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Preface 
 

This booklet is designed to serve as a Solutions Manual to the exercises presented in the 

NMR course FYS-KJM4740, Part I in “MR Spectroscopy and Tomography”. The major 

reason for preparing such a booklet was a sincere request from the students. Also, such an 

extensive and detailed collection of solved problems is believed to be of help to students 

who meet the challenging world of MR for the first time.  

 

During this first part of this course (Part I) Hansen will (for the first time) arrange a 

“colloquium” each week (2 hours) in which solution to the exercises will be discussed. A 

tentative solution of the problems will be submitted to the students after each colloquium. 

I have no doubt, that in spite of strenuous efforts, there remain errors of one sort or 

another. I will therefore appreciate any feedback from student who discovers errors in 

this solution manual (eddÿwh@kjemi.uio.no). 

 

Eddy W. Hansen   

UiO January 2015 
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Exercise 1.1 
 

A charge q moves in a circular loop with frequency . According to classical electromagnetic 

theory, a magnetic dipole moment  is generated, given by;  

 

Ai          (1) 

 

where i represents the current and A the area enclosed by the circular loop (of radius r). Hence: 
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From the definition of the angular momentum (L); L = r x mv, we obtain;  

 

L = r
.
mv

.
sin = rmvsin(/2) = rmv = rm

.
 r = mr

2
 (see Figure 1    



 
 

Combining Eqs 1 and 3;  
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Exercise 1.2  
 

We start by differentiating the angular momentum L with respect to time; 
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The symbol F represents the force and  represents the torque (dreiemoment).  

 

From classical physics we know that a magnetic dipole moment () within a magnetic field B0 

experiences a torque, given by; 

 

 =  x B0          (2) 

 

From the previous exercise; 

 

 L           (3) 

 

 

By combining Eqs 1 – 3, we obtain; 
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Exercise 1.2 continue 
From: 

 

B
dt
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          (4) 

 

Let us choose B0 = B0k. Upon inserting this into Eq. 4, we obtain; 
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Resulting in the following 3 equations: 
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If multiplying Eq. 5b by i ( 1 ) and adding Eq. 5a, the following result appears; 
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)(

Byixi
dt
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        (6) 

 

Since we can always write a complex number x + iy in the form; 

 

))sin()cos(( 000000
0 titei
ti
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     (7) 

 

We obtain, by inserting Eq.7 into Eq. 6; 

00000000
0 00 BeBieiBi

dt

d titi 
 






     (8) 

 

Equation 8 (right) represents the basic NMR equation, or the Larmor equation and shows that the 

magnetic moment rotates clockwise around the static magnetic field B0 with a frequency 

(=-B0) The component of the magnetic moment along the z-axis is constant and independent 

on time (Eq. 5c). 
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Exercise 1.2 Alternative: 

 

By combining Eqs 5a and 5b we obtain: 
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  (9a) 

 
Which the characteristic equation reading; 

 

0

2
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22 0 BikBk    

 

implying that the general solution can be written: 

 
tBitBi

Y BeAe 00  
         (9b) 

 

where A and B are constants. By choosing the initial condition to be (see Figure): 

 

0)0( Y and 0)0(  X we note that B = -A and: 
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According to Eq 5b we find: 
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1
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d
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         (9d) 

 

Inserting the initial condition 0)0(  X we find; Ai20   

After inserting this relation into Eqs 9c and 9d we obtain the general solution: 

 

)sin()sin(

)cos()cos(

0000

0000

tBtB
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       (10) 

Hence, the motional frequency  is identified by -B0, showing that the vector 

component 0 of the magnetization in the xy-plane rotates anti-clockwise, i.e, along the 

negative z-axis. 

z 

x 

y 

0 



 

 7 

Exercise 1.3  
 

It follows that the macroscopic magnetization 0

zM : 

 

 

 

 
 

From quantum mechanics: 
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Hence: 
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We will tentatively assume the spin population ratio N-/N+ between the two energy levels shown 

in the Figure to follow a Boltzmann distribution, i.e.; 
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(Taylor expansion) 

 

We also have: 

 

N+ + N-= N0          (2) 

 

Where N0 is the total number of spins (or NMR active nuclei) in the sample. 

