
Anders Malthe-Sørenssen

Introduction to mechanics
Integrating numerical and analytical methods

c©AMS 2013

Preface

This compendium is intended as a support for teaching in preparatory course
in computer programming for students in the MENA and LEP programs, which
usually do not have prior knowledge of programming from INF1100 course. The
aim of the course is to provide a good practical background to preform calculations
in Python and MATLAB relevant to FYS-MEK1110.

Most of the text in this compendium is taken from chapter 2 in Anders Malthe-
Sørenssen’s book: "Introduction to mechanics-Integrating numerical and analytical
methods", but has been slightly modified by Svenn-Arne Dragly and Milad H.
Mobarhan. The modifications made includes rewriting MATLAB codes to Python
and including the section "Terminal basics".

One essential point is to notice that you learn programming by doing it, not
by just reading how to do it. Therefore is it important that you spend a lot of
time to write your own programs, which of course don’t need to be complex. You
will find some basic exercises in this compendium, which we recommend you to do
strongly. In addition a more extensive exercise is included which is based on the
FYS-MEK1110 syllabus. If you are interested to do more exercises, we recommend
you to have look in the textbook used in INF1100. A more detailed compendium
about programming , with emphasis on Python, for MENA and LEP students can
be find at http://folk.uio.no/masan/INFForkurs/.

We hope that this compendium can help you to get an overview in basic pro-
gramming and make the programming which comes later in FYS-MEK1110 more
interesting and affordable. We will also thank Anders Malthe-Sørenssen for lend-
ing lots of material.

Svenn-Arne Dragly & Milad H. Mobarhan

i

http://folk.uio.no/masan/INFForkurs/

Contents

Contents iii

1 Getting started with programming 1
1.1 Terminal basics . 1
1.2 A Python calculator . 2
1.3 Scripts and functions . 4

1.3.1 Scripts . 4
1.3.2 Functions . 5

1.4 Plotting data-sets . 6
1.5 Plotting a function . 7

1.5.1 Loops . 7
1.5.2 Vectorization . 9

1.6 Random numbers . 11
1.7 Conditions – if/else/end . 11
1.8 Reading real data . 12
Summary . 14
Exercises . 16

Appendices 21

Solutions to exercises 23

iii

Chapter 1

Getting started with programming

Our approach is to use programming techniques and tools to study physics. You
will therefore need to know a few programming basics in order to profit from this
approach. However, if you do not have a relevant background in introductory
scientific programming, do not despair. Experience shows that you can learn
to program through your first physics course – many students have done this
successfully and with good results. In order to prepare you for the main text, this
chapter provides an introduction to programming.

1.1 Terminal basics
While you may not have to use a terminal at all while programming, it is an
awesome place to get down and dirty with the concepts of programming. On the
machines in the computer lab, select Applications→ Utilities→ Terminal to open
up a terminal. On Mac OS X you need to look for the Terminal application in the
Applications folder. In a terminal window one can write commands, and the line
following the command shows the output. As an example if you type:
date

and press enter, the output is the date and time. It is necessary to know some few
terminal commands which are useful to know:

• The current directory, also known as working directory, is where you are,
which is equivalent to having a window open and viewing the files. In ter-
minal you can find your working directory by typing:
pwd

• To list the files and directories at your current working directory, type
ls

which stands for “list files“.

• In order to make a new folder i your current directory, you can type "mkdir"
(make directory) followed by the name you choose for the new folder, in this
case "test"
mkdir test

• A folder can be removed using "rmdir" (remove directory) if the folder is
empty, else use "rm -r":
rmdir test

• You can go to another directory with "cd" (change directory). If for example
your current directory is "dir1" and a folder name "dir2" is in this directory
and you want to go to "dir2" directory, you can type
cd dir2

If you want go back to "dir1" from "dir2" you simply type:

1

2 Chapter 1. Getting started with programming

cd ..

• An empty file is created by typing:
touch file

In this case a new file with "file" is created in the working directory. Note
that if you want to make a specific type of file you can just add extension to
the name; .tex,.py, .m etc..

• A file can be removed using "rm" (remove):
rm name_of_file

• In order to move files from one directory to another, type
mv name_of_file destination

In this case "destination" should be changed with destination’s path. For
example if your working directory is "dir1", containing a directory "dir2"
and a file "test", and you want to move "test" to "dir2", you should type:
mv test dir2

• To copy files, type:
cp name_of_file destination

To copy folders you need to type "cp -r".

These examples illustrate that when we type a command it is executed right
after. If we want to to execute several commands after each other, it is natural to
join them to a program. We will have closer look to this in next section.

