Chapter 4

Motion in one dimension

As a professional physicist you will be expected to be able to determine how things
move: What is the path of a proton through a curved particle accelerator? What
is the motion of a passenger in a car during a collision? How does a blood cell
move through the micro-capillaries in your body? Professionally and privately,
you will be expected to be able to solve any such problem your friends or your
employer may come up with. How can you pull it off?

Fortunately, there is a simple method to determine the motion of an object.
Objects move due to the forces acting on them. As soon as you have figured
out what forces are acting on them, and you have found a model that predicts
the magnitude and direction of the force during the motion, you can find the
acceleration of the object. From the acceleration you can determine the motion
of the object given its starting position and velocity. You will work through this
procedure repeatedly over the next chapters, gradually filling in all the concepts
with meaning, until it becomes a natural part of your way of thinking.

In this chapter we concentrate on developing our intuition of motion, on finding
methods to formulate mathematical equations that determine the motion, and on
developing analytical and numerical methods to solve the equations of motion.

You will learn to describe the motion of an object by its position as a function
of time. We introduce the velocity and the acceleration of an object, which are
the first and second time-derivatives of the position of the object. We also show
how to find expressions for the motion from the velocity or acceleration — finding
the equations of motion for the object.

4.1 Description of motion

In a fantastic race in the 100m finals of the 2008 Olympic Games in Beijing, Usain
Bolt set a new world record of 9.69 seconds. He even took the time to celebrate
his victory over the last 20 meters of the race. But did this affect his winning
time? Could he have run even faster?

In order to answer such a question, we need a quantitative description of the
race. We already know something: He ran 100 meters in 9.69 seconds. But we
want more detail — a finer resolution of the motion. We want to know where he
was at any intermediate time from he started until he finished the race.

Motion diagram

The first few seconds of the race are illustrated by the four pictures in figure 4.1.
How can we describe the motion of Usain Bolt in lane four? One method is to
define his position by the front of his chest. For each image, we draw a dot on the
ground directly below his chest, resulting in a sequence of dots along lane four.
We can now describe the race by measuring the distance, x, from the starting line
to each dot — giving us a sequence of positions, x;, at times t;, for i = 0,1,2,...:

i 0 1 2 3 4 5 6

ti 0.0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s
z; 00m 34m 11.Im 21.3m 33.2m 45.8m 57.9m
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Figure 4.1: (Top) Pictures from the 100m final in the 2008 Olympic Games in Beijing,
showing the position of the runners during the first three seconds. The dots in the 3s
image illustrate the position of the runner in lane 4 after 0s, 1s, 2s, and 3s. (Bottom)
The position x(t;) of the runner is shown at 1s and 0.5s intervals. Displacments Ax are
drawn in blue.

We plot a point at the position z; along the z-axis to illustrate the motion in a
motion diagram (figure 4.1):

A motion diagram illustrates the motion by a sequence of positions x; at
subsequent times ¢; for i = 0,1, 2, ..., preferrably at times t; = tg+1At, where
At is the time interval.

Position and time

From figure 4.1 we see that the runner is at x(0s) = 0.0m when ¢t = 0s and at
x(3s) = 21.3m when ¢ = 3s. Even though we have only measured the position
at discrete times t;, we expect the position of the runner to vary continuously
with time, as illustrated by the plot of x(¢) in figure 4.2. This is indeed how we
characterize motion:

The motion of an object is described by the position, z(¢), as a function of
time, ¢, measured in a given reference system.
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Figure 4.2: A plot of the position x as a function of time for Usain Bolt. The circles
along the curve show the position at time intervals of 1s, corresponding to the positions
in the motion diagram. The correspondence between the two representations of the mo-
tion is shown by inserting a rotated motion diagram to the right of the plot. (Inset) A
magnification of x(t). The average velocities at t = 1s for time intervals At = 1s and
At = 0.5s are illustrated by the slopes of the red and green lines respectively. The in-
stantaneous velocity is illustrated by the slope of the dotted blue line, which corresponds
to the slope of the tangent to the curve at t = 1s.

Reference system and origin

We have chosen to measure the position z along the running lane. We call this
direction the z-axis. The position z is measured from the starting line, which we
call the origin — the point where x is zero. The choice of an origin and an axis is
called a reference system. The axis has a direction which tells us in what direction
x is increasing — this is indicated by the arrow on the axis. For the race the axis
is directed from the starting line toward the finishing line, so that the position of
the runner increases during the race.

You are free to choose the axes and the origin of your reference system as you
like, but we usually try to choose so that measurements become simple, as we have
done here.

4.1.1 Velocity

The motion diagram in figure 4.1 visualizes the change in position over a time
interval At. The change in position from time ¢ = 1s to t = 2s is:

x(2s) — z(1s) = 11.1m — 3.4m = 7.7m (4.1)

We call this change the displacement, Az (1s):

The displacement Az(t;) over the time interval from ¢ = t; to t = t; + At is
defined as:
Az(th) = z(t1 + At) — x(t1) . (4.2)

The displacement is read directly from the motion diagram as the length of the
line from x(1s) to 2:(2s). The displacement has a direction — it is the displacment
from x(t;) to x(t; + At) — and it is therefore drawn as an arrow in figure 4.1.

The first few displacements in figure 4.1 are increasing. This means that he
is running faster. But how fast he is running? This cannot be described by
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displacement alone, because the displacements become smaller when we decrease
the time interval as shown in figure 4.1. It is the displacement per time that
describes how fast he is running:

The average velocity from ¢t = t; to t = t; + At is:

ooy w(t A —a(ty)  Ax(t)
o) = =R = A

The average velocity has units meters per second, m/s.

The average velocities for the runner in figure 4.1 at t = 1s and ¢ = 2s over the
time interval At = 1s are:

_ 7.7m

o(1s) o = 7.7Tm/s , (4.4)
5(2s) = % —10.2m /s, (4.5)

However, if we calculate the average velocity from the bottom-most diagram in
figure 4.1, the time interval is At = 0.5s, and the velocities are:

3.5m

o(1s) = 05 = 7.0m/s , (4.6)
0(2s) = % =9.8m/s, (4.7)

We see that the average velocities depend on the time interval At! We can un-
derstand this from the inset in figure 4.2. First, we notice that we can read the
average velocity 0(1s) directly from the curve, z(t), as the slope of the curve from
the point x(1s) to the point x(1s + At). From the figure, we see that ¥ changes
slightly as we change the time interval from At = 1s to At = 0.5s because the
function z(t) is curving. However, we also see that when the time interval At be-
comes smaller and smaller, the average velocity approaches a specific value given
as the slope of the curve in the point t = 1s. We call the velocity in this limit the
instantaneous velocity at the time ¢, v(¢):

The instantaneous velocity is defined as as the time derivative of the
position:
z(t+ At) — x(t dx
o(t) = lim (t+ A1) ® _

e St S 4.
At—0 At dt ( 8)

In the following, whenever we use the term velocity, we will mean the instanta-
neous velocity.

Notation for time derivatives

Notice that the notation /() for the derivative that you may be used to from
calculus, is not commonly used in physics. This is avoid confusion with z’, which
is often used to represent a length in a coordinate system called the “marked”
coordinate system. The notation z'(t) can therefore be ambiguous: it may be
interpreted as either the position 2’ as a function of time, or as the time derivative
of the position z. Instead, we denote the time derivative of a quantity by the
placing a dot over it. The velocity is therefore therefore often written as:

A (4.9)

u(t) = e

Anders Malthe-Sgrenssen (2013)
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Figure 4.3: A plot of the position x(t), velocity, v(t), and acceleration, a(t), as a
function of time for Usain Bolt.

Visualizing the velocity v(t)

The velocity v(t) represents the slope of the curve, z(¢). In many cases it may be
useful to visualize the motion by looking at both the plot of x(¢) and the plot of
v(t), as shown in figure 4.3. In this case, it is evident that the velocity is changing
throughout the motion. Initially, the velocity is increasing as the runner sprints
out from the starting line. In the middle of the race the velocity is approximately
constant, while at the end of the race, the runner is slowing down, and the velocity
is dropping.

4.1.2 Acceleration

The velocity may also vary throughout the motion. From figure 4.3 we see that the
runner starts at rest and increases his velocity with time. Just as we introduced the
velocity to characterize the rate of change of position, we introduce the acceleration
to characterize the rate of change of the velocity:

The average acceleration over a time interval At from ¢ to ¢ + At is:

a(t) = W . (4.10)

The instantaneous acceleration is the limit of the average acceleration when the
time interval approaches zero:

The instantaneous acceleration is defined as:

a(t) = lim w:@

— . 411
ArS0 At at "’ (4.11)

When we use the term acceleration we mean the instantaneous acceleration.

The acceleration can be found as the slope of the v(t) curve. Figure 4.3 shows
a plot of a(t) together with both position x(t) and velocity v(¢). Notice that the
acceleration curve is “noisy” and consists of clear steps. This is not a physical
effect, but rather an effect of how the data was gathered and interpolated. Real
data often have noise from various sources — so you should expect noisy curves
when you look at real systems. (You can learn more about how this data was
measured in boltdatabox).

Anders Malthe-Sgrenssen (2013)
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Figure 4.4: Motion diagram for Usain Bolt. The top figure shows the velocities at time
intervals of 1s. The displacements are interpreted as velocities. The top figure shows how
the change in velocity at t = 2s is constructed from the velocity at t = 1s and the velocity
at t = 2s. The resulting difference, Av(2s) is interpreted as the average acceleration.
The bottom figure shows the accelerations estimated from the motion diagram.

Because the velocity is given as the time derivative of the position x(t), we can
also write the acceleration as the time derivative of the position z(t) by inserting
equation 4.9 into equation 4.11:

B dv ddr d*z

a(t) = B dd - dE (4.12)
Using the dot-notation, we can write this as:
a(t) = o(t) = @(t) (4.13)
or in shorthand
a=0=2=. (4.14)

Interpretation of motion diagrams

It is often difficult to obtain a good intuition for acceleration, in particular for two-
and three-dimensional motions, but sometimes also for one-dimensional motions.
Experience shows that motion diagrams are useful tools for developing a good
intuition for accelerations — this is why we include them here.

As long as all the time intervals in a motion diagram are identical, the dis-
placements in the motion diagram may be interpreted as average velocities. In
figure 4.4 the displacements and therefore the average velocities, are initially in-
creasing, until at ¢ = 4s they are approximately constant. The change in average
velocity from ¢ = 1s to £ = 2s is:

Av(1s) = v(2s) — v(1s) = bm/s (4.15)
We introduce the average acceleration as:

Av

X (4.16)

a=
The average acceleration can be constructed geometrically from the motion dia-

gram by subtracting two subsequent (average) velocities in the diagram, as illus-
trated in figure 4.4.
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Example 4.1: Motion of a falling tennis ball

This example demonstrates how we can find the velocity and
acceleration from the motion diagram of a falling tennis ball,
both by hand calculation, using Matlab, and from a mathemati-
cal model of the motion.