 

Combining Eqs 1 and 2 we obtain; 
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The last term in Eq 3a is obtained by noting that: 

11
1
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xforx
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Substituting Eq 3a into Eq 2 we obtain: 
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N
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         (3b) 

The difference in the number of spins (n) between the two energy levels is therefore: 

kT2

NB
NNn 00

          (3c) 

The observable, macroscopic magnetization Mz for a spin-1/2 particle is thus; 
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Exercise 1.4 
 

We can always describe a motion in a rotating frame (uvz-) of reference rather than in the 

laboratory frame (xyz-). For instance, in Figure 1 we have introduced a rotating frame of 

reference, which rotates with a circular frequency  around the laboratory z-axis (k).  

 
 

Form classical mechanics we can describe the motion of a vector  by the equation: 

 

μω
μμ
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d

dt

d
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Since:  
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We may combine Eqs 1 and 2 to read: 
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      (3) 

 

We notice that 0)
dt

d
( rel 



if 00 / ωBω   which means that in a relative frame of 

reference which rotates with a frequency kkω 00 B around the z-axis the magnetic 

dipole moment  will be in rest. Furthermore, if we write /0 ωBB eff  the magnetic 

dipole moment will presess around Beff with a frequency 

ωωωBBω  00 effeff . This implies that in the rotating frame of reference,  

will presses around the z-axis with a frequency )( 0eff  in an apparent magnetic 

field Beff. Hence, we may express the motion of the dipole moment  in the rotating 

frame as:  
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0

eff

0ti0 eff  



   

x 

 

                                    

 

y 

 

                                    

 u 

 

                                    

 

v 

 

                                    

 


 

                                    

 



 

 10 

t)sin(it)cos( 0
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If on resonance, i.e.; eff = 0 ( B0 = ), we obtain the solution; 

 

0u

0
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This means that the magnetic dipole is located along the u-axis in the rotating frame of 

reference. In this frame, the magnetic dipole remains constant and independent of 

time. 
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Exercise 1.5 
 

We consider the motion in the rotating frame of reference when on resonance, i.e., 

0k)/B( 0 


. This means that: 

kuBkBueff
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We can easily see that the following solution satisfies the differential equations (by insertion); 
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The magnetic moment is rotating around the negative u-axis with frequency 1 = -B1 
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Exercise 1.6 
 

The local oscillator signal RXI , which is generated internally in the NMR spectrometer, can 

be represented by a rotating unit vector RXI


  of frequency 0 . In complex notation we may 

write: 

 

)sincos( 00
0 titeI
t

RX 



       (1) 

 

Likewise, the sample signal (only the real part R

SI is detected) can be written in complex 

notation: 
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When mixing (multiplying) the two signals we obtain: 
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Since 0 (MHz) ≈ , the high-frequency component (+ ) is filtered out by a “low-

pass”-filter and we are left with: 
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)( 0 titeI
t
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     (4) 

 
We notice that the signal being detected is identical to the signal in the rotating frame of 

reference. 
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Exercise 2.1 
 

In the rotating frame of reference (uvz): 

 

kTMMvTMuTMBMdtMd ZVUeff
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On resonance ( = 0) 
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Exercise 2.2 
 

Using the last set of equations from Exercise 2.1 with 1 = B1 = 0, we obtain (in the rotating 

frame); 
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Solution with initial constraints MV(0) = M0, MU(0) = 0 and Mz(0) = 0 
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Schematics outline of the experiment. 
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Exercise 2.3 
 

Initial conditions. You first apply an rf-pulse (B1) such that Mz(0) = - M0.  

 

According to Exercise 2.2, we may write; 
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Exercise 2.4 
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 We differentiate Eq. 1 with respect to c and obtain; 
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We set Eq 2 equal to 0 and obtain; 
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We calculate the second derivative of 1/T1 and obtain:  
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From Eq. 4 we conclude that 1/T1 has a maximum for



1

c , i.e. 

 

Note; When increasing the magnetic field strength (increasing ), the minimum in T1 shifts to 

smaller correlation time (Eq 5), i.e., to faster motion (which is equivalent to higher temperature).  
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Exercise 2.5 
 

Generally the FID can be written: 

 
20 /

)(
Ttti

eetf





         (1) 
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where R() and I() represent the real (u-channel) and imaginary (v-channel) frequency  spectra, 

respectively.  
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Exercise 2.6 
 

In the rotating frame of reference we may set: 

kTMMvTMuTMBMdtMd ZVUeff
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     (2) 

 

We consider the motion on resonance 0)( 0   and after the magnetization is rotated into the 

v-axis, i.e., B1 = 0.  