1.2 A Python calculator
We are in this text using the editor Spyder to work with Python. When you
start Spyder, you get a window (figure ??) where you can type commands to be
executed. Click on the Console window in the lower right corner and type:
>>> 9*4

(The > characters in front of the command indicates that you are supposed to
type this into a Python terminal, and not the regular terminal.) Press enter, and
the following will show up:
36

Notice the difference between the text you type, which is preceded by >>, and the
results generated by the program, which in this text are typeset in red.

Python can be used as an advanced calculator by typing expression on the
command line:
>> 3*2**3+4

28

Standard operators are plus (+), minus (-), multiplication (*), division (/), and
power (**). Powers of ten are input using e:
>>> 4.5 e4

45000

>>> 2.5e -10

2.5e -10

which also shows how Python displays numbers.
Python has most mathematical functions and constants built in, such as pi,

cos, sin, and exp To use them, we need to load the pylab module first:
>>> from pylab import *

After this, we are ready to use mathematical functions:

Anders Malthe-Sørenssen (2013)

Section 1.2. A Python calculator 3

Figure 1.1: Window appearing when you start Spyder. Start typing into the command
window in the lower right corner.

>>> 4* pi

12.566370614359172

Python uses radians for the trigonometric functions:
>>> sin(pi /6)

0.49999999999999994

As you can see, Python does not always round off as you may expect, even though
the answer is close to the exact answer (sin(π/6) = 0.5). You can find a list of
useful syntax, functions and expressions in the summary 1.8.

Python becomes more useful when you have a formula you want to use. For
example, you may want to use the formula:

TF = 9
5TC + 32 , (1.1)

to find the temperature, TF , in Fahrenheit, given the temperature TC in centi-
grade. We may type this formula directly into Python.
>>> TF = 9./5.* TC + 32.

If you type in the above formula and press enter, you will we bump into the
following error:
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError : name ’TC ’ is not defined

Ooops. That did not work, because Python does not yet know the value of TC .
We give TC a value and retype the formula:
>>> TC = 40.

>>> TF = 9./5.* TC + 32.

To see the answer, type
>>> print TF

104.0

Anders Malthe-Sørenssen (2013)

4 Chapter 1. Getting started with programming

Note one important thing here. We are typing periods after each number. This is
because Python differs between integers (1, 2, 3, 4, . . .) and real numbers (1.0, 2.3, 4.9, . . .).
Typing a period is simply a shorthand of typing a zero decimal. As an example,
the following two inputs are equal:
>> TF = 9./5.* TC + 32.
>> TF = 9.0/5.0* TC + 32.0

Integer division is not the same as real number division. With integer division,
9/5 = 1, while with real numbers 9.0/5.0 = 1.8. (This will change in the next
version of Python where all numbers are assumed to be real, but for now we need
to be explicit about when we are using real numbers.)

Instead of retyping the formula, you can use the up arrow to find your previ-
ously typed commands and execute them again. We have now defined a variable,
TC. You can see the value given to TC by typing:
>>> print TC

40

Notice that we assigned a value to the variable TF through a calculation. We have
not introduced a function for TF. What does this mean? It means that if you
change the value of TC, the value of TF will not change automatically unless you
retype the formula for TF. You can check this by assigning TC a new value, and
then asking Python for the value of TF:
>>> TC = 50

>>> print TF

104.0

This is an important aspect of a programming language such as Python: a variable
does not change value unless you assign a new value to it!

1.3 Scripts and functions
However, we do not want to type in the whole formula each time we want to
calculate a new value for TF . Instead we can make a script, a group of several
statements, or a function, similar to an internal function such as sin.

1.3.1 Scripts

We can group several statements into a script, which we can reuse. You do this by
opening a new file in the File menu in Spyder: File→ New file.... This opens
a new window with an editor. Here you can now type (or copy) the commands we
already used:
TC = 40.
TF = 9./5.* TC + 32.
print TF

Now, we need to save the script. In the editor window you do: File→Save. You
must give the script a name and choose where to place it. This will generate a file
with an extension .m – we call such a file an m-file, because it shows that the file
contains a Python script/program. You run the program from the editor window
by typing the F5 key. A dialog box will show up. Select ”Execute in current
Python or IPython interpreter“, leave all other this options as is and click the Run
button. As a result the commands in the script are executed as if they were typed
into the Python window, and the resulting output is shown in the Python window:
104.0

You can now change the value of TC in the script and rerun the script to redo the
calculation for another temperature. Notice that we wrote the script so that the
temperature TC is assigned inside the script. This means that if you change the
value of TC on the command line, for example by typing:
>>> TC = 45.