Motion diagram

The motion of a falling tennis ball were captured with a digital
camera. The first few images were combined into one picture as
shown in figure 4.5. From the sequence of images, we measure
the vertical position of the ball by comparing the height of the
center of the ball to the ruler seen in the images. The positions
are shown in table 4.1.

i t; Yi Ay; V; a;
1 00s 1.60m -0.05m -0.5m/s
2 0l1s 1.55m -0.15m -1.5m/s -10.0 m/s?
3 02s 140m -024m -24m/s -9.0 m/s2
4 03s 116m -034m -34m/s -10.0m/s?
5 04s 08m -043m -43m/s -9.0m/s?
6 05s 039m
Table 4.1: Table with calculated values.
—
/@ yim]
0.0s (0.0s)
@ 0.1s
15 Y0.15) a(0.1s)
Q) 025
a(0.2s)
v(0.2s)
® o b
immﬁ) a(0.3s)
1.0 | w03y
w(0.25)
@ 045 @eoe-
a(0.4s)
v(0.4s)
0.5
@ 0.5
0.0
Figure 4.5: (Left) Digital images from a falling tennis ball —

we have made an artistic rendering of the ball for clarity. (Right)
Motion diagram for the tennis ball. The left diagram shows the
positions and velocities, and the right diagram illustrates the ac-
celerations.

We draw the motion diagram by marking the positions y;
with dots along the vertically oriented y-axis as illustrated in fig-
ure 4.5. We illustrate the velocities by the displacements, which
are drawn as arrows from point to point. The average veloci-
ties can be calculated from the data: For each ¢ in table 4.1 we
calculate the average velocity from ¢; to ¢;+1 using:

T = Yi+1 — Yi )

N (4.17)
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The corresponding results are shown in the table. However, we
cannot use this method to find a value for ¢ = 6, since we do
not know y7. We find that all the velocities are negative. Since
we have chosen the positive direction to be up (the arrow on the
y-axis points upward) this means that the ball is falling down —
as expected.

The velocities are increasing in magnitude since the ball is
accelerating downward. We estimate the average accelerations
by

_ Ui — Vi

al - At b
and the results are shown in table 4.1. For the accelerations, we
cannot find a value for a; for ¢ = 1 or for ¢ = 6, since the veloci-
ties are not defined at ¢ = 0 or at i = 6. If you look at figure 4.5
you can also see how to contruct the accelerations directly from
the motion diagram.

The data shows that the acceleration is approximately con-
stant a ~ —9.5 + 0.5rn/s2 throughout the fall. This experiment
therefore tells us that a tennis ball falls with a constant acceler-
ation — which is close to what you may recognize as the acceler-
ation of gravity, g = 9.8m/s>.

(4.18)

Mathematical model

A physicists friend of yours tells you that there is a mathemati-
cal model for the motion of a falling tennis ball when there is no
air resistance

y(t) = yo — %th ; (4.19)
where g = 9.8m/s2 is a constant and yo is the position of the
tennis ball at £ = 0s. Let us see how this model matches up with
the observed data.

We calculate the position of the ball for various times. From
the experimental data, we see that y(0s) = 1.6m. We use Matlab
as a calculator to find the positions for all the times in table 4.1

with a single line of code:
g = 9.8;

t = [0.0 0.1 0.2 0.3 0.4 0.5];

y = 1.6 - 0.5%g*t."2

y = 1.6000 1.5510 1.4040 1.1590
0.8160 0.3750

Notice that the command t."2 tells Matlab to apply the oper-
ation for each element in the array t, generating an y-array of
6 elements. This vectorized notation allows us write the Matlab
code in a similar way to the mathematics. We can output the
data in a form that looks more like table 4.1:

[t;y]°

ans =
0 1.6000
0.1000 1.5510
0.2000 1.4040
0.3000 1.1590
0.4000 0.8160
0.5000 0.3750

where the > means transpose. Without it, the table would have
been oriented differently. Try it!

The resulting values for y(¢) are similar to the experimental
data, but in the experiment the ball falls a bit slower than in the
mathematical model: In the experiment the ball is at y = 0.39m
at ¢t = 0.5s, whereas the mathematical model predicts y = 0.375.

We can compare the results better by studying the velocities
and accelerations. In the mathematical model, we know y(t),
and we can calculate the instantaneous velocity and acceleration

DESCRIPTION OF MOTION 39
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by applying the definitions directly. The velocity of the ball is

defined as: 4
_ %
v = 2 (4.20)

and if we insert y(¢) from equation 4.19 we get

d 1 2
S PO 4.21
VT (yo 29 ) g (4.21)
Similarly, the acceleration is defined as
dv

= — 4.22
a= b (422)

where we insert v(t) from equation 4.21 and get
a=—g=-98m/s. (4.23)

The acceleration in the mathematical model is a constant. But
we cannot really compare with the experimental data, since they
have too low precision. We need better datal

High resolution data

To study the process in more detail, the motion of the falling ten-
nis ball was also recorded by a motion detector placed directly
above the ball. The detector provides the vertical position y of
the ball, but at a much higher time resolution that the images:
The detectors measures y at a time interval of At = 0.001s. The
data is stored in the file fallingtennisball02.d. The first few
lines of the file looks like:

0.0000000000000000e+00 1.6000000000000001e+00
1.0000000000000020e-03 1.5999950510001959e+00
2.0000000000000044e-03 1.5999803020031378e+00
3.0000000000000070e-03 1.5999557530158828e+00

where each line contains the time t; in seconds and the position
yi in meters (given in scientific notation, but with no unit). We
read the data-set from file, using load:

load -ascii fallingtennisballO02.d

t = fallingtennisballO2(:,1);

y = fallingtennisball02(:,2);

The command load generates the array fallingtennisballlO
which has 2 columns. Then, we create variables for the time, t,
and the position y. We see what is in the data-set by plotting
the position as a function of time, y(t), using:

plot(t,y)

xlabel (’t [s]’)
ylabel (’x [m]’)

z [m]

Figure 4.6: Plot of the position y of the ball as a function of
time t.

What does the resulting plot in as shown in figure 4.6 show?
From the plot, we see that the ball falls down, bounces up from
the surface to reach a lower height than the first time, and so
on. The first 0.5s of the motion resembles what we found by
analyzing the images: the position decreases with time. And we
see that ball is falling faster with time — it accelerates. But it

is difficult to see details of the motion directly from this plot.
Could you say if the acceleration is constant or not for the first
0.5 seconds from this plot? To gain more insight, we need to
analyze the velocity and acceleration of the ball.

Numerical derivatives

Because we do not know y(t) for all values of ¢, but only the
measured values of y(t;), we cannot find an exact, analytical ex-
pression for the derivative of y(t) as we did when we had a math-
ematical model. However, we can follow the procedure we used
for the image data in equation 4.17: We can approximate the
instantaneous velocity by the average velocity from ¢; to t; + At:

dy _ oyt + A) —y(t:)

dt N At '
The average velocity is an example of a numerical derivative of
the position — a numerical method to calculate the derivative. (In
numerical methods N.1 you will see that there are many ways to
calculate the derivative numerically). This method is easily im-
plemented numerically by directly converting the mathematical
formula to Matlab:

(y(i+1)-y(i))/dt;

(i) ~ B(t) (4.24)

v(i) =

We need to apply this rule to each element ¢ ¢ from 1 to n—1,
where n is the number of data points y(¢;). This is done using a
for-loop:

o =
dt =
7 =

length (y);
t(2) - t(1);
zeros (n-1,1);
for i = 1:n-1

v(i) = (y(i+1)
end

- y(i))/dt;

Here, we find n, the number of elements in the y-array, and
the time difference dt, which we calculate from the first two
times since the time intervals are regular. We also prepare an
empty array v, which we will fill with velocities. But why do
we only make it n — 1 elements long? Because the formula
v(i) = (y(i+1) - y(i))/dt , cannot be applied to the last el-
ement in the array, since we would then have no data for i + 1.
(We saw the same in table 4.1). For the same reason, we must
stop the loop at n — 1.

Similarly, we find the acceleration by using the numerical
derivative of the velocity:

’U(ti) — U(ti_l) )
At

We apply this mathematical definition of the derivative directly
to the data:

a(ty) ~a(t;) = (4.25)

zeros (n-1,1);
for i = 2:n-1
a(i) = (v(i)

end

a =

- v(i-1))/dt;

For the acceleration, the formula a(i) = (v(i) - v(i-1))/dt,
cannot be applied to the first element in the array, since we have
no data for ¢ = 0 . The loop therefore starts at i = 2 . (Again,
this is the same as in table 4.1).

Plotting
We plot z(t), v(t), a(t) by:

subplot (3,1,1)

plot (t,y)

ylabel (’y [m]?)

subplot (3,1,2)
plot(t(1:n-1),v)

ylabel (’v [m/s]’)
subplot (3,1,3)
plot(t(2:n-1),a(2:n-1))

Anders Malthe-Sgrenssen (2013)



xlabel (’t [s]’)
ylabel(’a [m/s"~2]?)

Here we have used the subplot command to generate a set of
plots. (Consult Matlab to find out how the plots are numbered
using help subplot). Notice that the velocity is only defined for
i from 1 to n — 1. We therefore only include the corresponding
values of ¢; in the plot. Similarly, the acceleration is defined from
2 ton — 1, and we only plot the corresponding values of ¢;.
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Figure 4.7: Plot of z(t), v(t), and a(t) for the falling tennis
ball.

Plotting parts of the data

It is difficult to see the acceleration of the ball while it is falling
from figure 4.7. How can we plot only the first 0.5 seconds of
the motion? We find the value for i where t; goes from begin
smaller than 0.5 to larger than 0.5 using find:

max (find (£t<=0.5));

plot (t(2:imax),a(2:imax));

xlabel (’t [s]’)

ylabel(’a [m/s”~2]°)

imax =

and plot a(t) for this range of t-values in figure 4.8. (You could
also have made this plot by using the zoom button in the plot-
ting window). The acceleration is clearly not a constant in this
case. It starts at —9.8m/s*, but its magnitude becomes smaller
with time. (This is due to air resistance).

-9.2

93}

& 94
w
~

0.35 0.4

Figure 4.8: Plot of a(t) for the falling tennis ball in the time
interval t < 0.5s.