 

Hence:                                 
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Concerning the transversal magnetization, we multiply Eq. 3b with i (= )1  and add this to Eq. 3a 

to obtain VU iMMM  : 
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The solution to Eq 4 can be easily found: 
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where gz represents the frequency and gztt  )( represents the phase angle which is 

proportional to both z and t. 
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Exercise 2.7 
  

 
 

 

 

 

From general rate-process analysis we may write: 
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)( 00
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dt
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      (1a) 
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      (1b) 

 

Which can be rewritten: 
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dN
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dt

dN
      (1b) 

Subtracting Eq 1a from Eq 1b gives: 
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We introduce the following parameters: 

 

  NNN           (3a) 

00


 NNNNN         (3b) 

000


 NNN           (3c) 

 

Inserting Eqs 3a – 3c into Eq 2 gives: 

Energy 

N

Energy

N W





W

Ni: Number of spins in level i 

Wij: Transition probability from level I to j 
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Since the observed magnetization is proportional to the number of active isotopes (nuclei), we may 

write MZ = kN where k is a constant. Hence, Eq 4 can be reformulated into: 

 

 

))(( 0 z
z MMWW
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       (5) 

 

The spin-lattice relaxation rate 1/T1 is defined as the sum of the transition probabilities, i.e.; 
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1
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Inserting Eq 6 into Eq 5 gives: 
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Eq 7 is identical to the corresponding Equation presented by the Bloch Equation !!! 
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Exercise 3.1  
 

If introducing a gradient field g


along any direction r


in space we obtain: 

k
z

B
j

y

B
i

x

B
g zyx
















         (1) 

kzjyixr


           (2) 

 

In the following we will consider only a gradient field in the direction of the external field, i.e., 

along the z-direction. Hence, 
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       (3) 

 

Eq 3 implicitly assumes that the field gradient zBz  / is constant (= g0), and hence independent  

on the space-coordinates). This implies that the total magnetic field BZ along the z-axis is: 

  

)(00 tgzBBz           (4a)  

Hence, if on resonance, the following magnetic field appears within the rotating frame of 

reference: 
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Again, within the rotating frame of reference: 
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Since we are interested only in the transversal magnetization (uv-plane), we will apply  

a “complex-number-technique”, i.e., introducing the complex magnetization M̂ defined by: 

vu iMMM 


. After multiplying Eq 5b by the complex number i and adding Eq 5a, we obtain: 
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Exercise 3.2  
 

From Eq 7:  
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         (7) 

 

Noting that Bz may be a function of both z and t (Eq 4a) we will look for a solution in which also  

M̂ is a function of z and t and independent of x and y, i.e., ).,(ˆˆ tzMM   This implies that 
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. If we try to find a solution of the form: 
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where the T2-term is factored out, we notice by inserting Eq 8 into Eq 7 that; 
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which simplifies to: 
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Exercise 3.3  
 

A general solution to Eq 10 can be written as a complex function with amplitude )(t and a phase 

factor )',( tz , i.e.;  

 

 )',()'(),( tzttzm 


        (11) 

 

where: 
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We obtain the following simple Eq for  when substituting Eqs 14a) –c) into Eq 10: 
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Additional 1 
 

Let us consider the phase term )',( tz (see Eq 12 in Exercise 4) of the magnetization; 

 









 

'

0

'')''(exp)',(

t

o dttgzitz                 (1) 

 

After the gradient pulse has been on for a time the phase angle  at position z0 can be  

written: 

 

  




0

00 '')''()( dttgz       (2) 

 

This means that the magnetization m


 can be written; 

  

   )(exp)(),()(  izm 


    (3) 

 

What happens to the phase when applying a -pulse (rf-pulse) along the x-axis? 

 

 
               Figure 1A 

 

Since g0 (= Bz/z) is a constant, the phase angle )(  equals: 

 

   




0

00)( zgdtzg       (4) 

 

The question is now, what will be the phase angle  just after the -pulse? 

The angle will be )()(   . Hence, the effect of a -pulse (regarding the change in phase 

angle) is the same as changing the sign of the gradient pulse, i.e., changing g = G0 to g = – G0. In 

short, we may consider the following analogous situation (Figure 1B): 

 



 

 26 

 
                   Figure 1B 

One question remains, how can we express the phase angle  as a function of time when 

considering the pulse-gradient scheme in Figure 1B? 

