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Project 11.1: Trapping atoms

In this project you will use a simple model for how we trap
and cool atoms. Today, it is possible to cool atoms to about
10−9K, which corresponds to about −273.15◦. Typically, you
want to both trap the atom and cool it, so that you can study
it in detail. The motivation comes from quantum mechanics,
because some quite exotic phenomena can only be systemati-
cally studied at low temperatures. For example, experiments on
Bose-Einstein condensates are based on similar techniques, and
quantum computers may be based on cold atoms as its basic
tools.

Here we study a magneto-optical trap (MOT) (See fig-
ure 11.30). Detailed calculations of the interactions in the trap
are beyond the scope of this course, since that requires detailed
quantum-mechanical calculations. However, we will introduce a
model that can be justified by quantum-mechanical calculations
and that captures the main features of the process.

Figure 11.30: Illustration of a MOT. The atoms are “col-

lected” in the center of the glass container. A laser enters from

the sides, while a magnetic field is generated by the coils.

We address a one-dimensional system. An atom moves along
the x-axis with a kinetic energy K = 1

2
mv2. In the range

−x0 < x < x0 the atom enters the trap, and is affected by a
magnetic field. The interaction with the magnetic field gives rise
to a poential U(x), which we model as:

U(x) =

{

U0 |x| ≥ x0

U0

|x|
x0

|x| < x0

. (11.199)

Notice that this is all we need to know about the interaction
between the atom and the magnetic field.

(a) Make a sketch of U(x). Discuss the motion of the atom for
representative values of the total energy E of the atom.
Find equilibrium points and discuss their stability.

(b) Find the force F (x) acting on the atom from the magnetic
field. Is this force conservative?

(c) If the atom of mass m has the velocity v0 =
√

4U0/m at
x = 0, find the velocity at x = x0/2 and x = 2x0.

(d) If the atom of mass m has the velocity v0 = −
√

4U0/m at
x = 0, find the velocity at x = −x0/2 and x = −2x0.

Let us also assume that the atom is charged and subject to a
constant electrostatic force, F0 acting in the positive x-direction.

(e) If the atom has the kinetic energy K = 0 at x = 0, how
large must F0 be in order for the atom to escape? And if
the kinetic energy is K = U0/2 at x = 0, how large must
F0 then be in order for the atom to escape?

In the following, let us assume that the atom is only affected
by the magnetic field. In addition, while the atom is in the trap,
we send photons with a particular wavelength at the atom. For
example, for Li-atoms, a wavelength of 671nm is used. The force
on the atom due to a continuous adsorption (and emission) of
photons, can be written as

F = −αv , (11.200)

where v is the velocity of the atom, and α is a constant. This
force also only acts in the range −x0 < x < x0.

(f) Is the force F conservative? (Provide an argument for your
answer).

The equations of motion for the atom may be non-
dimensionalized, but we will not address the details of this. You
can in the following use the non-dimensional values U0 = 150,
m = 23, x0 = 2, and α = 39.48, and describe the motion using
non-dimensional positions, times, and velocities.

The equations of motion for the atom are difficult to solve an-
alytically, but can be addressed using numerical methods. In the
following exercises, use your experience with numerical solutions
of the equation of motion to solve the problems.

(g) Find an expression for the acceleration of the atom. What
are the initial conditions for the motion?

(h) Write a program to find the position, x(t), as a function of
time for the atom given the expression for the acceleration
and the initial conditions from above.

(i) Find the motion, x(t), of an atom with velocity v0 = 10.0 at
x = −5. Describe what happens.

(j) Find the motion, x(t), of an atom with velocity v0 = 8.0 at
x = −5. Describe what happens.

(k) (Optional) Find the maximal initial velocity v0 the atom
may have and still be trapped.
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