Comparison with mathematical model
How large are the differences between the experimental data and

Anders Malthe-Sgrenssen (2013)
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the mathematical model for motion without air resistance? A
good way to compare, is to plot the model in the same plot as
the data. The model was:
1 5
y(t) = yo — igt and v(t) = —gt . (4.26)

We implement these formulas directly in the program, and plot
both data and model:

g = 9.8; Z m/s"2

yo = 1.6; / m

vt = -gxt;

yt = yO - 0.5%xg*xt."2;

subplot (2,1,1)
plot(t(1:imax),y(1:imax),’-r’);
hold on
plot(t(1:imax),yt(1l:imax),’--b’);
hold off

xlabel (’t [s]?)

ylabel(’y [m]’)

subplot (2,1,2)
plot(t(1:imax),v(1l:imax),’-r’);
hold on

plot (t(1:imax),vt(1l:imax),’--b’);
hold off

xlabel (’t [s]’)

ylabel (’v [m/s]’)

We use hold on to get both plots in the same figure (see fig-
ure 4.9). Here we notice that the differences in y(¢) and v(¢) are
more difficult to spot. Using the acceleration for comparions was
therefore a better approach to spot the differences. And an ap-
proach with a sound, physical basis, since we will later learn that
differences in physics appear in differences in the accelerations.

Further work
We leave it to you to look more carefully at what happens during
the bounce. Can you zoom in on the relevant area?

(Notice that the data in this example were based on numerical
results and not experimental data in order to get clear results.
Ezxperimental data will typically contain significant noise, which
we did not want to include here. The program used to generate
the data-set is makefallingtennisball.m).
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Figure 4.9: Plot of y(t) and v(t) for the experimental data (red,
solid line) and the mathematical model (blue, dashed lined).
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Figure 4.10: lllustration of the motion of “The Rocket”. The accelerations are illus-
trated for the whole time interval (top figure) and the time-resolution is shown by the
squares representing the measurement points (bottom figure).

4.2 Calculation of motion

Mechanics is about the motion of objects. Usually, we do not know the position
as a function of time. Instead, we want to determine the motion based on mea-
surements of the acceleration (or velocity), based on a mathematical expression
for the acceleration, or based on a differential equation for the acceleration. We
therefore need tools to do the opposite of what we did above: We need tools to
find the motion, z(¢), from the acceleration, a(t), of an object.

4.2.1 Discrete integration

As lead developer of “The Rocket”, a new roller-coaster ride at a major theme-
park, you have fitted an accelerometer into a test-cart. The accelerometer records
the acceleration of the cart at regular time intervals of 0.1s. How can you use this
data to determine the velocity and position of the test cart?

i 0 1 2 3 4 5

ti 0.0s 0.1s 0.2s 0.3s 0.4s 0.5s
a; 0.00m/s* 1.43m/s*> 2.80m/s* 4.13m/s* 5.62m/s® 7.21m/s’

The problem is how to find the sequence of positions, z(t;), from the sequence
of accelerations, a(t;)? This is the reverse of what we have been doing so far,
where we have estimated first the velocities and then the accelerations from the
positions using numerical derivatives. Can we simply use the methods we have
developed for numerical derivatives “in reverse”? The average acceleration from

Anders Malthe-Sgrenssen (2013)



SECTION 4.2.

t1 = 0.0s to t = 0.1s is
t; + At) — ’U(ti)
At '

(So far this is an ezact result — we have not done any approximations yet). We can
“reverse” equation 4.27 to find an equation for the velocity at the time t = ¢; + At:

o(t; + At) —v(t;)
At = alt)

’U(ti + At) — ’U(ti) =At- &(ti)
v(t; + At) = v(t;) + At - a(t;)

a(t) = 2 (4.27)

(4.28)

This method would allow us to step one step forward in time from the time ¢t = ¢;
to the time ¢t = ¢; + At, if only we knew the average acceleration of the time
interval. Unfortunately, the accelerometer does not give the average, but rather
the instantaneous acceleration of the cart, a(t;). Let us ignore this distinction and
approximate the average acceleration over the time interval by the instantaneous
acceleration at the beginning of the time interval:

a(t;) ~ a(t;) , (4.29)

(You can learn more about this approximation and how to improve it in a discus-
sion of numerical integration in numerical methods N.2.) We are now in a position
to use equation 4.28 to step forward in small steps of At, calculating the changes
in the velocities of the cart as we go. However, finding the velocities only takes
us part of the way — we also need to determine the positions, x(t;), of the cart,
from the velocities, v(t;), calculated using equation ?7?. This time, we “reverse”
the numerical derivative of the position:

x(ti + At) — x(t,)
At
2(t; + At) — z(t;) = At o(t;)

(4.30)

Where we again assume that the average velocity is approximately the same as
the velocity we calculated in equation 4.28: v(t;) ~ v(¢;). We are now ready to
use equation 4.28 and equation 4.30 to move forwards in steps of At. However,
since these methods only give the increments in the velocity and the position, we
need to know the first velocity of the cart, v(tp) = vo and where the cart starts
from, x(tp) = xo. This is called the initial conditions of the problem. We are now
ready to find the velocities and positions, starting at the time ¢ =ty = 0.0s:

e At t = tp = 0.0s, the velocity and position of the cart is given v(ty) =
v(0.0s) = 0.0m/s, z(to) = x(0.0s) = 0.0m.

o At t=ty+ At = 0.1s, the velocity of the cart is:
v(0.18) ~ v(0.0s) + At - a(0.0s) = 0.5m/s , (4.31)

where the acceleration a(0.0s) = 5.0m/s” is listed in the table figure 4.10.
The position of the cart is:

2(0.1s) ~ 2(0.0s) + At - v(0.0s) = 0.0m (4.32)
e At t=t; + At = 0.2s, the velocity of the cart is:
v(0.28) = v(0.18) + At - a(0.1s) = 0.9m/s;, (4.33)

where the acceleration a(0.1s) = 7.0m/s is listed in the table in figure 4.10.
The position of the cart is:

2(0.2s) ~ 2(0.1s) + At - v(0.1s) = 0.05m , (4.34)

where the velocity v(0.1s) = 0.5m/s was found in the previous step of the
calculation.
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This method is called Euler’s method for numerical integration, and it is sufficiently
flexible and robust to solve most problems presented in this book!

In Euler’s method we find the position, z(t;), and velocity, v(¢;), of an
object as a function of time by a stepwise summation of the acceleration,
a(t;), and the velocity, v(¢;):

v(to) = o
x(to) = o
o (4.35)
v(t; + At) = v(t;) + At - a(t;)
x(t; + At) = x(t;) + At - v(t;)

We apply this method to find the position and velocities for the motion of “The
Rocket”. The accelerations for the cart are stored in the file therocket.dat, where
each line contains a time (in seconds) and an acceleration (in m/s®):
0.0000000e+000 2.7316440e-001

1.0000000e-001 1.4411079e+000

2.0000000e-001 2.6693138e+000

3.0000000e-001 4.2383806e+000

We read the data into Matlab, find the time-step At from ¢ — ¢1, and apply
Euler’s algorithm from equation 4.35 for each ¢ starting from the initial condition
x(tg) = Om and v(tp) = Om/s using a for-loop.

temp = load(’therocket.dat’);

t = temp(:,1);

a = temp(:,2);

dt = t(2) - t(1);

n = length(t);

v = zeros(n,1);

v(1) = 0.0; % w_0

x = zeros(n,1);

x(1) = 0.0; % z_0

for i = 1:n-1
v(i+1l) = v(i) + a(i)x*dt;
x(i+1) = x(i) + v(di)=dt;

end

The resulting position and velocity plots are shown in figure 4.11. (You can learn
more about the precision of this method, and more precise methods in numerical
methods N.2).

The procedure presented here covers the most important topic in kinematics:
How to determine the motion of an object given the acceleration of the object.
This is important because you will later learn that the physics of a problem — the
interactions between the object and other objects — gives the acceleration of the
object. Given the acceleration it will be up to you to determine the motion — and
you can do this using the methods provided here: Either by using Euler’s method
(or more advanced techniques) to solve the problem numerically, or by finding a
solution to the problem based on the specialized techniques you have learned in
calculus.

4.2.2 Formal integration

A more formal formulation of the problem would be to assume that we know the
acceleration a(t) of an object as a function of time. How do we find the position
and velocity of the object as a function of time in this case?

Again, we realize that we have already solved the “reverse” problem — we know
that the acceleration is the time derivative of the velocity and that the velocity
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Figure 4.11: Illustration of the motion of “The Rocket”, showing the measured acceler-
ation, and the calculated velocity and position.

is the time derivative of the position. We find the velocity by integrating the
definition of acceleration:

alt) = f% > [ama :/t i%dt — o(t) = olto) , (4.36)
v(t) = v(to) —I—/t a(t)dt . (4.37)

When we know the velocity as a function of time, we can find the position by
integrating the velocity, starting from the definition of velocity:

o(t) = % - | v(t)dt:/t %dt:x(t)—x(to) (4.38)
z(t) = z(tg) + /t v(t)dt . (4.39)

If we insert v(t) from equation 4.37, we get:

z(t) = z(to) + [ [v(to) + / a(t)dt] dt
o o (4.40)
— 2(to) + v(te)(t — to) +/ [/ a(t) dt] dt

to Jto

These equations constitute the integration method to find the position
2(t) and velocity v(t) given the acceleration a(t) of an object:

v(t) = o(to) +/'a(t) dt | (4.41)

to

:L'(t):x(to)+/tv(t)dt::E(to)+v(t0)(t—t0)+/tt[/tta(t)dt} dt . (4.42)

to

There is no need to memorize these equations. They follow from your knowledge
of calculus. You only need to remember the definitions of the velocity as the
time derivative of the position, and the acceleration as the time derivative of the
velocity.
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We can apply this method to find the motion for constant acceleration, a(t) =
ap, with initial conditions x(tg) = x¢ and v(tg) = vo:

o(t) :v(t0)+/ ao dt = 00+ ag (t — to) . (4.43)

to

and

2(t) = 2(to) + / o(t) dt = 20 + vo (1 — to) + %ao (t—t0)? . (4.44)

to

4.2.3 Differential equations

Usually, we do not have a set of measurements or a mathematical expression for
the acceleration. Instead, we find an expression for the acceleration based on a
physical model of the forces acting on the object, and from the forces we find the
acceleration. Given this expression for the acceleration, we determine the velocity
and position of the object. But this sounds exactly like what we did above? We
integrate the acceleration to find the velocity, and then integrate again to find the
position. Unfortunately, direct integration only works if the acceleration is only a
function of time. In most cases, we do not have an expression of the acceleration as
a function of time, but instead we know how the acceleration varies with velocity
and position. For example, a tiny grain of sand sinking in water has an acceleration
on the form:

d*z

dt?
where the acceleration depends on the velocity of the grain! And a ball suspended
in a vertical spring has an acceleration:

=a=—ay—c-v, (4.45)

APz

W:a:—Cﬁv, (4.46)

that depends on the position of the ball. Such problems cannot be solved by direct
integration, because the function z(¢) and its derivatives occur on both sides os the
equation. Such equations are called differential equations. Analytical solutions of
differential equations require some skill and experience, but, fortunately, we can
solve them numerically in exactly the same way we did above.