 

 

 
                      Figure 1C 

 

Figure a) shows how the phase angle 

'

0

0 '')''(

t

dttg  changes with time t´ and reveals a 

discontinuity in  at t´ =  because of the -pulse.  
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Additional 2 
 

Objective: We consider a one-dimensional diffusion process along the x-axis. Show that the root-

means-squares distance (rms) 2x  traversed during the diffusion time t equals 2Dt where D is the 

diffusivity C(x,t) represents the concentration of the species at time t and position x, respectively. The 

function C(x,t) can be solved by the Fick diffusion equation: 

 

2

2

x

C
D

t

C








             

 

The solution to Eq 1 depends on the initial time- and spatial constraints on C. For free diffusion we 

may write: 

 

)4/exp(
4

),( 20 Dtx
Dt

C
txC 


       (1) 

 

Show that: 

 Dt

dxtxC

dxtxCx

x 2

),(

),(

0

0

2

2 








        (2) 

 

 

Solution: 

 

Note that we may write Eq 2 according to: 

 














0

2

0

22

2

)4/exp(

)4/exp(

Dtx

dxDtxx

x          (3) 

 

If we start with the following integral: 





0

2 )4/exp()( dxDtxtI  

and use partial integration technique, i.e.: 

 

)4/exp()4/2()4/exp(

1

22 DtxDtxvDtxv

xuu
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We may write: 

 

 

dxxxDtdxDtx

Hence

dxDtxxDtDtxxdxDtx



 



 









0

22

0

2

0 0

22

0

2

0

2

)exp()2/1(0)4/exp(

:

)4/exp()2/1()4/exp()4/exp(1

  (4) 

 

As can be easily seen, Eq 4 can be written: 

 

Dt

dxDtx

Dtxx

Hence

2

)4/exp(

)4/exp(.

:

0

2

0

22










 1 

 

qed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 29 

Chapter 4. Some introductory remarks and comments 
 

From basic quantum mechanics one may show that for a nucleus of spin I, a number of (2I+1) 

different spin functions exist. These functions are simply denoted: 

 

|I,m> for m = -I, -I + 1, .., 0, … I – 1, I 

 

In particular, for I = ½ (
1
H, 

13
C, 

31
P, 

19
F,…) we have only two spin functions denoted, 

respectively: 

 

|> = |1/2,1/2>    and  |> = |1/2, -1/2>  

 

Again, from basic quantum mechanics the following operator properties may be defined 

  

Īz|> = 1/2|>    Īz|> =  –1/2|>             (3.1a) 

 

It is frequently useful to apply the so called shift operators, or the “raising” )ˆ( I and “lowering” 

)ˆ( I operators, respectively: 

 

 

Hence:  

 

 

We define: 

 

Hence; 

 

Īx|> = 1/2|>                           Īx|> =    1/2|>                                    (3.1b) 

            Īy|> =  i/2|>                                     Īx|> =   -i/2|>                                              (3.1c) 

 

 

What is the classical energy (E) of two interacting magnetic dipoles (A and B) in a magnetic 

field B0? 

 

 BABBBAE 

 00  

  

 

 





 





  IIiyIIIxI 2/ˆ2/1ˆ

  1,2/1)1()1(,ˆ  mImmIImII

  2/1,2/112/1,2/1ˆˆ02/1,2/1ˆˆ IIII

    0ˆ2/1,2/112/1,2/1ˆˆ   III
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The corresponding quantum mechanical energy operator H is: 

 

 

)(ˆˆˆˆ

)(ˆˆ22ˆ
0

ˆ
0

ˆˆ
0

ˆ
0

ˆˆ

HzzBIzAIABJzBIBzAIA

ergszBIzAIzBIzAI

zBIzAIBzBIBzAI

















 

 

The “constant” JAB is denoted the coupling constant. 

