y COS(@4t) +i 11 SIN(0,t)) (7

We obtain, by inserting Eq.7 into Eq. 6;

d[l . - - io H i@
d_'[0 =—1Bylly < 1wy e = —1By 1€ T e @y =78y (8)

Equation 8 (right) represents the basic NMR equation, or the Larmor equation and shows that the
magnetic moment rotates clockwise around the static magnetic field By with a frequency

o (=-yBo) The component of the magnetic moment along the z-axis is constant and independent
on time (Eq. 5c¢).

-l

Hyx




Exercise 1.2 Alternative:

By combining Eqgs 5a and 5b we obtain:

2p2 dzﬂv

d?u
=—y°B =
7 Bo Hy dt?

e

z

duty
dt

+7°Boay =0 (9a)

o X
Which the characteristic equation reading;
k?+7°B; =0 < k== 1B,
implying that the general solution can be written:
1, = Ae"™ 1 Be & (9b)
where A and B are constants. By choosing the initial condition to be (see Figure):

4, (0)=0and g, (0) = u,we note that B = -A and:

) ) einOt _ e—inOt
u, = AR —e ) =2A _ = 2Aisin(jB,t) (9c)
According to Eq 5b we find:
__ L9 aicospB (9d)
Hx 1B, dt 0

Inserting the initial condition g, (0) = x,we find; z, =-2Ai
After inserting this relation into Eqs 9c and 9d we obtain the general solution:

Hy = Hqo COS(Bot) = 11, COS(—7Byt)
My = =4 SIN(YB,t) = 1, SIN(—7B,t) (10)

Hence, the motional frequency  is identified by -yBo,, showing that the vector
component o of the magnetization in the xy-plane rotates anti-clockwise, i.e, along the
negative z-axis.



Exercise 1.3
It follows that the macroscopic magnetization M?:

MI=N, <u; >+N_<p, >

z

Energy diagram

l N. (B)

AE=ho = hyB, (where we have used o = yBy in the last term)

T

From guantum mechanics:

N-(c1)

_{oloy (oo  (alljo) yafale)  yn

KTy T (o) (e} 2 (ala) 2
And
<y oo (BIIB) _(BlEmLI) _ (BILIB) __yn (BIB) _

) (BB (BB 2B 2
Hence:
M? =(N, —N_)y/2

We will tentatively assume the spin population ratio N./N.. between the two energy levels shown
in the Figure to follow a Boltzmann distribution, i.e.;

N. _ ool — 2B | exo| = B0
N _eXp[ kT} eXp[ kT} @

+

h=1.0510°*Js, k = 1.3805x10% J/K = =B, ~3.9-10"s

-34 71
[hyBo} _ 1.05-10 72;]S><3.9 10°s ~10-° <<1
kT 1.38107*°J/ K x 300K



N =exp {— hyBO} ~1-— /By (Taylor expansion)

N, KT KT
We also have:
N+ + N.=Ng (2)

Where Ny is the total number of spins (or NMR active nuclei) in the sample.

Combining Egs 1 and 2 we obtain;

T e Y )
2 1-myB,/2kT 2 2kT

The last term in Eq 3a is obtained by noting that:
1

——=1+X for X <<1
1-x

Substituting Eq 3a into Eq 2 we obtain:

N - %{1—%} (3b)

The difference in the number of spins (An) between the two energy levels is therefore:
An=N+—N_=m (3¢)
2kT

The observable, macroscopic magnetization M, for a spin-1/2 particle is thus;

(75'1)2
M, =1 An= BN
’ ‘ 4KT 0



Exercise 1.4

We can always describe a motion in a rotating frame (uvz-) of reference rather than in the
laboratory frame (xyz-). For instance, in Figure 1 we have introduced a rotating frame of
reference, which rotates with a circular frequency o around the laboratory z-axis (k).

Form classical mechanics we can describe the motion of a vector p by the equation:

dn dp

(&), G, o @

Since:

(%) -me @
dt lab °

We may combine Eqs 1 and 2 to read:

dn duj
huladll B e o - B. —
(dtjrel (dt lab CERTAEE TR

=mxB,+pxo=mx(B,+w/y)

©)

We notice that (z—tt) =0if o =-B,/y = @, which means that in a relative frame of

rel

reference which rotates with a frequency ® = o,k = —Bk around the z-axis the magnetic
dipole moment p will be in rest. Furthermore, if we write B, =B, + ®/y the magnetic

dipole moment will presess around Bess With a frequency
04 =By =B, +o=-0,+o. This implies that in the rotating frame of reference, p

will presses around the z-axis with a frequency oy, = (®—w,) in an apparent magnetic
field Ber. Hence, we may express the motion of the dipole moment i, in the rotating

frame as:
0 Aot 0 = 0 .3
o =p e = 1, COS(@gr t) + 11, SIN(Co L)



10

=S cos(m— m,)t+ip sin(w—w,)t
or:
K, = 1] Cos(® — o)t

My = },L?_Sin((,l)— (Do)t

My Hu

Intensity

1) cos(m- o)t

Time

If on resonance, i.e.; wef = 0 (w/y = — Bo = wo/y), we obtain the solution;

o =10
b, =0
This means that the magnetic dipole is located along the u-axis in the rotating frame of

reference. In this frame, the magnetic dipole remains constant and independent of
time.