Numerical solution

In most mechanics probems, we want to find the position, x(t), that satisfies an
equation on the form:

d? d
F‘f =a (t,l‘, ?f) ) ’U(to) =0, x(tO) =20 (447)
We find the solution by moving forwards in time in small increments At. We start
from the initial values z(ty) = zo and v(tg) = vo. We find the the velocity and
position after a small time-step At using Euler’s method (equation 4.28):

v(to + At) = v(ty) + At - a(to, (L), v(to)) , (4.48)

z’(to + At) >~ $(t0) + At - U(to) 5 (449)

where a(tg, z(tg), v(tg)) is the acceleration we get when we put the values at ¢t = ¢
into the expression we have for the acceleration in equation 4.47. We can now
continue to step forward in time, finding subsequent values z(t;) and v(¢;) in steps
of At. This method is called Euler’'s method. It is definitely not the best method
of integration. It’s strength is rather in the simple, intuitive implementation.
Surprisingly, changing the step in equation 4.49 to the following:

x(to + At) > z(to) + At - v(to + At) , (4.50)
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gives significantly better solutions for many problems. This improved method is
called Euler-Cromer’s method. (You can find a more information about solution

methods in numerical methods N.2).

In Euler-Cromer’s method to solve the (second order) differential equation

of motion: P p
ﬁf =a (tal‘v %) ) ’U(to) =70, $(t0) = X0 , (451)
we perform the following steps:
U(to) = Vg
.T(to) = To
(4.52)

Example 4.2: Modeling the motion of a falling tennis ball

This example demonstrates how we can calculate the motion
of a falling tennis ball given an expression for the acceleration.

In example 4.1 we studied the motion of a falling tennis ball
based on measurements of its motion. However, in physics we do
not only want to observe motion, we want to predict it. We do
this by first analyzing the problem to find the forces acting on
the object, and from the forces we find a mathematical model of
the acceleration of the object. (You will learn to do this in the
next chapter. For now we will assume that the acceleration is
given). From the acceleration, we find the position and velocity
by analytical or numerical integration. We call this recipe the
structured problem-solving approach.

Too detailed z] Good m
- y y
/®"‘“ Yo —Q - v,=0 Yol—

0 1 |

@ 0.2s

0 .

o

() 4@ Vv

@ 055

_ , ,

Figure 4.12: (Left) Too detailed illustration. (Right) Correct,
stmple sketch.

System sketch
Your first step should always be to make a sketch the process. In
physics, our sketches are vessels for our thoughts. A good, func-
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tional sketch is therefore an important part of solving a problem.
While the left part of figure 4.12 has a nice artistic appeal and
also illustrates the motion in detail, we do not encourage such
detailed sketches. Instead, you should make a sketch that only
focuses on the most important features of the process, as in the
rightmost figure. Here we illustrate the object (the tennis ball),
its surroundings (most importantly the floor), and the coordi-
nate system with a clearly marked axis. We have also illustrated
the initial position and velocity of the ball, and its position and
velocity at a time ¢. Drawing a simplified illustration helps you
discern the important from the unimportant, and it helps you
convert a physical situation into a mathematical problem: The
figure shows the axis and the position of the ball, y(t), and noth-
ing else.

Simplified model
From an analysis of the physics in the system, we have found
that the acceleration of the ball is a constant:

a=—g=-98m/s>. (4.53)

(You will learn where this model comes from later. Now we only
want to address the consequences of such a model). In addition,
we know that the ball starts from rest at the position y = 2.0m
at the time ¢ = Os:

y(0s) = 2.0m , v(0s) = Om/s . (4.54)

We have now formulated a mathematical description of the prob-
lem we want to solve:
dv %y
azazﬁ:—fh v(0) = vo , y(0) = yo .
Solving this equation means to find the velocity v(¢) and the po-
sition y(t) of the ball for any time t. We call this the modeling
step — finding the mathematical problem to solve — and the next
step is to solve this problem — to find v(t) and y(t).

(4.55)

Solving the simplified model
Since the acceleration is given and a constant, we can find the
velocity by direct integration of the acceleration:

dv

=9

= (4.56)
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t d’U t
/ —dt = / —gdt, (4.57)
t dt t
0 0
v(t) = v(to) =—g (t —_to ) , (4.58)
=0m/s =0s
which gives
v(t) = —gt . (4.59)
Similarly, we find the position by integrating the velocity:
dy
- = ; 4.
prl Ok (4.60)
t t
dy /
—dt = (t)dt, (4.61)
foae ]
' 1
y(t) — y(0) :/ —gtdt = figf, (4.62)
0
which gives
1
y(t) =y(0) — 59t* - (4.63)

Anaysis of the simplified model

This is the complete solution to the problem. We know the po-
sition and velocity as a function of time. When you have this
solution, you are prepared to answer any question about the
motion. For example, you can find out when the ball hits the
ground and you can find the velocity of the ball when it hits
the ground. How would you do that? You need to translate the
question into a mathematical problem. We do this by stating
the condition “when the ball hits the ground” in mathematical
terms: The ball hits the ground when its position is that of the
ground, that is, when y(¢) = Om. (Notice, we have ignored the
extent of the ball here). We can use our solution in equation 4.63
to find the corresponding time:

2y(0)

_ L RN}
y(t) = y(0) 2gt =0m = t= g

(4.64)
A more realistic model

Unfortunately, data for the motion of the tennis ball, shown in
figure 4.13, show that the ball does not have a constant acceler-
ation.

9.2

0.35 0.4

Figure 4.13: Plot of a(t) for the falling tennis ball. (The plot
is the same as in figure 4.8, and is based on a calculatation and
not on experimental data).

This is due to air resistance — an effect not included in the
simplified model. Fortunately, we have good models for air re-
sistance. For a falling ball in air, a more realistic model that
includes the effect of air resistance is:

a=—g— Dvlv|, (4.65)

where v = wv(t) is the velocity of the ball, g = 9.8m/s® is the
same constant as above, and the constant D depends on details

of the ball. For a tennis ball D = 0.0245m™ 1 is a reasonable
value. (You will learn about the background for this model and
how to determine values for D later). We can now formulate a
mathematical problem:

a —_—

=== (4.66)

—g — Dulo],
with initial conditions v(0s) = Om/s and y(0s) = 2.0m.

Solution of the realistic model

Our task is to solve this problem — that is to find v(¢) and y(t)
for the ball. This can be done either numerically or analytically.
The numerical solution is straight forward, using the approach
we have derived, but the analytical solution requires some knowl-
edge of differential equations.

Numerical solution

We apply Euler-Cromer’s method to find the positions and veloc-
ities by stepwise integration starting from the initial conditions.
The integration step in Euler-Cromer’s method is:

U(ti =+ At) = U(to) + At - a(ti, Vi, yi) s (467)
y(ti + At) = y(to) + At - v(t; + At) (4.68)

where we insert the acceleration from equation 4.65:
a(ti, vi,yi) = —g — Du(t:)|v(t:)] (4.69)

This is implemented in the following. We open a new script file,
and start our script by clearing all variables — this is a good
habit to ensure that your previous activities do not affect your

new calculations:
clear all; clf;

Then we define the physical constants and values given in the
problem: g, D, y(0) and v(0):

D = 0.0245; % m~-1

g = 9.8; / m/s2

yo = 2.0;

v0O = 0.0;

We need to determine for how long we want to calculate the

motion — what will be our maximum value of {7 There are
typically two strategies: We can make an initial guess for the
duration of the simulation, or we can determine when the simu-
lation should stop during the simulation. First, we make a guess
for the duration of the simulation. Based on the existing data
from figure 4.13 we guess that ¢ = 0.5s is a reasonable simulation
time:

time = 0.5;

Next, we need to decide the time-step At. This needs to be small
enough to ensure a good precision of the result, but not too small
since this would make the simulation take too long. We try a
value of At = 0.00001s:

dt = 0.00001;

Based on this, we calculate how many simulation steps we need,
n = t/At, and generate arrays for the positions, velocities, ac-
celerations and time for the simulation. All values are initially
set to zero:

Variables

= ceil(time/dt);
= zeros(n,1);
zeros(n,1);

= zeros(n,1);

= zeros(n,1);

4P << B o
1

Then we set the initial conditions:
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% Initialize

y(1) = yo;

v(1l) = v0;

Before, finally, the Euler-Cromer steps are implemented in an
integration loop. The whole program is given in the following:

clear all; clf;

D = 0.0245; J m~-1
g = 9.8; Z m/s"2
yo = 2.0;

vO = 0.0;

time = 0.5;

dt = 0.00001;

% Variables

= ceil(time/dt);

= zeros(n,1);

zeros(n,1);

= zeros(n,1);

= zeros(n,1);

% Initialize

y(1) = yo;

v(1l) = v0;

% Integration loop

for i = 1:n-1
a(i) = -g -Dxv(i)*abs(v(i));
v(i+1) = v(i) + a(i)=*dt;
y(i+1) y(i) + v(i+1)=*dt;
t(i+1) = t(i) + dt;

end

The resulting plots of x(t), v(t), and a(t) are shown in figure 4.14.

Analysis of realistic model results

We can now use this result to answer questions like how long
does it take until the ball hits the ground? Again, we answer the
question by translating it into a mathematical question: The
ball hits the ground when y(t) = Om. However, in this case,
we must find the solution numerically. The simplest approach to
this would be to find when y becomes zero during the simulation.
It is tempting to do this by checking when y(t) = Om:

if (y(i)==0.0)

t (i)
end
2 1
= or
=3 2+
4 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t[s]
0 T
=
~
£ ) 1
=
10 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t[s]
-7 T
| | | |

:
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t [s]

Figure 4.14: Plots of y(t), v(t), and a(t) calculated using the
model for air resistance.

But this will not work, because y(t;) will usually not be zero
for any . Typically, the program will step right past y = 0 going
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from a small positive value at some ¢; to a small negative value
at t;+1. We should instead find the first time y(¢) passes 0, that
is, we should find the first ¢;41 when y(¢;+1) < 0. Then we know
that y(t) = 0 somewhere in the interval ¢; < ¢t < t;41. We can
then estimate a precise value for ¢ using interpolation, or we can
simply use the value ¢;41, if we find that this gives us sufficient
precision. This is implemented in the following modification to
the program, where we have also stopped the calculation when
the ball hits the ground:

for i = 1:n-1
a(i) = -g -Dxv(i)*abs(v(i));
v(i+1) = v(i) + a(i)=*dt;
y(i+1) = y(i) + v(i+1)=*dt;
if (y(i+1)<0)

break

end
t(i+1) = t(i) + dt;

end

v(i+1)

plot (t(1:i),a(1:1i))

xlabel (’t [s]?);

ylabel(’a [m/s72]°);

where we have used break to stop the loop when the condition
is met. Notice that we should now only plot the values up to
i, because we have not calculated any more values — the values
from 7 + 2 to n were set to zero initially for y, v, and a and will
make your plot confusing if you include them. (Try it and see).

Test your understanding: What would happen if we con-
sidered that the ball had an initial velocity vo = —2vr when it
started? Sketch the resulting position, velocity and acceleration
as a function of time.