 

 

Uttrykker produktet av spinnoperatorene IA og IB ved operatorene I
+
 og I

-
: 

 

 In short, we may write the Hamiltonian for a two-spin system as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   kIjIiIkIjIiIII ZBYBXBZAYAXABA
ˆˆˆˆˆˆˆˆ 

ZBZAYBYAXBXABA IIIIIIII ˆˆˆˆˆˆˆˆ 

        ZBZABBAABBAABA IIIIIIIIIIII ˆˆˆˆˆˆ4/1ˆˆˆˆ4/1ˆˆ  

  ZBZABABABABABABABABABA IIIIIIIIIIIIIIIIIIII ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ4/1ˆˆ  

  ZBZABABABA IIIIIIII ˆˆˆˆˆˆ2/1ˆˆ  

  ZBZAABBABAABZBBZAA IIJIIIIJII ˆˆˆˆˆˆ2/ˆˆˆ  
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Exercise 4.1 
 

The spin-functions |> and |> are defined as orthonormal eigenfunctions of the z component of 

the spin operator Iz (see Eq 3.1) and satisfy the following equations: 

 

    1)()()()(  ddXXddXX       (3.1a) 

    0)()()()(  ddXXddXX      (3.1b) 

 

X refers to the actual nucleus in question. For a two-spin system (X = A, B) we may define 4 

product functions )41(  ii ; 

 

  )()(1 BA         (3.2a) 

  )()(2 BA         (3.2b)  

  )()(3 BA         (3.2c) 

  )()(4 BA         (3.2d) 

 

Since these spin-functions )( i are orthonormal (see Eq 3.1), we may construct a set of 

orthonormal eigenfunctions ( i ), defined as a linear combination of i , i.e.;  

 

4143132121111  CCCC        (3.3a) 

4243232221212  CCCC      (3.3b) 

4343332321313  CCCC      (3.3c) 

4443432421414  CCCC      (3.3d) 

 

Since these equations are eigen-functions to the Hamiltonian, the following equations must be 

valid for each i (=1 – 4): 

 

  

44332211

4
ˆ

43
ˆ

32
ˆ

21
ˆ

1

ˆ







iECiECiECiEC

iCiCiCiC

iEi

     (3.4) 

 

We multiply by j  and integrate over the entire spin space:  
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44332211

44332211

44332211

4
ˆ

43
ˆ

32
ˆ

21
ˆ

1

ˆ

jiECjiECjiECjiEC

jHiCjHiCjHiCjHiC

djiECdjiECdjiCEdjiEC

djiCdjiCdjiCdjiC

ijEdij





























 

 

For j = 1 to 4, the following set of linear equations arise: 

 

4444433422411

3344333322311

2244233222211

1144133122111

iECHiCHiCHiCHiC

iECHiCHiCHiCHiC

iECHiCHiCHiCHiC

iECHiCHiCHiCHiC









      (3.4) 

 

Eq 3.4 can be formulated in matrix notation, i.e.;  

 

  

0

4

3

2

1

44434241

34333231

24232221

14131211

0ˆ 





















































iC

iC

iC

iC

EHHHH

HEHHH

HHEHH

HHHEH

CH


    (3.5) 

 

A non-trivial solution )0( C


 to Eq 3.5 exists only and only if the determinant of Ĥ  is 

identical to 0, i.e.: 

 

0

44434241

34333231

24232221

14131211































EHHHH

HEHHH

HHEHH

HHHEH

      (3.6) 

 

Which is equivalent to Eq 27. 

 

We will not calculate all the terms Hpq (we leave this to the student!) but we illustrate how 

this can be performed (see Exersice 3.0): 

 

1
ˆˆ

1
ˆˆˆˆ2/1

ˆ
1

ˆ
1

ˆ 




 

ZB
I

ZA
IABJ

B
IAIBI

A
IABJZBIBZA

IA 

)()(ˆˆ)()(ˆˆ2/)()(ˆˆ2/

)()(ˆ)()(ˆ)()(ˆ

BA
ZB

I
ZA

IABJBA
B

IAIABJBABI
A

IABJ

BAZBIBBA
ZA

IABA
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Likewise:  

 

 

We easily see that H12 = H21 =0, H13 = H31 = 0,  H14 = H41  = 0,  H42 = H24  = 0, H43 = H34  = 0 

because   04342413121  ddddd  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)7.3(
1111)4/2/2/(1