Exercise 1.5

We consider the motion in the rotating frame of reference when on resonance, i.e.,
(B, —o/y)k =0. This means that:

B, = B0+ (B, —@/y)k = B + 0k

u v Kk
du, - duy, - du, - ~ ~ -
(:ltu U+ ;:V v+ ;Z K=vuy By Hz|=00+yp,BV-yBpk
B, 0 O
duy
—=0 oa
ot (5a)
d
:V =yBu,= o, (5b)
t
d
% ==YBjuy = —on, (5¢)

We can easily see that the following solution satisfies the differential equations (by insertion);

My = toSin(ep)
Hz = Hy COS(ort)

Z

UB1

The magnetic moment is rotating around the negative u-axis with frequency w; = -yB;

11



Exercise 1.6

The local oscillator signal I ., , which is generated internally in the NMR spectrometer, can

be represented by a rotating unit vector TRX of frequency w, . In complex notation we may
write:

| =€ (= cos m,t —isin mt) (@))

Likewise, the sample signal (only the real part 1 is detected) can be written in complex
notation:

1§ =21, cosat =1, +1,7 )
When mixing (multiplying) the two signals we obtain:
— 2|0 -e—mt . [eiwot +e—iw0t]: 2|0e(wofw)t + 2|0e—(w0+w)t (3)

Iobs: IRX 'IS

Since wg (MHz) = o, the high-frequency component (m, + o) is filtered out by a “low-
pass”-filter and we are left with:

I, =€ = cos((m, — w)t) +isin((e, — o)t) 4)

We notice that the signal being detected is identical to the signal in the rotating frame of
reference.



Exercise 2.1

In the rotating frame of reference (uvz):

dM /dt = M x B, — M, /T,0—M, /T,V + (M, —M,)/TK

By =B+ (B, + @/ )k = (] )T + (-, + @)/ K ()

= V+ £
dt dt dt dt
i v k ®)
=7 M, M, M, —MUU—'\_AI_VV+MO_FMZ|Z
oly 0 (o,+w)ly 2 2 !
dM,, M
at (0 —o)M, T, (3a)
dMm M
dtv =—(w-w,)M, +oM, _T_2V (3b)
dMm M,-M
L=—oM, +—2—2 3c
dt oVl T, (3c)
Casel
On resonance (® = p)
dM, _ My 3a)
dt T,
My _gm, - My (3)
dt T,
aM, =—a)1MZ+—M°_MZ (3c)
dt T,

13



Exercise 2.2

Using the last set of equations from Exercise 2.1 with m; = yB; = 0, we obtain (in the rotating
frame);

dM,, =_ﬂ (3a)
dt T,

dM,, :_& (3b)
dt T,

dMZ:MO—MZ (3¢)
dt T,

Solution with initial constraints My/(0) = My, My(0) =0 and M(0) =0

<M, = Mv(o)’eXp[_t/Tz]: Mo 'EXp[_t/Tz]

M, _ M, _ dv, _g@“”fdlvlv _ ot

dt T, M, T,  a My T,
_ M, ‘ t M,
M, MM, M8 M 1 oMy -M,] =[]
dt T M,—-M, T, MZ(O)MO—MZ o 11 0
M, =M, -[L-exp(-t/T)]
Schematics outline of the experiment.
zl (]
z z
—
Vv
v v
U {B1) u u

14



Exercise 2.3
Initial conditions. You first apply an rf-pulse (B;) such that M,(0) = -

According to Exercise 2.2, we may write;

M,

pdt

M, _Mo-M, . _dM o [ M (%o inm,-m ] ~[t/T]
dt T, M, |v| T MO M, 9T,
M, =M, [l-2exp(~t/T)]
z' 5 ,
—
v vV v
u{B) J Jd J

15



Exercise 2.4

1 2t
@) =—— €
1 1+ 0“7

We differentiate Eq. 1 with respect to . and obtain;

d@/T)  2-20°78

)
d 2
e [MZTZ}
We set Eq 2 equal to 0 and obtain;
TC Zi
w
We calculate the second derivative of 1/T; and obtain:
2 2.2
2 A7, 3—0°T
dc@/T C[ c }
f(w;7¢) = ( 21)=— 3 3)
drg [1+a)212}
f(w;7¢ =1/ @) =-w <0 (4)

From Eq. 4 we conclude that 1/T; has a maximum for z :1, Ie.
(4]

Note; When increasing the magnetic field strength (increasing ®), the minimum in T, shifts to
smaller correlation time (Eq 5), i.e., to faster motion (which is equivalent to higher temperature).

16



Exercise 2.5

Generally the FID can be written:
f (t) — e*iwot . eft/Tz

Hence, we may write:

F(o) = [ F0e™dt = [et/ g eoigt = [ 0/miengy
0 0

0

_ 1 e—t(l/Tz—i(w—wo))w _ 1

UT, —i(o - ) UT, —i(w—-a,)
3 UT, +i(@ - w,)

T, +i(0-w) LT, —i(0-a,)]

B 1/T, i o — o,
W)+ (0-0,)  UT,)? +(0-o,)?
= R(w) + il ()

where R(w) and I(w) represent the real (u-channel) and imaginary (v-channel) frequency spectra,

respectively.