* Advanced* Analytical solution
The differential equation in equation 4.66 is one of a few equa-
tions we can solve analytically as long as the velocity does not
change sign. When the ball is falling down, the velocity is nega-
tive, and we can replace |v| by —v:

dv 2
— =—g—Dv(—v)=—g+Dv".
i (-v)=—g
This equation can be solved using separation of variables. First,
rewrite the equation:

(4.70)

v _ _ 1—21)2
a - g '

Then, we separate the variables, so that all v’s are on the left
side and all ¢’s are on the right:

dv
T- D - 9t
g

(4.71)

(4.72)

The differential equation can now be solved by integrating each
side from vo = Om/s to v and from to = Os to t:

v t
dv /
— = [ —gat,
_ D2
/vo 1 gU to

The left-side integral can be solved using your knowledge from
calculus or by using a symbolic solver such as Mathematica, giv-

ing:
/ = ,/gtanhf1 ( Bv) .
0 D Vg

We can make this expression simpler to write, by introducing

the quantity:
UT'::w/f%.

(4.73)

dv

g

(4.75)
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We notice that vy has dimensions m/s, and we may therefore
call it a velocity. Using vr, we can rewrite the solution to be:

v dv 1 < v )
——=— = vrtanh — ], 4.76
/0 1-— %vQ B vT ( )
which we insert into equation 4.73, getting:
vr tanh ™! (i) =—gt. (4.77)
T
We want to find v, and rearrange:
tanh ™" (i) -9 (4.78)
vr vT
which gives:
Y (—g—t) , (4.79)
vT vr
and finally:
v = vr tanh (—g—t) . (4.80)
uT

We have now found the velocity on the form v = v(¢), and we
can simply integrate the velocity from ¢y to ¢ to find y(t):

y(t)fy(to)=/tv(t)dt=/thtanh <,9l) dt . (4.81)

to 0 T

This integral is solved by a symbolic integrator, such as Mathe-
matica, giving:
2 gt
y(t) = y(0) — v /glog cosh = . (4.82)
vr

Figure 4.15 shows that the analytical solutions (given by circles)
are identical to the numerical solutions (lines).

Analysis of analytical solution
We can now use the analytical solution to solve problems of in-
terest, such as finding out when the ball hits the floor, which
occurs at y(t) = Om, that is, when

gt y(0)g

y(0) = v} /g log cosh ELIN = cosh™'exp (4.83)
ur

vT U%—v

that is:
(4.84)

0.7

2

z

B s b
0.7
0.7

Figure 4.15: Comparisons of the analytical and numerical so-
lutions to y(t), v(t), and a(t).

Anders Malthe-Sgrenssen (2013)



N.1: NUMERICAL DERIVATIVES IN ONE DIMENSION 51

N.1: Numerical derivatives in one dimension

We have found that the time derivative of the position can be
approximated by the average velocity

x(ti + At) — l‘(tl)

dr  _
dt o(ts) = At

(4.85)
and we called this an example of a numerical derivative. But
how good is this approximation to the derivative, and can we
design better numerical methods to find the derivative? These
are questions asked in numerical analysis [?]. Here, we show how
to develop more precise methods and how to estimate the errors
of the methods.

First order method

The average velocity is a first order numerical derivative. Its
main advantage is its simplicity — it can be directly translated
into a numerical algorithm:

v(i) = (x(i+1)-x(i))/dt;

We can use this method to estimate the derivative from a
set of measurements z(¢;), as we did above, or to calculate the
derivative of a known function z(t) at a discrete set of ¢;. For
example, we can estimate the derivative of the function

z(t) = exp(—t?) - sin(t) , (4.86)

on the interval from ¢ = 0 to ¢t = 10 in steps of At = 0.01 by first
calculating all the ¢; and x(t;) values, and then applying the first
order method:

dt = 0.01;
t = (0:dt:10);
x = exp(-t."2) .*sin(t);
v = zeros(length(x) ,1);
for i = 1:length(x)-1

v(i) = (x(i+1)-x(i))/dt;
end

Here, we use t=(0:dt:10) to make an array of ¢; values from 0
to 10 in steps of dt.

As the time interval At becomes smaller, the approximation
in equation 4.85 approaches the exact derivative. We therefore
expect the estimate of the derivative to improve as At becomes
smaller — we expect the error to decrease. But what is the error?

Error estimates

The error is the difference between the estimated value and the
exact value of the derivative for a given value of ¢. For the first
order method, we can use Taylor’s formula to show that the er-
ror, €(t;) is:

e(t) = Z—f(ti) - W N (4.87)
where ¢ is some constant. (You can read more about this in sec-
tion ?? in appendix ??). This means that the smaller we choose
At, the smaller the error becomes, unless you choose so small
a At that you start getting round-off errors due to the finite
numerical precision.

We characterize a numerical algorithm by how the error de-
pends on At. We say that the first order method is, indeed, first
order, because the error is proportional to At. If we divide At
by 2, the error is also reduced by a factor 2. We call a method
second order if the error is proportional to At?. This is clearly
an improvement, because by reducing At by a factor 2, the error

Anders Malthe-Sgrenssen (2013)

is now a factor 22 = 4 smaller. Generally, we say that a method
is of order n, if the error is proportional to At", and we write
this as e = O(A").

Higher order methods

What does a higher order method for the derivative look like?
The simplest example is the centered midpoint method:

dr  x(t; + At) — x(t; — At
v(t) = o = ( )Qm ( ) +O(A),  (4.88)
=vm (i)

where the error is of order O(At?). (See section ?? in ap-
pendix ?? for a derivation.) Implementation is just as for the
first order method, but using this method we cannot evaluate the
derivate at either end-points. The following program compares
the first and the second order methods, by comparing the nu-
merical derivatives with the exact values (we can find the exact
derivative of the given function):

dt = 0.01;
t = (0:dt:10);
x = exp(-t."2).*sin(t);
dxdt = -2%t.*xexp(-t."2).*sin(t) +
exp(-t."2) .xcos(t);
n = length(x);
vl = zeros(n,1);
v2 = zeros(n,1);
for i = 1:n-1
vi(i) = (x(i+1)-x(i))/dt;
end
for i = 2:n-1
v2(i) = (x(i+1)-x(i-1))/(2*xdt);
end
dl = v1’-dxdt;
d2 = v2’-dxdt;
i = (2:n-1);

plot (t(i),d1(i),’-r’,t(i),d2(i),’-b’);

Figure 4.16 shows that the second order method gives a signifi-
cantly better fit to the the derivative.

~15 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

t
Figure 4.16: Plot of the difference between the numerical

derivative v,, and the exact derivative v for the first order method
(solid line), and the second order method (dashed line).

Skewness in first order method

A particular problem of the first order method in equation 4.85
is that it is skewed — it does not make symmetrical use of ()
around the point ¢;. The centered midpoint method, on the other
hand, is symmetrical. However, we may argue that the first or-
der method corresponds to a centered midpoint method applied
at the time t; = t; + At/2 with a time-step At’ = At/2, From
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equation 4.88:
z(t; + At') — z(t; — At')

vm(t]) = e~ , (4.89)
we insert ) = t; + At/2 and At = At/2:
om(ts + 20y = et + 5+ 54 —ati + 5 - 5
'm\li D) = 9. At
2 (4.90)
SC(ti + At) — x(tl)

= Z SN B — o).

The average velocity, v(t;), therefore provides second order ac-
curacy, not at the time ¢ = ¢;, but at the time, t = ¢; + At/2!

Second order derivatives

In the motion diagrams, we characterized the acceleration using
the average acceleration:
o(ts) — v(ti—1)
At '
Our discussion of skewness of the first order method now makes
it clear why we use the velocities at t; and ¢;_1 to determine the
acceleration at ¢;. The average velocity v(¢;) is really an estimate
of the velocity at the time ¢; + At/2, while the average velocity
v(ti—1) gives the velocity at t; — At/2. The average acceleration
a(t;) therefore corresponds to:

'Um(ti + %) - 'Um(ti - %

At

—v(t; — % _dv
At Tdt

a(t;) = (4.91)

a(t:) =
ot + 8) (4.92)

We recognize this expression as similar to the second order cen-
tered midpoint method for the numerical derivative of v(¢) in
the point ¢;. (See appendix ?? for details.) Hence, the method
introduced for finding the acceleration from the motion diagram
provides a reasonable numerical estimate for the derivative of
the velocity.

Let us approximate the acceleration directly from the posi-
tions, z(t;), of the object, by inserting the second order numerical
estimates v (t; = At/2) into equation 4.92.

o(tipr) — z(t:)

Um(t; + At/2) = A7 , (4.93)
and
o(ti — At)2)m = %ﬁ“‘l) , (4.94)
which inserted in equation 4.92 gives:
oy - @) —a(t) — (@) — 2(tia))
“ o (4.95)
_ #ltiva) = 22(t) +a(tio) [ dv '
- A2 = g () =alts).

The error in this approximation is of order O(At¢?). (See ap-
pendix ?? for details.)
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N.2: Numerical solution of the equations of motion

In mechanics we are typically given the acceleration a(z,v,t)
as a function of ¢, or as an expression that may include x, v and
t, and we want to find the motion by solving the mathematical
problem:

A’z

T (4.96)

= (L(x,v,t) ) .’E(to) = o , ’U(to) = o,
Such problems are often called initial value problems. Numeri-
cally, we can solve such problems by calculating v(¢;) and x(¢;)
in incremental steps, starting from the initial values at ¢;. In
each step, we find new velocities and positions from the previous
time step according to:

v(t; + At) =~ v(ty) + alz(t:),v(t:), i) - At (4.97)

a(t: + At) = z(t:) + v(t;) - At . (4.98)

This method — Euler’s method — is an example of a numerical
method. But how good is it? To answer that we need to address
the properties and precision of numerical methods. Here, we pro-
vide a brief mathematical background on numerical methods.

Numerical integration

The problem is simplest to discuss and solve in the case where we
know the acceleration, a = a(t). For example, we may know that
a(t) = Apsinwt. In this case, we find the velocity and position
by direct integration:

() — v(te) = /t: %dt - /t: a(t)dt

We can do that analytically if we know how to solve the integral
of a(t). But what if we do not know how to calculate the integral
or if we only know the value of a(t) at certain times, ¢;?

Then we solve the integral numerically. We have already seen
how we can use Euler’s method to solve the integrals iteratively
— by moving forward in time in small steps. When we know a(t),
we can use equation 4.99 to find the velocity after a small time
step At:

(4.99)

ti+At

v(ti + At) = v(t;) + / a(t)dt . (4.100)
2

If we cannot determine the integral analytically, we must find
approximations for the value of the integral over the time inter-
val At. Euler’s method for numerical integration represents one
of the simplest approximations: We assume that the accelera-
tion is approximately constant throughout the interval from ¢;
to t; + At, so that we can replace a(t) with the value, a(t;), at
the beginning of the interval, as illustrated in figure 4.17:

ti+At ti+At
/ a(t)dt ~ / a(t;)dt = a(t;)At .
¢ ¢

7 i

(4.101)

We call such as method a single point method, since it uses the
acceleration only at a single point, t;, to estimate the integral
over the time-step At. However, we know that a(t) varies over
the interval At. Why choose the value at the beginning of the
interval? Figure 4.17 illustrates various methods. For example,
a better method would be to choose the average of the value of
the beginning and at the end of the interval:

t;+AL 1
/ a(t)dt = 3 (a(ts) + a(ts + At)) At . (4.102)

i
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This method is called the Euler midpoint method or the trape-
zoidal rule when used for numerical integration, and it is illus-
trated in figure 4.17b.