ˆ aEABJBA  

)7.3(3)2/2)4/2/2/(2
ˆ bABJABJBA  

)7.3(2)2/3)4/2/2/(3
ˆ cABJABJBA  

)7.3(
4444)4/2/2/(4

ˆ dEABJBA  

)(
2

1
)(

2

1
0)(

2
)(0

2

)()(
2

1
)()(

2

1
)()(ˆ

BAABJAABJ
BABJ

BABABABA
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Exercise 4.2 
Because two of the spin-functions (1 and 4) are eigenfunctions while 2 og 3 are not. 
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Exercise 4.3 

 
If we consider the total z-component of our spin-operator (two-spin system AB), as defined by: 

 

zBIzAIzF ˆˆˆ           (3.7) 

 

 we notice that: 

 

 

41

)()(1

)()(2/1)()(2/1

)()(ˆ)()(ˆ

4
ˆ

4
ˆ

4
ˆ

30

)()(0

)()(2/1)()(2/1

)()(ˆ)()(ˆ

3
ˆ

3
ˆ

3
ˆ

20

.)()(0

)()(2/1)()(2/1

)()(ˆ)()(ˆ

2
ˆ

2
ˆ

2
ˆ

11

)()(1

)()(2/1)()(2/1

)()(ˆ)()(ˆ

1
ˆ

1
ˆ

1
ˆ









































BA

BABA

BAzBIBAzAI

zBIzAIzF

BA

BABA

BAzBIBAzAI

zBIzAIzF

BA

BABA

BAzBIBAzAI

zBIzAIzF

BA

BABA

BAzBIBAzAI

zBIzAIzF

























 

 

 

This means that the eigenvalues Fz of the operator zF̂ are the same for the two spin-functions 

2 and 3 , implying that a linear combination of these two functions will define the actual 

eigenfunction  
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Exercise 4.4 
 

Two find the two remaining energies, we must solve the matrix equation: 

  

0
3

2

3332

2322






















iC

iC

EHH

HEH
 

 

A non-trivial solution exists if and only if the secular determinant is 0, i.e.: 

 

0
3332

2322






EHH

HEH
        (3.8) 

 

Using Eqs. 7a-d, we can calculate Hij, i.e.: 

 

ABJABJABJBAHHH
2

1
2

2

1
3)

4

1

2

1

2

1
(ˆ

23
ˆ

223     (3.9a) 

Likewise, we derive the following results: 

 

ABJBAH
4

1
)(

2

1
22           (3.9b) 

ABJBAH
4

1
)(

2

1
33           (3.9c) 

 

 Inserting Eqs. 3.9a–c into Eq 3.8 gives: 

 

 
2)(2

2

1

4
3

2)(2

2

1

4
2

BAAB
JABJ

E

BAAB
JABJ

E









      (3.10) 
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Exercise 4.5 

 

If introducing the following short hand notations: 

 

2)(2
BAAB

JC

BAV









 

 

we obtain from Exercises 3.1 and 3.4 the following energy level diagrams: 

 

Table 1. Energy levels and corresponding “allowed” transitions 

Level Energy Fz Transition Wave function 

1 V/2 + J/4  -1 *   * 

*   *   * 

     *   *   * 

          *   * 

|1> = a11|1> 

2 C/2-J/4 0 |2> = a21|2> + a22|3> 

3 -C/2-J/4 0 |3> = a31|2> + a32|3> 

4 -V/2+J/4 1 |4> = a44|4>  

 

 

Hence, the following transition may be easily derived: 

   

E12 = E1 – E2 = (V – C + J)/2 

E13 = E1 – E3 = (V + C + J)/2 

E24 = E2 – E4 = (V – C + J)/2 

E34 = E3 – E4 = (V – C - J)/2 
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Exercise 4.6 

 

In order to determine the eigenfunctions (Table 1) we must determine the constants aij 

(Table 1). This can be easily performed by noting that these functions are orthonormal, 

i.e.: 

 

  )0,1( jiifjiifijdji   

 

One may easily show that this results in the following equations (show this!) 