1)

17



Exercise 2.6

In the rotating frame of reference we may set:

dM /dt = M x B, — M, /T,i =M, /T,V + (M, —M,)/Tk (1)

By =Byl + (B, + /v + @)k = (o, /7)U + (—0, + 0+ )/ 7k )
We consider the motion on resonance (—», + ) =0 and after the magnetization is rotated into the

v-axis, i.e., By =0.

Hence:

dM:dMUU+dMV4 dM

V+ zk
dt  dt dt dt
i Vv kK
=yM, M, MZ—MUU—MVV+M°_MZR
0 0 gz T2 T2 Tl

i v K

dM _dM, . dM, o dM, VIS MZ_MUU_MVq MO—MZRB)
dt  dt d dt 0 0 g T, T, ]
dMm,, M

=zM, - —<L 3a
m zM,, T, (3a)
dMm, M

=—zM, - —~ 3b
ot 9zZM| T, (3b)
dM, _M,-M, 30)
dt T,

Concerning the transversal magnetization, we multiply Eq. 3b with i (=v/-1) and add this to Eq. 3a
to obtain M, =M, +iM,,:

dMm,
dt

=’Ygz(l\/lv_"vlu)_l/TZ('\/lu +in):_(ing _1/T2)ML (4)

The solution to Eq 4 can be easily found:

MJ_ — Moefi}'gz'[ 'e_t/TZ — Moef(ﬂ(t) _e—I/Tz

18



where ygz represents the frequency and ©(t) = jgzt represents the phase angle which is

proportional to both z and t.

rd
M
el B
y =
i
T
M

— \4
() = ezt

19
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Exercise 2.7

Energy

Energy

=
v

z
<

=
2

Ni: Number of spins in level i
Wii: Transition probability from level 1 to j

From general rate-process analysis we may write:

d(Nid—t_Nf) =W (N, = NJ) +W, (N, = N7)
d(NTd—t_Ng) =W, (N; = N?) + W, (N, = NJ)
Which can be rewritten:

% =W, (N, = NJ)+W, (N, —N2)

% =W, (N, = N2+ W (N, =N7)
Subtracting Eq 1a from Eq 1b gives:

W = —2W,, (N; =N2)+2W, (N, —=N7)

We introduce the following parameters:

ANZNT—NJ/
AN® = N2 —N?

Inserting Eqgs 3a — 3c into Eq 2 gives:

(1a)

(1b)

(1a)

(1b)

)

(32)
(3b)
(3c)



d(AN)
dt

=-W,, (AN —AN°) +W,, (AN° — AN)

d(AN)

" = AN (W, +W )~ ANW , +W,,) (4)

Since the observed magnetization is proportional to the number of active isotopes (nuclei), we may
write Mz = KAN where K is a constant. Hence, Eq 4 can be reformulated into:

e = Wi, + W, )M — M) Q

The spin-lattice relaxation rate 1/T; is defined as the sum of the transition probabilities, i.e.;
1

T =Wy +Wps ©)

T

Inserting Eq 6 into Eq 5 gives:

dM, M, -M,
dt T,

(")

Eq 7 is identical to the corresponding Equation presented by the Bloch Equation !!!

21



Exercise 3.1

If introducing a gradient field g along any direction r in space we obtain:

. 0By . ~
Q=6Bxi yj+8sz (1)
OX oy oz
F=Xi +yj+2k )

In the following we will consider only a gradient field in the direction of the external field, i.e.,
along the z-direction. Hence,

— oB
F=0-k=z2—"2=2-goft 3
g-r=g p~ go (V) 3)

Eq 3 implicitly assumes that the field gradient 0B, / 0z is constant (= go), and hence independent
on the space-coordinates). This implies that the total magnetic field Bz along the z-axis is:

B, =Bo+2-9o(t) (42)

Hence, if on resonance, the following magnetic field appears within the rotating frame of
reference:

By =20,k (4b)

Again, within the rotating frame of reference:

u v k
M M M M M, —-M
M, 5., "\7+dMZk=yMu M, M,|l-—4i-—LV+—2—"2k +DV’M
dt dt dt T, T, T,
0 0 zg,
%:ygoz-Mv - “¢“ +DV*M, (5a)
2
a(';t/'v =79,2- M, —%Jr DV*M, (5b)
2
agt/'z =— Mz; M | pvem, (5¢)
1

Since we are interested only in the transversal magnetization (uv-plane), we will apply
a “complex-number-technique”, i.e., introducing the complex magnetization M defined by:
M =M, +iM, . After multiplying Eq 5b by the complex number i and adding Eq 5a, we obtain:

oM . - M 2 -
= ——i)ggzM —— + DV“M 6
ot 790 To ( )

22



Exercise 3.2

From Eq 7:

oM . - M 2 ~
— = IM ——+DV-M 7
ot 790 To ( )