8 8 8
(a) (b) (c)

6 6 6

& & &

" ) W

Zz Zz Zz

EX £4 EX

S S S
2 2 2
0 0

0
to t1 t2 tz ta s to t1 ta tz ta s totitatsgtatstetytstotio

Figure 4.17: Illustration of Euler’s method (a), Euler’s midpoit
method (b), and Euler’s method with a higher time resolution.

To find the whole integral from ¢y to ¢ using these meth-
ods, we divide the interval from tp to t into n pieces of size
At = (t — to)/n, and then sum up the contributions from each
of the steps:

U(t1) = ’U(to =+ At) ~ U(to) =+ ﬁ(to) - At R (4103)
’U(tQ) = ’U(tl =+ At) ~ U(tl) =+ ﬁ(h) - At s (4104)

which gives:
v(t) = v(te) + Y _alti)At, (4.105)

where a(t;) = a(t;) for the single-point method and a(t;) =
(a(ti) + a(t; + At))/2 for the midpoint method.

Numerically, we can therefore approximate the integral from
to to t with:

/t a(t)dt ~ "i: a(t;)At . (4.106)
to i=0

Error estimates in numerical integration

The error is the difference between the exact result and the nu-
merical result. We characterize numerical methods by how the
error depends on At. A method is said to be of order n, and we
write this as O(At"), if the error is proportional to At™. Higher
order methods — that is higher values of n — are better since they
converge more rapidly to the correct result as At is reduced.

We can show that the single point method has an error of
the order O(At) and that the trapezoidal rule has an error of
the order O(A#?):

/t v(t)dt = niv(ti)At + O(At)

(Singe value method)
(4.107)

/ v(t)dt = i % (v(t:) + v(tig1)) At + O(AL)

(Trapezoidal rule)

(See appendix ?7? for a complete argument for the errors of these
methods.)
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Numerical solution of differential equations

Generally, the acceleration in equation 4.96 depends on both po-
sition and velocity, and we cannot solve the problem by direct
integration. Instead, we must solve the differential equation with
the given initial conditions. While this can be a daunting task
using analytical methods, the numerical approach is general and
robust, and almost identical to the approach we used for numer-
ical integration.

We have already introduced Euler’s method, which does not
change significantly when the acceleration is a function of posi-
tion or velocity. We find the velocities and positions by stepwise
approximative integration starting from the initial conditions:

U(ti + At) ~ U(ti) + a(t,-7 Z‘(ti), U(ti))At (4 108)
o(t; + At) >~ z(t;) + v(t;) At ’
We have already demonstrated how to use this algorithm to find
solutions to more complicated problems.

Error estimates for Euler’s method

How can we ensure that the numerical method produces the
correct solution? We characterize the error in the numerical so-
lution by the deviation from the exact solution. The error after
one step in Euler’s method is of order O(At?). This can be
understood from a simple argument that it is worth following:
Fuler’s method is based on the first order approximation to the
derivative: The derivative v’(to) of the velocity v(t) is approxi-
mately:

U(to =+ At) — ’U(to)

"(to) = At) . 4.1
v (to) At + O(At) (4.109)
We can rewrite this to form a step in Euler’s method:
v(to + At) = v(to) + v (to) At + At O(At
(to ) = v(to) + v (to) (At) (4.110)

=v(to) + v/ (to) At + O(AL?)

(Notice that we increase the order O(At) when we multiply by
At.) However, this is only the error after a single step. To find
the velocity after a time ¢ we need to perform n such steps, where
n = (t — to)/At. The error after n steps is n times larger than
the error after one step. We therefore expect the error after n
steps to be proportional to
2 t—to 2
n-O(At”) = T(’)(At ) = O(AY) . (4.111)

The error in Euler’s method after a time ¢ is therefore propor-
tional to At.

Improvements of Euler’s method

How can we reduce the error in Fuler’s method? Let us analyze
the method to see how we can improve it. When we calculate
a new position, x(t; + At), we use the velocity v(¢;) at the be-
ginning of the motion. But the velocity is changing from ¢; to
ti + At. Why should we use the velocity at the beginning at
the interval? A better choice may be to use the velocity in the
middle of the interval at t = t; + At/2 = t;11/. We find the
position at a time t; + At by

x(ti + At) > z(t;) + v(tip1/2) At . (4.112)
Similarly, when we find the velocities using Euler’s method, we
use the acceleration at the beginning of the interval. Since we

now need to find the velocities at the times ¢; 1,2, the original
Euler scheme corresponds to:

’U(ti,I/Q —+ At) = ’U(tifl/g) + a(ti,l/g)At ) (4113)

but also the acceleration is changing throughout the time inter-
val from ¢;_1/2 to t;11/2. Let us instead use the acceleration in
the middle of the interval to find the velocities. The middle of
the interval from ¢;_y,5 to t;_1/2 + At is t;. We therefore use
a(t;) when we calculate the new velocity:

U(ti,1/2 + At) = U(tifl/z) + (L(tl)At . (4114)

Only two small problems remain:

First, we have the initial condition z(t9) = z¢ and v(to) = to.
What is the initial velocity at the intermediate time ¢_; /5 needed
to find the velocity at ¢1/27 Several solutions suggest themselves:
We could simply choose v(t_1/2) = vo. This is the choice will will
usually make. We could also have used somewhat more of our
knowledge of the motion, and put v(t_1,2) = vo — a(to)(At/2).
The differences between these two choices will not be important
for us.

Second, the acceleration may depend on the velocity, a =
a(v,z,t), but when we calculate the new velocities, we use
a(t;) = a(v(t;),xz(t;),t;). We know x(t;) since this is found by
the scheme, but we do not know v(¢;), since we only evaluate the
velocities at ¢;11 /2. Here, we will simply assume that we can use
v(ti) ~ v(t;_1/2) for this calculation.

The method we have developed here is called a leap-frog
method, which generally has second order accuracy, that is, the
error is O(At?), compared to the first order error in Euler’s
method. You can find a more complete discussion of the ac-
curacy of this and other related methods, such as the Verlet
method, in appendix 77.

Let us address the implementation of the leap-frog method
introduced above. The leap-frog scheme provides the follow-
ing method for finding the time development of the equations
of motion. We start at initial conditions z(tp) = =z and
v(t_1/2) =~ v(to) = wo, and find subsequent positions and ve-
locities by

(4.115)
(4.116)

Vig1/2 = Vi—1/2 + a(vi_1/2, @i, ti) AL,
Tip1 = T + V1208 .

Let us introduce a new quantity, u; = v;_1/2 so that indexing in
the algorithm becomes clearer:

(4.117)
(4.118)

Uip1 = U; + a(ui,xi,ti)At s
Tit1 = Ti + i1 At .

where the initial conditions now are xog and uo = vo. When the
algorithm is written in this particular way, we see that it is al-
most exactly the same as Euler’s method, with one small change,
we have changed the calculation of the new position to depend
on the newly calculated velocity. This method is called Euler-
Cromer’s or Euler-Richardson’s method, and it is surprisingly
robust and stable. However, when we interpret the results we
should remember that the velocities really are calculated at in-
termediate times. In practice, we will usually use Euler-Cromer’s
method to solve the equations of motion and interpret the veloc-
ities v(t;—1/2) to be a good approximation of v(t;).

Euler-Cromer’s method

While Euler’s method is attractive because of its transparency
and simple implementation, there are cases when the errors pro-
duced by this method become significant. For example, Euler’s
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method is well know to break down for periodic motion, such
as for harmonic oscillations. The seemingly insignificant modifi-
cation to Euler’s method in the form of Euler-Cromer’s method
makes the model second order, and it is also robust enough to
address oscillations.

Euler-Cromer’s method consist of the following iterative
scheme to find the velocity and position from the acceleration:

U(ti + At) ~ U(ti) + a(ti,vi,xi)At s (4.119)

Z‘(ti + At) ~ :C(tl) + ’U(ti + At)At . (4.120)

In this text we prefer to use Euler-Cromer’s method to solve
most problems because the implementation of the model is trans-
parent, and it produces sufficiently accurate results for almost all
applications. However, you should know that in your professional
career, after finishing this book, there is no good excuse for not
using a much more accurate method, such as the fourth-order
Runge-Kutta method.

Using general “Solvers”

Every time we have solved a problem numerically, we have writ-
ten the solution algorithm explicitly into the program. Fre-
quently, this has been the Euler or Euler-Cromer solver. How-
ever, the methods used to solve the problem numerically have
essentially been the same each time — these methods are general.
For a particular problem, the acceleration is a particular func-
tion of time, position and velocity, and we have a particular set
of initial conditions. That is, we know that

a = a(t,z,v), (4.121)
where we know the functional form of the acceleration. Euler-
Cromer’s method is then implemented by the following itera-
tions:

’U(ti =+ At) = U(ti) =+ Ata(ti, I(ti), U(ti)) s (4122)

x(t; + Ax) = x(t;) + Ato(t; + At) , (4.123)

starting from the initial conditions, x(t9) = xo and v(to) = vo.
This is the part of the structured problem solving method that
we call the “Solver” — it consists of finding the position, z(t;),
and velocity, v(t;), given the initial conditions and the functional
form of the acceleration. We can therefore make this part of the
“Solver” into a general program — a function — that we simply
call with the functional form of the acceleration and the initial
conditions as the input. This also means that we separate the
“Solver” from the formulation of the mathematical program, and
from the discussion of the results —and we can therefore also use
more advanced solvers than we have so far introduced.

In order to use a “Solver” as part of our program, we need to
write a function that returns the acceleration for a given time,
position, and velocity. Let us use the example from example 77,
where the acceleration is:

21w
a=—Acos—— —c-v,

; (4.124)

How can we write a function returning the acceleration, given
values for ¢, z, and v?

In Matlab a function needs to be placed in a separate file
with the same name as the name of the function. However, the
file needs to have the extension .m for Matlab to recognize it as
a function. This file needs to be present in the current working
directory or in the search path used by Matlab. The function
surfacc is implemented in the following way:
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function a = surfacc(t,x,v)

A = 3.0e9; 7

b = 1.0e-9; 7/ m

a = -A*sin(2.0*pi*x/Db);
return

In addition, we need the “Solver” function. This is a general
function that should work for any problem. The problem specific
parts are the function that returns the acceleration, and the ini-
tial conditions for the problem. This “Solver” returns the time,
t;, position, x(t;), velocity, v(t;), and acceleration, a(t;) at the
discrete times t;. For this, we also need to specify the beginning,
to, and end, t1, for the solution, and the time interval, At.