 

|1> = |1> 

|2> =  cos|2> + sin|3>  

|3> = -sin|2> + cos|3> 

|4> = |4> 

 

Vi skal bestemme intensitetet (overgangssannsynligheten) Im=-1  m= 0 mellom nivå 3 og 4 

og benytter resultatet fra kvantemekanikken;  

 

 

Vi beregner først; 

 

Tilsvarende finner vi for;   

Innsatt i første likning; 

 

  2

0101 )ˆˆ(    dIII m

BA

mmm

)()(cos

0)(sin)()(cos

)(ˆ)(sin)(ˆ)(cos

))()(sinˆ)()((cosˆˆ
0

AB

BAB

AIBAIB

BAIBAII

AA

AA

m

A





















)()(sin

)()(sin0)(cos

)(ˆ)(sin)(ˆ)(cos

))()(sinˆ)()((cosˆˆ
0

BA

BAA

BIAAIA

BAIBAII

BB

BB

m

B





















 
 

)2sin(1

sincossin2cos)sin(cos

))()()()(sin)()()()((cos

))()(sin)()(cos)()((

)ˆˆ(

222

2

2

2

0101





















  



 

BABA

m

BA

mmm

dBBdAAdBBdAA

dBAABBA

dIII
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Exercise 4.7 and 4.8 
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Miscellaneous 1 

 

 

In the rotating frame of reference (uvz): 

 

kTMMvTMuTMBMdtMd ZVUeff


1022 /)(///    

 

kukBuBBeff


 /)()/()/( 0101                 (2) 

 

 

k
T

MM
v

T

M
u

T

M
MMM

kvu

k
dt

dM
v

dt

dM
u

dt

dM

dt

Md

zVU
ZVU

zVU








1

0

22

01 /)(0/














   (3)  

 

 

)3(M

)3()(

)3()(

1

0
V1

2

10

2

0

c
T

MM

dt

dM

b
T

M
MM

dt

dM

a
T

M
M

dt

dM

zz

V
zU

V

U
V

U














 

 

Case 1 

On resonance ( = 0) 

 

)3(

)3(
M

)3(

1

0
1

2

V
1

2

c
T

MM
M

dt

dM

b
T

M
dt

dM

a
T

M

dt

dM

z
z

z

z
V

UU
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Miscellaneous 2 
 

Rf-pulses – bandwidth and all that 

 

Fourier transform F() of a rectangular pulse f(t) in the time domain. 

Frequency (w)

pt/2 

F( )

 

 


2/

0

0

0

2/

0

2/

2/

)()(

p

p

p

p

t

ti

t

ti

t

t

ti dteIdteIdtetfF       (E1)   

By substituting u = -t (du = –dt) in the first integral on the right side of Eq E1 we obtain: 

 

 
 

 

 
2/

2/sin

sin
2

cos2
2

2

)(

0

2/

0

0

2/

0

0

2/

0

0

2/

0

2/

0

0

2/

0

0

2/

0

0

2/

0

0

2/

0

0

2/

0

0

0

2/

0





















p

t

tt titit t

titi

t

ti

t

ti

t

ti

t

ui

t

ti

t

ui

t
I

t
I

dttI
ee

IdteeI

dteIdteI

dteIdueI

dteIdueIF

p

ppp p

pp

pp

p

p






























 
















   (E2) 

 

The function on the right of the last equation is denoted a sinc-function and is plotted on the 

Figure. We note that the first null-point of the F() appears at  = 2/tp. If we apply a 90
0
-pulse 

(tp = t90) we must have: )2/(2/ 901901901 tBtBtangleRotation    

Time 

tp/2 -tp/2 0 

I0 

FT 

f(t) 
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Miscellaneous  3 
 

 
Mn represents the magnetization along the z-axis after (n+1) rf-pulses. We will assume that 

T2 << T1. Hence, according to the Bloch equation we may write: 

 

)/exp(cos))/exp(1(

)/exp(.)cos(

cos
ln

1101

1001

10

10

10cos 0

1

0

1

TMTMM

TMMMM

T

t

MM

MM

T

dt

MM

dM

T

MM

dt

dM

nn

nn

n

n

M

M z

z

zz

n

n



































      (1) 

 

By setting )/exp(cos))/exp(1( 11 TbandTa    we can write: 

 

nn bMaMM  01          (2) 

 

Eq 2 is a recursion formula leading to: 

 

)(

)(

)(

32

023

2

0102

0001

bababaMbMaMM

babaMbMaMM

MbabMaMM







 

 

We realize the following general expression: 

))....1((

).....(

1

0

2

01

12

01













nn

n

nn

n

bMbbbaMM

babababaMM
      (3) 

 

From simple algebra we find (by noting that b < 1): 

M1 Mn Mn+1 Mm 



 
Mncos 

M0 
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b

b

b

b
bbb

nn
n













1

1

1

)1(
...1

11
2        (4) 