Anders Malthe-Sørenssen (2013)

Section 1.3. Scripts and functions 5

and then run the script – the script will not use this new value of TC, but instead
use the value from inside the script.

Writing scripts to solve simple problems will be our standard operating proce-
dure throughout this text. This is an efficient way to develop a simple program,
change the parameters (such as changing TC), and rerunning the program with
new parameters. While this is practical for developing short programs and solving
simple problems, it is not good programming practice. In general, we encourage
the development of good programming practices, but in this text we will prioritize
making the code as simple as possible.

1.3.2 Functions

From a programming perspective, it is better to introduce a function to calculate
the temperature. A user defined function acts just like a predefined mathematical
function such as sin or exp. We define a function by opening a new m-file: Push
File→New→Blank M-file. We define a function by typing the following into the
editor:
def convertF (TC);

Converts from centigrade to Fahrenheit
TF = 9./5.* TC + 32.
return TF

and save with the name convertF.m
What do these statements do? We define a function by the command function.

First, we write what the function should return. Here, the function returns the
variable TF. We introduce the name of the function, convertF, and the arguments
that we need to input when we use the function – here the only argument is the
temperature in centigrades, TC. Inside the function we must calculate the value of
TF, because this is the value the function is supposed to calculate.

We call our new function by typing:
>>> convertF (45)

113.0

Notice that Python requires each such used-defined function to be in a separate
file, and that the file must be in the search path for Python. This means that
the file convertF.m must be in the current directory or in the standard Python
directory for this to work. I suggest that you always save the functions you need
in the same directory as you save the scripts you are currently working on, and
that you make new directories for each problem you are working on.

A particular feature of functions is that the internal calculations and variables
used inside the function are lost as soon as the function is finished. For example,
Python may use several calculation steps if we call the sin function, but this is
hidden from us. Outside the function we only see the result of the function. To
illustrate this, we could break our short function into several steps:
def convertF2 (TC);

Converts from centigrade to Fahrenheit
ratio = 9./5.
constant = 32
TF = factor *TC + constant ;
return TF

Here, we have introduced two internal variables, ratio and constant, that are
forgotten as soon as the function is finished. For example, if we type:
>>> convertF2 (45)

113.0

>>> print ratio

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

NameError : name ’ratio ’ is not defined

we see that Python does not know the value of ratio after the function has done
its work.

Anders Malthe-Sørenssen (2013)

6 Chapter 1. Getting started with programming

Functions are powerful and necessary tools of more advanced programming
techniques, and will be gradually introduced throughout the text. But initially
we try to make the programs as simple as possible, and we will then use simple
scripting as our main tool.

1.4 Plotting data-sets
Python not only works as a numerical calculator, it also has advanced data visual-
ization methods for visualizing data. For example, as part of a laboratory exercise
you may have measured the volume and mass of a set of steel spheres. You number
the measurements using the index, i, and record masses mi and volumes Vi in the
following table:

i 1 2 3 4 5 6
mi 1 kg 2 kg 4 kg 6 kg 9 kg 11 kg
Vi 0.13 l 0.26 l 0.50 l 0.77 l 1.15 l 1.36 l

where we have used that 1 litre = 1l = 1dm3.
Such a sequence of numbers are stored in an array (or a vector) in Python.

We define the sequence of masses and volumes in Python using
>>> m = [1, 2, 4, 6, 9, 11]
>>> V = [0.13 , 0.26 , 0.50 , 0.77 , 1.15 , 1.36]

We can find an individual mass value by:
>>> print m[1]

1

>>> print m[4]

6

There are now 6 values for the masses, numbered m(1) to m(6). We call the array
m a 6× 1 array, or a vector of length 6. The volumes are stored the same way:
>>> print V[1]

0.13

>>> print V[4]

0.77

The enumeration of the two arrays is identical: element m[4] of the masses corre-
sponds to element V[4] of the volumes.

The relation between m and V is illustrated by plotting V as a function of m.
This is done by the plot command:
>>> plot(m,V,’o’)

where the string ’o’ ensures that a small circles is plotted at each data-point.
The plot command makes a “scatter” plot – it contains a point for each of the
data-points m(i), V (i) in the two arrays. The two arrays must therefore be the
same length – they must have the same number of elements. We annotate the
axes by:
>>> xlabel (’m [kg]’)
>>> ylabel (’V [l]’)

where the xlabel refers to the first array m in the the plot(m,V,’o’) command,
and the ylabel refers to the second array – the V array. The resulting plot in
Python is shown in figure 1.2.