An example of a “Solver” using Euler-Cromer’s method is
presented in the following program. Again, notice that in Mat-
lab this function should be saved in a file called eulercromer.m,
and this file needs to be present in the current working directory
or in the search path used by Matlab.

function [x,v,t] =
eulercromer (accel ,time ,t0,dt ,x0,v0)
Define wariables
= (time - t0)/dt;
= zeros(n,1);
zeros (n,1);
= zeros(n,1);
Initial conditions
v(1l) = vO0;
x(1) = x0;
t(1) = t0;
% Calculation
for i = 1:n-1
a = feval(accel,t(i),x(i),v(i));
v(i+1) = v (i) + axdt;
x(i+1) = x(i) + v(i+1)x*dt;
t(i+1) = t(i) + dt;
end
return

e

NS KB
I

loop

In Matlab we cannot pass a function name directly into a func-
tion. Instead, we pass a text string with the name of the function,
and then execute the function with this name, as illustrated in
the code example above.

When we use a general “Solver” to find the solution to the
problem, the numerical approach comes very close to the struc-
tured problem solving method: We define the acceleration, intro-
duce initial conditions, and call the “Solver” to find the motion.
This is illustrated in the following short code that corresponds
to the program used in example 77:

t0 = 0.0; % s

tl = 10.0e-9; /7 s

dt = t1/10000.0;

x0 = 0.0; 4 m

vO = 0.7; % m/s

[t,x,v,a]l] = eulercromer (’surfacc’,x0,v0,t0,tl1,dt);
A

subplot (3,1,1)

plot (t,x)

xlabel (’t [s]?)
ylabel (’x [m]’)
subplot (3,1,2)

plot (t,v)

xlabel (’t [s]’)
ylabel (v [m/s]’)
subplot (3,1,3)
plot(t,a)

xlabel (’t [s]?)
ylabel(’a [m/s~2]17)

While this general procedure of using a “Solver” is very at-
tractive, we will not use this method in this text because we

believe it is important to be completely confident with the use of
the numerical methods before we introduce an additional level
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of abstraction by using the “Solver”. However, the aim is for you
— the student — to reach such a level that the use of a “Solver”
becomes natural.

Runge-Kutta methods

While Euler’s method has a very simple implementation, and
therefore is a useful starting point when finding coarse solutions
to problem, it does not always produce sufficiently good results.
We address the mathematical theory for various methods, in-
cluding Euler’s method, in detail in appendix ??7. In this book
we will in many cases use Euler’s or Euler-Cromer’s methods,
because the implementation is so simple, and the results are suf-
ficiently good, but we will also encounter problems when Euler’s
or Euler-Cromers’s methods clearly are not sufficiently precise.

In this case we will use higher order integration methods. How-
ever, the tool of choice in our toolbox of methods for solving
equations of motion depends on the type of problem you will
be solving: If you solve for the motion of a single object, the
method of choice is the fourth order Runge-Kutta method, but
if you solve for the motion of many objects at the same time,
such as when you determine the motion of atoms or molecules
in molecular dynamics simulations, the method of choice is the
Velocity-Verlet method. You can read more about these methods
in appendix 77.

In your work as a professional physicist we strongly urge
you to consider the fourth-order Runge-Kutta and the Velocity-
Verlet as your standard workhorses for solving differential equa-
tions. These methods will in most cases provide a decent trade-
off between computational efficiency and accuracy.
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a specified coordinate system

__ dz

e the velocity v(t) =

e the position, z(t), as a function of time, measured in e the acceleration a(t) = % = %
Structured problem-solving approach
Identify Solve Analyse

‘What object is moving?

How is the position, z(t),
measured? (Origin and
axes of coordinate sys-
tem).

Find initial conditions,
z(to) and v(to).

Solution methods

In the “Solver” we solve the equation:

with the initial conditions z(tg) = z¢ and v(tg) = vg.

Numerical solution

Numerically, we solve the equation using an iterative ap-
proach starting from the initial conditions. For example,
we can use Euler-Cromer’s method:

Solve the equation:
Az
dt?

with the initial conditions

z(tg) = zo and v(tg) =
vo using analytical or nu-
merical techniques.

=a(z,,1),

The solution gives the po-
sition and velocity as a
function of time, xz(t),
and v(t).

Check validity of z(t) and
v(t).

Use z(t) and v(t) the an-
swer questions posed.

Evaluate the answers.

Analytical solution

When the acceleration, a = a(t), is only a function of time,

t, we can solve the equations by direct integration:

o(t) = v(to) —l—/ta(t)dt,

to

x(t) = z(to) —I—/ v(t)dt ,

A typical example is motion with constant acceleration.
When the acceleration has a general form, a = a(t, z,v),

to

v(t; + At) = v(t;) + At - a(z(t;), v(t:), ) ,

o(t; + At) = 2(t;) + At - v(t; + At) .

we need to solve the differential equation. In this case,
there are no general approaches that always work. Instead,
you must rely on your experience and your knowledge of
calculus.
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Exercises — Chapter 4

Discussion questions

4.1: Pedometer. Can you use the accelerometer in your
phone as a pedometer? Explain.

4.2: Error in speedometer. If your speedometer overesti-
mates your velocity by 10%, how will that affect your measure-
ment of your cars acceleration?

4.3: Speed of the clouds. Is it possible to use your camera
to measure the speed of the clouds? What would you need to
know to do that?

4.4: The slow trip. Is is possible to go for a trip (in one di-
mension) where the total displacement is zero, but your average
velocity is non-zero?

4.5: Driving backwards. You drive in a train that is subject
to constant acceleration. Can the train reverse its direction of
motion?

4.6: No motion. Is is possible to envision a motion where
you for a period have no displacement, but non-zero velocity?
(You may use an z(t) plot for illustration).

4.7: Non-falling ball.  You throw a ball downwards from a
high building. Can you think of a situation where the ball would
have an acceleration upwards? What would happen?

4.8: Travels by sea. A boat is sailing north. Is it possible
for the boat to have a velocity toward the north, but still have
an acceleration toward the south?

4.9: Acceleration during throw. You throw a ball upwards
as far as you can. The ball reaches its maximum height far above
you. When was the magnitude of the acceleration the largest?
While in your hand while throwing it or during its subsequent
motion through the air?

4.10: Passing objects. A disgruntled physics student drops
his pc from a window onto the ground. (You should not try
this at home). At the same time as she lets the pc go, another
student throws a ball upwards. The ball reaches its maximum
position at the exact height where the pc was released. At what
height does the pc and the ball pass each other? At the mid-
point, above the midpoint or below the midpoint? Do they have
the same magnitudes of their velocities at this point?

Discrete motion

4.1: Space shuttle launch.  When the space shuttle is lift-
ing off, the vertical positions for the first 10 seconds in 1 second
intervals are given as

tfs] y[m] |t[s] y[m]
0 0 5 375
1 15 | 6 540
2 60 | 7T 735
3135 | 8 960
4 240 | 9 1215

(a) Draw the motion diagram and the displacements for this
motion.

(b) Use the motion diagram to find the average velocity as a
function of time after lift-off.

(c) Use the motion diagram to find the average acceleration as
a function of time after lift-off.

4.2: Capturing the motion of a falling ball. We use
an ultra-sonic motion detector to measure the vertical position
of a small ball. We throw the ball upwards, and measure the
position until it hits the ground. You find the measured data in
the file ballmotion.d. Each line in the file consists of a time, ¢;,
measured in seconds, and a distance, x;, measured in meters.

(a) Plot the position as a function of time for the ball.

(b) How long time does it take until the ball hits the ground?
(c) Plot the average velocity as a function of time for the ball.
(d) What is the maximum and minumum velocity of the ball?

(e) What is the initial velocity — the velocity of the ball at the
start of the motion?

(f) Plot the average acceleration as a function of time for the
ball.

(g) When is the maximum and minimum accelerations? Does
this correspond with your physical intuition?

4.3: Motion graphs. A car is driving along a straight road.
Sketch the position and velocity as a function of time for the car
if:

(a) The car drives with constant velocity.
(b) The car accelerates with a constant acceleration.
(¢) The car brakes with a constant acceleration.

4.4: Random walker. Figure 4.18 shows the motion of a
tiny grain of dust bouncing randomly around in an air chamber.

.

=
72 N \\\ //\/\ 7
Wi
74 1 1 1 1
0 20 40 60 80 100

t [s]

Figure 4.18: Random motion of a grain of dust.

(a) When is the grain to the left of the origin?
(b) When is the grain to the right of the origin?
(c) Is the grain ever exactly at the origin?

4.5: Motion diagram for a car. Figure 4.19 shows the
motion diagram for a car driving along a straight road.

0s 1s 25 3 45 55 65 7s 8s 9 10s s

@ o o,60 @ 0 @ ©, 0 ©O ©0,0 O©0,0 0 g 0o 0,00 ,
0 50 100 150 200 250 300 350 400 450 500

125 135 14s 15 16s 17s 18s 19s 20s

Figure 4.19: Motion diagram for a car.

(a) Describe the motion of the car.
(b) Sketch the position as a function of time.
(c) Estimate the velocity of the car throughout the motion.

(d) Estimate the acceleration of the car throughout the motion.
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4.6: Discover the motion.
diagram for a motion.

Figure 4.20 shows the motion

10s 9s 8s 7s , 6s
s
[¢] [¢] [e)e) ele) @O
L | | | | | | I I | ]
-100 -80 -60 -40 -20 0 20 40 60 80 100

x [m]

5s
3s 4s

Figure 4.20: Can you describe the motion?

(a) Describe the motion qualitatively.

(b) Suggest a process that leads to this motion diagram.

Continuous motion

4.7: The fastest indian. In the film “The World’s Fastest
Indian” Anthony Hopkins plays Burt Munro who reaches a ve-
locity of 201 mph in his 1920 Indian motorcycle.

(a) At this velocity, how far does the Indian travel in 10s?
(b) How long time does the Indian need to travel 1km?

4.8: Meeting trains. A freight train travels from Oslo to
Drammen at a velocity of 50km/h. An express train travels from
Drammen to Oslo at 200 km/h. Assume that the trains leave at
the same time. The distance from Oslo to Drammen along the
railway track is 50km. You can assume the motion to a long a
line.

(a) When do the trains meet?
(b) How far from Oslo do the trains meet?

4.9: Catching up. Your roommate sets off early to school,
walking leasurly at 0.5m/s. Thirty minutes after she left, you
realize that she forgot her lecture notes. You decide to run after
her to give her the notes. You run at a healthy 3 m/s.

(a) What is her position when you start running?
(b) What is your position when t < ¢1?