Noting that B, may be a function of both z and t (Eq 4a) we will look for a solution in which also

M is a function of z and t and independent of x and y, i.e., M = M (z,t). This implies that
) -

V2M=8M

- If we try to find a solution of the form:
z

M(z,t) = M e " m(z,t) (8)

where the T,-term is factored out, we notice by inserting Eq 8 into Eq 7 that;

1 —t/T, = —-t/T, am H —t/T, /T, m —t/T, 82m
_fMoe m+M,e E:—WzgoMoe m-M,e f+M0e Daz_2 €)]
which simplifies to:
@——iyzg M+ D—azrﬁ (10)
ot ° 072

23



Exercise 3.3

A general solution to Eq 10 can be written as a complex function with amplitude W(t") and a phase
factor Q(z,t"), i.e.;

m(z,t") = ¥(t')-Qz,t") (11)
where:
Qz,t) = exp{— iﬂtjgo (t")dt'} (12)

.
As can be easily seen the term 6 = {— iyzj d, (t")dt'} represents the phase angle with Q(z,t")
0

having modulus 1 (Eq 13)_

t' t'
abﬁgxziﬁ)=fXLF)4f(LF)=eﬂ{}1ﬂ019df7dfﬂ'9@{ﬂf9Af7df}=l (13)
0 0
Noting that:
om o0 oY . , Yor _ ) , 1 0¥
_.:\PE_'_QE:LPQ'[_U/ZQO(I" )]+Q$ at’ :m-|:—ly2g0(t)+gﬁ} (14a)
om o0 o ]
oy 2y - t'")dt" 14b
= ~ _wkd) | (14b)
o’m 00 [t T v ’
peail S :‘PQ-_—I;/J;gO(t )dt | :m{—ly.([go(t )dt} (14c)

We obtain the following simple Eq for ¥ when substituting Eqs 14a) —) into Eq 10:

2

1 dy | v ?
- = D — t" dt" :_D 2 tll dtn
¥ i {IQ%() | yu%() }
diny f T
:_D 2 tll dtll 15

P(t) = exp[ Dyzjﬁgo(t")dt'} dt}

24



Additional 1

Let us consider the phase term Q(z,t") (see Eq 12 in Exercise 4) of the magnetization;
.

Oz,t') = exp{—iyz | goa")dt'} (1)
0

After the gradient pulse has been on for a time t, the phase angle 0 at position z, can be
written:

0() = 72, 9, (")t @

This means that the magnetization m can be written;
M="¥(r)-Q(z,7) = ¥(r) - ep[-i6(z)] 3)
What happens to the phase when applying a n-pulse (rf-pulse) along the x-axis?

G

0
n
' TIME
0 T
A\
AN
Figure 1A
Since go (= 6B,/62) is a constant, the phase angle &(z) equals:
0(r)=7gozjdt=;g021 (4)
0

The question is now, what will be the phase angle 0(t+) just after the w-pulse?

The angle will be 8(z+) = —6(7) . Hence, the effect of a n-pulse (regarding the change in phase
angle) is the same as changing the sign of the gradient pulse, i.e., changingg=Goto g =—Gg. In
short, we may consider the following analogous situation (Figure 1B):

25



LA,
NIVANDY

Figure 1B

One question remains, how can we express the phase angle 6 as a function of time when
considering the pulse-gradient scheme in Figure 1B?

8 =Gol'

Figure 1C

.
Figure a) shows how the phase angle € = ;/I g,(t")dt" changes with time t” and reveals a
0

discontinuity in © at t” = t because of the n-pulse.

26



Additional 2

Obijective: We consider a one-dimensional diffusion process along the x-axis. Show that the root-
means-squares distance (rms) <x2> traversed during the diffusion time t equals 2Dt where D is the

diffusivity C(x,t) represents the concentration of the species at time t and position X, respectively. The
function C(x,t) can be solved by the Fick diffusion equation:

2
&L D5S
X X

The solution to Eq 1 depends on the initial time- and spatial constraints on C. For free diffusion we
may write:

C
C(x,t) = —>—exp(—x*/4Dt 1
(x,t) mXD( ) 1)
Show that:

ijC(x,t)dx
_ 0

()=

— = 2Dt @)
[cextax
0

Solution:

Note that we may write Eq 2 according to:

Ixz exp(—x? /4Dt)dx
_ 0

(x*)=

©)

J'exp(—x2 / 4Dt)
0

If we start with the following integral:
1(t) = [exp(—x*/4Dt)dx

0
and use partial integration technique, i.e.:

u'=1 S u=X
v=exp(—x*/4Dt) < V' = (-2x/4ADt)exp(—x* / 4Dt)

27
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We may write:

00

[1-exp(—x* 14Dt)dx =[ = xexp(-x* / 4Dt); — (~1/2Dt) [ x° exp(~x" / 4Dt)dx
0 0 0

Hence :

[exp(-=x*14Dt)dx = 0+ (1/ 2Dt) [ X° exp(—x” )dx
0 0

As can be easily seen, Eq 4 can be written:

Hence : 1

sz exp(.x?/ 4Dt)
0 = 2Dt

Iexp(—x2 / 4Dt)dx
0

ged

(4)



Chapter 4. Some introductory remarks and comments

From basic quantum mechanics one may show that for a nucleus of spin I, a number of (21+1)
different spin functions exist. These functions are simply denoted:

[ILm>form=-I,-1+1,.,0,...1-1,1

In particular, for | =% (1H, 13C, 31P, 19F,. ..) we have only two spin functions denoted,
respectively:

|lo>=11/2,1/2> and |B>=1/2, -1/2>
Again, from basic quantum mechanics the following operator properties may be defined

L|o> = 1/2|a> L|B>= -1/2|p> (3.1a)

It is frequently useful to apply the so called shift operators, or the “raising” (I*) and “lowering”

(1) operators, respectively:

=1 m) =10 +)—mm=D) 2|1, m+1)

Hence:

I *la)=1"|1/21/2)=0 1| B)=17(1/2-1/12) =1-{1/21/2) = a)

I ~|er) =17]1/21/2) =11/ 2-1/ 2)=(p) 17| 8)=0

We define:

|‘X:1/2[|++|—} |‘y=—i/2[|+—|—}

Hence;
Ljo> = 1/2|p> Lip>= 1/2jo> (3.1b)
Llo> = i/2|p> LIB>= -il2Ja> (3.1¢)

What is the classical energy (E) of two interacting magnetic dipoles (ua and pg) in a magnetic
field Boy?

E=-za-Bo-/iB-Bo—fiA- /iR

29



The corresponding quantum mechanical energy operator H is:

H =yl ;aBg — 7l ;8B — 7l 22 -1 18
——wohi g5 —wohi 8 —72h% 1,0 T8 (ergs)
=—valza-vBlza -JaBlza 128 (H2)

The “constant” Jag is denoted the coupling constant.

Uttrykker produktet av spinnoperatorene I og Iz ved operatorene 1" og I”:

(N :[|><A'+|YAJ+|zAk]'[|x3'+|vBJ+|sz]

IAA ’ IAB = IAXAIAXB + IAYAIYB + IAZAIZB

TP V2 [P by RS P S [ I (P P P P P

R PR V[ i Y e Y (VY Y e O K A P o S el W Y O
Dy Ty =1/2[05 Ty + 05 05 |+ Tpule

In short, we may write the Hamiltonian for a two-spin system as:

A A A A

A= 0, — v T + 30 12| T+ 0515 4 3 Toal e



Exercise 4.1

The spin-functions |a> and |3> are defined as orthonormal eigenfunctions of the z component of
the spin operator I, (see Eq 3.1) and satisfy the following equations:

[{a(X)|e(X))dz = [ aadr = [(B(X)| B(X))dz = [ pAdr =1 (3.1a)
[{a(X)] B(X))dT =[apdr = [(B(X)||a(X))dr = [ Badr =0 (3.1b)

X refers to the actual nucleus in question. For a two-spin system (X = A, B) we may define 4
product functions @;(i=1-4);

|01) =|a(A)a(B)) =|aa) (3.2a)
|©2) =|a(A)B(B)) =| ) (3.2b)
|©3) =| B(Aa(B)) =| fa) (3.2c)
|©4)=| B(ANB(B)) =| BB) (3.2d)
Since these spin-functions (@) are orthonormal (see Eq 3.1), we may construct a set of
orthonormal eigenfunctions (¥; ), defined as a linear combination of ©;, i.e.;
|'P1) =C11/@1) +C12|©2)+C13|©3)+C14]©4) (3.3a)
|W2)=C21|01)+C22|©2)+C23|©3)+C24|O4) (3.3b)
|¥3)=C31|®1)+C32|©2)+C33|©3)+C34|O4) (3.3¢)
|\¥4)=Ca1|©1)+Ca2|©2)+Ca3|©3) +Ca4|04) (3.3d)

Since these equations are eigen-functions to the Hamiltonian, the following equations must be
valid for each i (=1 —4):

H|wj)=E|¥i)
=Ci1ﬁ|®1>+Ci21:I|®2>+Ci3f{|®3>+Ci4f{|®4> (3.4)

=ECj1|©1)+ECj2|©2)+ECj3|©3)+ECjs|O4)

We multiply by (e j | and integrate over the entire spin space:
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[ <®j‘ﬁ|‘{’i>dr:EJ<®j"‘I’i>
)
| Cil<®j ‘ﬁ|®1>dr+j Ci2<®j ‘ﬁ|®2>dr+Ci3j <®j ‘ﬁ|®3>dr+Ci4j <®j ‘I:I|®4>dr
=ECj1 [ <®j ‘|®1>dr+ Ef Ci2<®j ‘|®2>dr+ ECi3j<®j ‘|®3>dr+ ECi4j<®j ‘|®4>dz’
g
CitH j1+Ci2H j2 +CizH j3 +CigH ja
=ECj10j1+ECj26j2 +ECj36j3 +ECjsdja

For j = 1 to 4, the following set of linear equations arise:

CitH11+Cj2H12 +Cij3H13+CijgH14 =ECjp
CitH21 +Cj2H22 +CjgH23 +CijsH24 = ECj2

(3.4)
CitH31+Cj2H32 +Cj3gH33 +CigH34 = ECj3
CitH41+Ci2H42 +Cij3H43 +CjgH44 = ECjy
Eq 3.4 can be formulated in matrix notation, i.e.;
Hi1-E  Hi2 H13 H14 Ci1
- H Hoo-E H H Ci
H.Go0w 21 22 23 24 | |Ci2|_, (3.5)

H31 H32  H33-E Hzg Ci3
Ha1 Ha2 Ha3 Ha4-E)\Cig

A non-trivial solution (C =0) to Eq 3.5 exists only and only if the determinant of H is
identical to O, i.e.:

Hi1-E  Hi2 H13 H14
H21 H22-E  Hp3 H24
H31 H32 H33-E Hz
Ha1 Ha2 Hg3 Hg4-E

~0 (3.6)

Which is equivalent to Eq 27.

We will not calculate all the terms Hpq (we leave this to the student!) but we illustrate how

this can be performed (see Exersice 3.0):

I:I|®1> =—UAfZA|®1>—VB : fZB|®l>+JAB /Z[IAX Ag+In- IAE}|®1>+JAB fZAfZB|®1>
Hla(A)a(B)) = -val,|a(Aa(B))-vp - IzB|a(Aa(B))+

JAB /zfX 1B|a(Aa(B))+Ipag /21 A- f§|a(A)a(B)>+JAB fZAfZB|a(A)a(B)>



ﬁ| a(A)a(B)) = —%uAa(B)| a(A)) —%VB -a(A)| a(B))+

J J 1 1
%n-m(s)w%mm»ow/xs-5|a<A)>-5|a<B)>

H|®1)=(-va/2-vp 2+ /4)¢1) = E1|O1), (3.7a)
Likewise:
H©2)=(-val2+vB/2-Ipg /4] ©2)+J AR /2)O3) (3.7b)
HlO3)=(val2-vp/2-JaB 4)]03)+IaB /2)|O2) (3.7¢)
I:I|®4>=(UA/2+VB/2+JAB/4)|®4>:E4|®4>4 (3.7d)

We easily see that H12 = H21 :0, H13 = H31 = 0, H14 = H41 = 0, H42 = H24 = 0, H43 = H34 =0
because j.<®1||®2>dr:j<®1||®3>dr=j<®1||®4>drzj<®2||®4>dz’zj<®3 ||®4>dz':0
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Exercise 4.2
Because two of the spin-functions (®; and ®,) are eigenfunctions while ®, og ®3 are not.



Exercise 4.3
If we consider the total z-component of our spin-operator (two-spin system AB), as defined by:

we notice that:

F7|©1)=17a|01)+1;8|01)
=za|a(A)a(B))+ ;8] a(A)a(B))
=1/ 2| a(A)a(B))+1/ 2| a(A)a(B))
=1-|a(A)a(B))

:1.|@1>

F2102)=177|02)+1,8|02)
=1 2n| (A B(B))+ 18| a(R)B(B))
=1/2/a(A)B(B))-1/2|a(A) B(B))
=0-|a(A)B(B)).
=0|02)

Ifz|®3> = sz| 03)+ sz|®3>
=12a| (A (B))+ 28| B(A)a(B))
=-1/2| B(A)B(B))+1/ 2 B(A)a(B))
=0-|B(A)a(B))
:0.|@3>

F;1©4)=17a|04)+1;8|04)
=12 B(R)B(B))+ 18| B(A)B(B))
=-1/2| B(A)B(B))-1/2| B(A) B(B))
=-1-| B(A)B(B))
=-1]04)

This means that the eigenvalues F, of the operator F, are the same for the two spin-functions
®and @3, implying that a linear combination of these two functions will define the actual
eigenfunction
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Exercise 4.4

Two find the two remaining energies, we must solve the matrix equation:

(sz—E H23 NCQJ:O
H32  H33-E)(Ci3

A non-trivial solution exists if and only if the secular determinant is 0, i.e.:

‘sz—E H23‘
H32  H33-E

Using Egs. 7a-d, we can calculate Hj, i.e.:

A 1 1 1 1 1
Hoz = (02 |H|®3>:<®2|H‘(EVA—EVB —ZJAB)|®3>+§JAB|®2>>ZEJAB

Likewise, we derive the following results:

1 1
Hop =——(va-vB)——J
22 2( A-VB) 2 ) AB

1 1
H3z3=>(vA-vB)->JA
33=5(vA-vB)-,IAB

Inserting Egs. 3.9a—c into Eq 3.8 gives:

E JAB 1 [.2 2

(3.8)

(3.92)

(3.9b)

(3.9¢)

(3.10)



Exercise 4.5
If introducing the following short hand notations:

V=vpa+vB

C:\/‘],ZAB +(UA—UB)2

we obtain from Exercises 3.1 and 3.4 the following energy level diagrams:

Table 1. Energy levels and corresponding “allowed” transitions

Level Energy Fz | Transition | Wave function
1 VI+J4 |1 |[* * |¥1> = ay|0:>
2 Cl2-J14 o |* ** [Wo> = 8,1|@,> + ap)|03>
3 -Cl2-d14 |0 T W = ay|0,> + a3)|03>
4 NPR2+IA |1 T W = a0

Hence, the following transition may be easily derived:

AE1,,=E;-E;= (V—C +J)/2
AEB1,3=E; —E3= (V+ C +J)/2
AEos=E,—Es= (V—C +J)/2
AE3_>4 = E3—E4 = (V—C -J)/Z
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Exercise 4.6

In order to determine the eigenfunctions (Table 1) we must determine the constants ajj
(Table 1). This can be easily performed by noting that these functions are orthonormal,
i.e.