 

Hence: 

 

)
1

)1(
(

1

1

))....1((

1
2

01

1

0

1

01

1

0

2

01





























n
n

n

n
n

n

nn

n

b
b

ba
MM

bM
b

b
aMM

bMbbbaMM

      (5) 

 

 

Since b < 0, we may always find an n such that both nb and 1nb are close to 0, i.e., 

 

)/exp(cos1

)/exp(1

1 1

1
001

T

T
M

b

a
MM n











       (6) 

 

Note, Eq 6is identical to Eq 2 when setting ssnn MMM 1 , i.e., 

0

0

1
M

b

a
M

bMssaMM

ss

ss






 

 

 

Concerning Eq 4, we note that by setting  

 

b

b
S

bbSS

obtainwe

bbbbS

and

bbbS

n

n

n

nn

n

n

n

n


















1

1

1
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....

...1

1

1

12

2

         (7) 
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Miscellaneous 4 
 
Problem (litt vanskelig) 

 

After performing the same experiment n times with a time delay  between each experiment the 

longitudinal magnetization and the transverse magnetization have become II

nM and 

nM , 

respectively (see Figure). After applying an rf-pulse, the magnetization components are rotated 

(flipped) around the negative x-axis (pointed into the paper plane) by an angle . Calculate the 

transverse and longitudinal magnetization component after a time  has elapsed? 

What are the steady-state magnetization components? 

 

Solution 

An initial equilibrium magnetization
IIM 0  along the z-axis (same direction as B0) is rotated an 

angle  (along the x-axis) and then left for a time  before again being flipped an angle along 

the x-axis. After n such sequences of rotation/waiting we denote the longitudinal magnetization 

component by
II

nM and the transversal magnetization component by


nM , respectively. After the 

next (n + 1) rotations or flips, we write:  

 sincos,  n

II

n

flipII

n MMM         (1a) 

 cossin,   n

II

n

flip

n MMM         (1b) 

After leaving these magnetizations for a time  they will relax toward
II

nM 1 and


1nM according to: 

 






 

0 1

'

0

'

1

0
1

, T

dt

MM

dM

T

MM

dt

dM
II
n

flipII
n

M

M z

ZZ  
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1

,

0

10ln
TMM

MM
flipII

n

II

n 





   

    )/exp(sincos)/exp( 101

,

010 TMMMTMMMM n

II

n

flipII

n

II

n   

   

)/exp(sin)/exp(cos)/exp( 111001 TMTMTMMM n

II

n

II

n   

   (2a) 

Likewise, for the transversal magnetization we may write:  

 

2

,

1

1

0 2

'

2

ln

1

,
1

TM

M

T

dt

M

dM

T

M

dt

dM

flip

n

n

M

M

n

flipI
n



























  

)/exp(cos)/exp(sin)/exp( 222

,

11 TMTMTMM n

II

n

flip

nn   





    (2b) 

After a few rotations/waiting periods we obtain a steady state situation in which:  











ssnn

II
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II

n

II

n

MMM
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MMM

1

1

          (3) 

Eq 3 inserted into Eqs 2a and 2b gives: 

)/exp(cos1

)/exp(sin)/exp(

)/exp(sin)/exp(cos)/exp(

1

1100

11100

T

TMTMM
M

TMTMTMMM

ssII

ss

ss
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ss

II

ss


















    (4a) 

)/exp(cos1

)/exp(sin

)/exp(cos)/exp(sin

2

2

22

T

T
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TMTMM

II

ssss

ss

II

ssss


















        (4b) 

There are some interesting situations to be discussed from Eqs 4a and 4b. 

A) If  = /2  

)/exp( 2TMM II

ssss           (5a) 

Hence: 
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))/1/1(exp(1
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))/1/1(exp()/exp(

21

1
0

21100

TT

T
MM

TTMTMMM

II

SS

II

ss

II

ss














    (5b) 

B) If  =  

0

ssM           (6a) 
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)/exp(1
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T
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         (6b) 

C) t/T2 >> 1 (this is the same as T2 is very short (applying a spoiler pulse)) and leads to: 

0
)/exp(cos1

)/exp(sin

2
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T

T
MM II

ssss



 

Hence: 
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If  = /2  ))/exp(1( 10 TMM II

ss         (7b) 

If  =   
)/exp(1

)/exp(1
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