(c) Sketch the position of you and your roommate as functions
of time and indicate in the figure where you catch up with
her.

(d) How long time does it take until you catch up with her?

(e) How far has she come when you catch up with her? We find
the position from z(t) for ¢ = 2160s for either person:

za(t) = 0.5m/s 2160s = 1080m .

Now you have developed a strategy to solve such a problem,
let us make the problem more complicated and see if you still
can use your strategy.

First, let us assume that you start off at vo = 5m/s, but then
you tire gradually, so that your speed drops off with distance,
reducing your speed by 1m/s for every hundred meters you run,
until you reach a speed of v1 = 2m/s, which you can keep for a
long time.

(f) Show that your velocity as a function of position can be
written as:

v(CC) = { o ;b *

where b = 1m/s/100m.

v <wv =2m/s

otherwise (4.125)

(g) Plot or sketch v(x).
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(h) If you know your position and velocity at a time ¢, how
can you find the position and velocity at ¢t + At, a small
time-step later?

(i) Write a program to find your position as a function of
time. (Remember that you first start running at the time
t = t; = 1800s. Before this you are standing still.)

(j) Validate your program by setting b = 0 and comparing the
calculated x(t) with the exact result, x.(t) = vo(t — t1)
when t > t;.

(k) How can you use this result to find where you catch up with
your roomate?

(I) Where do you catch up with your roommate?

(m) What parts of your solution strategy are general, that is,
what parts of your strategy does not change if we change
how either person moves?

4.10: Electron in electric field.  An electron is shot through
a box containing a constant electric field, getting accelerated in
the process. The acceleration inside the box is a = 2000m/s>.
The width of the box is 1m and the electron enters the box with
a velocity of 100m/s. What is the velocity of the electron when
it exits the box?

4.11: Archery. As an expert archer you are able to fire off
an arrow with a maximum velocity of 50m/s when you pull the
string a length of 70cm. If you assume that the acceleration of
the arrow is constant from you release the arrow until it leaves
the bow, what is the acceleration of the arrow?

4.12: Collision. A car travelling at 36km/h crashes into a
mountain side. The crunch-zone of the car deforms in the colli-
sion, so that the car effectively stops over a distance of 1m. Let
us assume that the acceleration is constant during the collision,
what is the acceleration of the car during the collision? Compare
with the acceleration of gravity, which is g = 9.8m/s”.

4.13: Braking distance. When you brake your car with
your brand new tyres, your acceleration is 5m/ %

(a) Find an expression for the distance you need to stop the car
as a function of the starting velocity.

With your old tires, the acceleration is only two thirds of the
acceleration with the new tyres.

(b) How does this affect the braking distance?

4.14: Motion with constant acceleration. An ob-
ject starts at * = z¢ with a velocity v = wvo at the time
t = to and moves with a constant acceleration ag. Show that

the velocity v when the object has moved to a position x is
v —d = 2a0(x — x0).
4.15: Position plots.  The position z(t) of a particle moving

along the z-axis is given in figure 4.21.

5
E. O@ A
8
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Figure 4.21: The position of a particle moving along the x-
axis.
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(a) Indicate in the figure where the velocity of the particle is
positive, negative, and zero?

(b) Indicate in the figure where the velocity is maximal and
minimal.

c¢) Indicate in the figure where the acceleration is positive, neg-
g p ’ g
ativc, and zero?

4.16: Velocity plots. The velocity v(t) of a particle moving
along the z-axis is given in figure 4.22.
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Figure 4.22: The velocity of a particle moving along the x-axis.

(a) Indicate in the figure where the velocity of the particle is
positive, negative, and zero?

(b) Indicate in the figure where the velocity is maximal and
minimal.

c¢) Indicate in the figure where the acceleration is positive, neg-
g p ’ g
ative, and zero?

(d) Indicate in the figure where the acceleration is maximal and
minimal.

4.17: Velocity plots. The velocity v(t) of a particle moving
along the z-axis is given in figure 4.23.
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Figure 4.23: The velocity of a particle moving along the x-axis.

a) Indicate in the figure where the velocity of the particle is
Indicate in the fi here th locity of th ticle i
positive, negative, and zero?

(b) Indicate in the figure where the particle speeds up and slows
down.

(¢) Indicate in the figure where the particle is stationary — that
is, where it does not move.

(d) Indicate in the figure where acceleration is the largest and
the smallest.

(e) Sketch the position as a function of time, x(¢).

4.18: A swimming bacterium. When the heliobacter bac-
teria swims, it is driven by the rotational motion of its tiny tail.
It swims almost at a constant velocity, with small fluctuations
due to variations in the rotational motion. As a simple model

for the motion, we assume that the bacteria starts with the ve-
locity v = 10um/s at the time ¢ = 0s, and is then subject to
the acceleration, a(t) = ao sin(2xt/T), where ap = 1pum/s®, and
T = 1lms.

(a) Find the velocity of the bacterium as a function of time.
(b) Find the position of the bacterium as a function of time.

(¢) Find the average velocity of the bacterium after a time
t =107

4.19: Resistance. (This problem requires some knowledge
of statistics). An electron is moving with a constant accelera-
tion, ag, through a conductor. However, there are many small
irregularities in the conductor — called scattering centers. If the
electron hits a scattering center it stops, that is, its velocity im-
mediately becomes zero. The scatting centers have a constant
density. The probability for the electron to hit a scattering cen-
ter when it moves a distance Az is P = Az/b, where b is a
length describing the typical length between two scattering cen-
ters. Assume that the electron starts from rest. (For simplicity,
we measure lengths in nm and time in ns, and you can assume
that b = 1 nm and that ap = Inm/ns?).
First, we address the case without scattering.

(a) Write a program to find the motion of the electron using
Euler-Cromer’s method to find the velocity and position
from the acceleration. Plot the position, z(t), and veloc-
ity, v(t), of the electron as functions of time and compare
with the exact result.

During the time interval At, the electron moves from z(¢) to
z(t + At). The probability for the electron to stop during this
interval is P = (z(t + At) — z(t))/b.

(b) Explain why the following method models a collision:

dx = x(i+1) - x(i);

p = dx/b;

if (rand(1,1)<p)
v(i+1l) = 0.0;

end

where rand(1,1) produces a random number uniformly
distributed between 0 and 1.

(¢) Rewrite your program to include the effect of collisions us-
ing the algorithm described above. Plot the position, z(t),
and the velocity, v(t), as functions of time. What do you
see? Comment

(d) Find the average velocity vavg for the electron.
The following parts are difficult:

(e) How does v444 depend on ap and b? Can you make a theory
that gives the value of vaug?

(f) (Requires knowledge of statistics). What is the probability
density for the distance, X, between two collisions?

4.20: Ball on vibrating surface. A ball is falling vertically
through air over a vibrating surface. The position of the surface
is zw(t) = Acoswt, where A = lem and w is called the angu-
lar frequency of the vibrations. The ball starts from a position
z = 10cm at t = 0s. The acceleration of the ball is given as:

o —g T > Ty
a(z,v,t) _{ —g—C@—zw) < T4

where g = 9.81m/s® and C' = 10000.0s~2.

(4.126)

(a) Write down the equation you need to solve to find the mo-
tion of the ball. Include initial conditions for the ball.
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(b) Write down the algorithm to find the position and velocity
at t;41 = t; + At given the position and velocity at ¢;,. Use
Euler-Cromer’s scheme.

(¢) Write a program to find the position and velocity of the ball
as a function of time.

(d) Check your program by comparing the initial motion of the
ball with the exact solution when the acceleration is con-
stant. Plot the results.

(e) Check your program by first studing the behavior when the
vibrating surface is stationary, that is, when A = Om and

Anders Malthe-Sgrenssen (2013)

EXERCISES — CHAPTER 4 61

Ty = Om. Plot the resulting behavior. Ensure that your
timestep is small enough, At = 10™°s. What happens if
you increase the timestep to At = 0.02s?

(f) Finally, use your program to model the motion of the ball
when the surface is vibrating. Use A = 0.0lm, w = 10s™*,
and simulate 5s of motion. Plot the results. What is hap-
pening?

(g) What happens if you increase the vibrational frequency to
w = 30s"'?. Plot the results. Can you explain the differ-
ence from w = 10s~'7.
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Project 4.1: Sliding on snow

In this project we address the motion of an object sliding on
a slippery surface — such as a ski sliding in a snowy track. You
will learn how to find the equation of motion for sliding systems
both analytically and numerically, and to interpret the results.

We start by studying a simplyfied situation called frictional
motion: A block is sliding on a surface as illustrated in fig-
ure 4.24, moving with a velocity v in the positive z-direction.
The forces from the interactions with the surface results in an

acceleration:
—u(jvh)g v >0
a= 0 v=0 |, (4.127)
w(vg  v<0

where g = 9.8rn/s2 is the acceleration of gravity. Let us first
assume that p(v) = g = 0.1 for the surface. That is, we assume
that the coefficient of friction does not depend on the velocity of
the block. We give the block a push and release it with a velocity
of 5m/s.

.

Figure 4.24: A block moving on a slippery surface.

(a) Find the the velocity, v(¢), of the block.
(b) How long time does it take until the block stops?

(c) Write a program where you find v(¢) numerically using Eu-
ler’s or Euler-Cromer’s method. (Hint: You can find a
program example in the textbook.) Use the program to
plot v(¢) and compare with your analytical solution. Use
a timestep of At = 0.01.

The description of friction provided above is too simplified.
The coefficient of friction is generally not independent of veloc-
ity. For dry friction, the coefficient of friction can in some cases
be approximated by the following formula:

Hs — Hd

eyl (4.128)

n(v) = pa +

where p1qg = 0.1 often is called the dynamic coefficient of friction,
s = 0.2 s called the static coefficent of friction, and v* = 0.5m/s
is a characteristic velocity for the contact between the block and
the surface.

(d) Show that the acceleration of the block is:

Hs — Hd

Troe (4.129)

a(v) = —pag — g

for v > 0.

(e) Use your program to find v(t) for the more realistic model,
with the same starting velocity, and compare with your
previous results. Are your results reasonable? Explain.

The model we have presented so far is only relevant at small
velocities. At higher velocities the snow or ice melts, and the co-
efficient of friction displays a different dependency on velocity:

1

w(v) = pim (L) : when v > vy, ,
(%

m

(4.130)

where v, is the velocity where melting becomes important. For
lower velocities the model presented above with static and dy-
namic friction is still valid.

(f) Show that

Hs — Hd
14 v /v’
in order for the coefficient of friction to be continuous at
V= Up.

I = ptd + (4.131)

(g) Modify your program to find the time development of v
for the block when v, = 1.5m/s. Compare with the two
other models above: The model without velocity depen-
dence and the model for dry friction. Comment on the
results.

(h) The process may become more clearer if you plot the accel-
eration for all the three models in the same plot. Modify
your program to plot a(t), plot the results, and comment
on the results. What would happen if the initial velocity
was much higher or much lower than 5m/s?
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