[(¥i[wj)dr=sij (=1 if i=j, =0 if iz])
One may easily show that this results in the following equations (show this!)

|\P1> = |®1>
|¥2> = c0s6|®,> + Sinb|®3>
|¥3> = -sinb|®,> + c0sH|O3>
V4> = |©4>

Vi skal bestemme intensitetet (overgangssannsynligheten) In=.1 — m=0 mellom niva 3 og 4
0g benytter resultatet fra kvantemekanikken;

It om0 = (_[ Vi1 lrf +1° },szod 7)?

Vi beregner forst;

[Py =1%(cos@-a(A)S(B)+1sing- S(A)a(B))
=cos@- B(B)I “a(A)+sind-a(B)I*B(A)

=cosd- B(B)B(A)—sind-a(B)-0

=cosd- B(B)B(A)

Tilsvarende finner vi for;

1By, =18(cos@-a(A)SB(B)+1°sing- S(A)a(B))
=cos@-a(A)EB(A)+sind- (A Ea(B)
=cos@-a(A)-0-sind- B(A)- S(B)

= —sin B(A)A(B)

Innsatt i farste likning;

Lo 1 smeo = (I V- lff\ + IZB }//m=0d2')2

= ([ B(A)B(B)-[cos 0 - B(B) B(A) —sin O(A) B(B) Hi7)?
= (cos6[ B(A) B(AYd7, - [ B(B)B(B)d7, —sin 8 B(A)A(A)dz, - | B(B)A(B)dz,)?
= (cos @ —sinh)? = cos? O — 2sinHcos @ +sin’ @
=1-sin(20)



Exercise 4.7 and 4.8

a)

Frequency

d)

i

Frequency

b)

Il

1

)

ane:n:qmezn::'_n.«r

Frequency

Frequency

39



Miscellaneous 1

In the rotating frame of reference (uvz):

dM /dt = M x B, — M, /T,i =M, /T,V + (M, —M,)/Tk

B, = B+ (B, + @/ )k = (1 y)i + (—a, + ®) ] K

= +—=k
dt dt dt dt
i v k
=7 M, M, M, —'\guu—'\?VwMOT‘MZE
oly 0 (-o,+w)ly 2 2 !
dM,, M
= (@ - w,)M, — =2 3a
pm (0 —@)M, T, (3a)
dMm M
dtv =—(w-w,)M, + oM, —T—ZV (3b)
dMm M,-M
L=—oM, +—2—2 3c
dt oVl T, (3c)
Case 1
On resonance (® = p)
dM,, :_ﬂ (3a)
dt T,
dM, M
=oM ——L 3b
dt 0)1 z T2 ( )
dm -M
L=—oM, +—° z (3c)

dt T,

)

@)



Miscellaneous 2
Rf-pulses — bandwidth and all that

Fourier transform F(w) of a rectangular pulse f(t) in the time domain.

(1)
A
FT F(o)
ly -t =227/t
AN N AN
NV / \ / V4
T »Time Frequency (\;v)
t /12 t /2
F(w) = jf(t) e'dt = jlo el dt + jl e'“dt (E1)

~t, /2 ~ty /2

By substituting u = -t (du = —dt) in the first integral on the right side of Eq E1 we obtain:

0 tp/2
F@)==[l,-e"*du+ [I,-e“dt
t,/2 0

t,/2 t,/2

= IIO o7 du + .|'I0 -e'dt
0 0

t,12 t,/2
= Ilo-e““’tdt+ J'Io-e‘”"dt
0 0 (E2)

t, /2 i ty/2 t, /z[elwt +e ,wt] t, /2
=1, j e"‘"+_[ e |dt =21, j =21, | coswtt
0

:zﬁsin[a)t] o
w
| sin[a)tp /2]

° wl2

The function on the right of the last equation is denoted a sinc-function and is plotted on the
Figure. We note that the first null-point of the F(m) appears at o = 2n/t,. If we apply a 90%-pulse
(t, = teo) we must have: Rotation angle = @, -ty, = Bity, =7/2 < B, =7/(2- Ay,)
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Miscellaneous 3

I\/IO Ml I\/In I\/|n+1 I\/Im

M,cos06 ' I A/\L
T —
AVAYS -

M, represents the magnetization along the z-axis after (n+1) rf-pulses. We will assume that
T, << T;1. Hence, according to the Bloch equation we may write:

M, -M
|n 0 n+l - (1)
M,-M_ cosd T,
M., =M;—(M;-M_ cos@)exp(.—7/T,)

M.,.=M,1-exp(-7/T))+M cos@-exp(-7/T,)

By setting a=(1—exp(—z/T,))and b=cos@-exp(—z/T,) we can write:

M,.=aM, +bM_ )

n+1
Eq 2 is a recursion formula leading to:

M=aM, +bM, =(a+b)M,
M, =aM, +bM, =M, (a+ab+b?)
M, =aM +bM, = M (a+ab+ab” +b*)

We realize the following general expression:
M., =M,(a+ab+ab®+...+ab" +b"")

3
M., =aM (@+b+b®+..+b")+Mb"?) 3)

From simple algebra we find (by noting that b < 1):
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bn+l _1) B 1_bn+l

1+b+b2+...+b“=( =

Hence:

Mn+l = Mo(

Since b < 0, we may always find an n such that both b"and b"*"are close to 0, i.e.,

M

Note, Eq 6is identical to Eq 2 when setting M ,, =M

M= aMo((1+b+b2 +.ont+b")+ |\/|0b”+1)

n+l
M Nl — aMo :L]_L

-m. 2

n+l

n+2
al-b"") |
1-Db

“1-b

M.=aM, +bMss

M

a
=——M
SS 1—b 0

b-1 1-b

+ Mobn+1

)

1-exp(—7/T)

®1—cos@-exp(—/T,)

Concerning Eq 4, we note that by setting

S, =1+b+b*+..+b"

and
bS, =b+b*+...+b""
we obtain :

S, —bs, =1-b"

S

n

B 1_bn+l
1-b

n

=M

ss !

i.e.,

(4)

()

(6)

(7)
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Miscellaneous 4

Problem (litt vanskelig)

Mn flip Mn +1
ot —
4 4
Mn IVII']H

After performing the same experiment n times with a time delay © between each experiment the
longitudinal magnetization and the transverse magnetization have become Mr:' and Mnl,

respectively (see Figure). After applying an rf-pulse, the magnetization components are rotated
(flipped) around the negative x-axis (pointed into the paper plane) by an angle 6. Calculate the
transverse and longitudinal magnetization component after a time t has elapsed?

What are the steady-state magnetization components?

Solution

An initial equilibrium magnetization M(;' along the z-axis (same direction as B,) is rotated an

angle 6 (along the x-axis) and then left for a time t before again being flipped an angle 6 along
the x-axis. After n such sequences of rotation/waiting we denote the longitudinal magnetization

component by M r:' and the transversal magnetization component by M -, respectively. After the
next (n + 1) rotations or flips, we write:

MM =M cos@—M,sind (1a)

M- =M " sin@+M, cosd (1b)

1
n+l

After leaving these magnetizations for a time t they will relax toward M, and M ., according to:

M, M,-M, M dM’ _jdt
MO_M;

MI'III‘ﬂIp
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i Mo-Mpy 7
MO _Mr:l,fllp Tl

Mo —M", =[M, —=M" ™ |exo(—z/T,) =M, =M /" cos 0+ M * sinOlexp (7 /T,)
M! =M, -M,exp(-z/T,)+M, cos@exp(—z/T,)— M, sin@exp(—7/T,) (2a)

Likewise, for the transversal magnetization we may write:

M, _ M, MM, fdt

dt T, ie M, 3T,
In M nl+1 — _i
M L, flip T
n+1 2
M, =M ™exp(—z/T,) =M. sin@exp(—z/T,) + M, cos@exp(—/T,) (2b)

After a few rotations/waiting periods we obtain a steady state situation in which:

ML =M =M
and (3
My, =M; =M

Eq 3 inserted into Eqgs 2a and 2b gives:

ML =M,-M,exp(-/T,)+ M cos@exp(-z/T,)-M_Lsinfexp(-z/T,)
) (4a)
M, -M,exp(-7/T,)-M_sinfexp (- /T,)
1-cos@exp(—z/T,)

M”:

Mg =ML sin@exp(~z/T,)+ M cos@exp(—7/T,)
l (4b)

ML =M sinfexp(—7/T,)
* *1-cos@exp(—7/T,)

There are some interesting situations to be discussed from Eqs 4a and 4b.

A) If6=mn/2
Mg =M exp(—z/T,) (5a)
Hence:
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Ma =M, ~M,exp(~z/T,) - M2 exp(~c(L/T, +1/T,))
" 1-exp(-7/T,) (5b)

S rexp(—r /T, +1/T,))

B) Ifo=n
Ms =0 (6a)
MS'; — M (6b)

*1+exp(—7/T)

C) t/T,>> 1 (this is the same as T, is very short (applying a spoiler pulse)) and leads to:
sindexp(—z/T,)

MLi=M" ~
* * 1-cos@exp(~7/T,)
Hence:
M =M, 1-exp(—7/T)) oM, :1—c030exp(—r/T1) M (7a)
1-cos@exp(—z/T)) 1-exp(—7/T))
fo=n2< ML =M,1l-exp(-7/T,)) (7b)
fO=ne Msll: M (7¢)

“1+ep(-7/T)