Where did the units (kg and liters) go when we defined the mass m and the
volume V? We cannot use units when we introduce digital representations of the
numbers. We can only input numbers into Python, and we have to keep track of
the units. This is why we specified the units along the axes in the xlabel and
ylabel commands.

Anders Malthe-Sørenssen (2013)

Section 1.5. Plotting a function 7

Figure 1.2: The Python window with the plot of V as a function of m (Left) and with
the plot of sin(x) as a function of x for 10 points in blue and for 1000 points in red.
(Right)

1.5 Plotting a function
Python cannot plot a function such as sin(x) directly. We must first generate
two sequences of numbers, one sequence for the x’es and one sequence for the
corresponding values of sin(x), and then plot the two sequences against each other.
While this may sound complicated, Python has functions that ensure that you can
almost directly write the mathematical expression into Python.

1.5.1 Loops
We want to make a sequence of x’es, such as 0.0, 0.1, 0.2, 0.3, . . . etc, and then for
each xi we want to calculate the corresponding value for sin(xi):

i 1 2 3 4 5 . . . n

xi 0.0 0.1 0.2 0.3 0.4 . . . 10.0
sin(xi) sin(0.0) sin(0.1) sin(0.2) sin(0.3) sin(0.4) . . . sin(10.0)

where we generate xi from 0.0 to 10.0 in steps of 0.1. How do we generate such
an array in Python? First, we have to generate the array1. How many elements
do we need? Going from 0.0 to 10.0 in steps of 0.1 we need:

n = 10.0− 0.0
0.1 + 1 , (1.2)

steps, where we have added one in order to include the last step (otherwise we
would stop at 9.9 instead of at 10.0. We define an array of this length by:
>>> n = ceil ((10.0 -0.0) /0.1) +1
>>> x = zeros ((n ,1))

Here, the function ceil() rounds up after the division, and the function zeros((n,1))
generates and returns an array of size n by 1 which is filled with zeros. Now we
need to fill the array:
>>> x[0] = 0.0;
>>> x[1] = 0.1;
>>> x[2] = 0.2;
>>> x[3] = 0.3;
>>> x[4] = 0.4;
...
>>> x[n -1] = 10.0

1In Python it is not necessary to define the size of the array before it is filled. We could just
fill it as we go along, but this is not good coding practice, it will lead to very slow codes for large
arrays, and may cause surprising errors in your programs. We will therefore always predefine
the size of arrays.

Anders Malthe-Sørenssen (2013)

8 Chapter 1. Getting started with programming

Note that Python starts counting on zero, so the first index is 0, while the last
index is n− 1.

Fortunately, there is a more efficient way of doing this – by using a for-loop!.
A for-loop allows us to loop through a list of values 1, 2, 3, . . . , n for the variable
i, and then execute a set of commands at each step – exactly what we need. We
can replace the long list of x(1) = 0.0 etc by the loop:
>>> for i in range (int(n)):
... x[i] = i*0.1

If you type this in, nothing will execute until you press Enter twice. Note also that
you need to indent the first line after the colon in the line with the for statement.
Indenting the line means that you add four spaces to the beginning of the line.
This is because Python expects the body of the loop to be indented.

You can check the generated values of x by:
>>> print x

[[0.]
[0.1]
[0.2]
[0.3]
[0.4]
[0.5]
[0.6]
[0.7]
[0.8]
[0.9]

...

Notice how we specify the range of the loop, by specifying a sequence of numbers
by use of the range(int(n)) function. Typing range(int(n)) at the command
prompt gives you exactly the list of values for i. The use of int(n) here is solely
to convert n from a real number to an integer. The reason is that range expects
integers and will not handle real numbers. To us, the variable n is an integer, but
it is currently represented as a real number internally in Python, so we need to
convert it explicitly.

Now, let us put this into a small script. And let us also calculate the value for
the function sin(x):
from pylab import *

x0 = 0.0
x1 = 10.0
dx = 0.1
n = ceil ((x1 - x0) / dx) + 1
x = zeros ((n, 1))
y = zeros ((n, 1))
for i in range (int(n)):

x[i] = x0 + (i - 1) * dx
y[i] = sin(x[i])

plot(x, y)
show ()

Which both generates and plots the function sin(x). The variables x0, x1, and dx
provide the start, stop and step of the x-values used. You can now change them
and rerun the script to generate plots for other ranges or with other resolutions.

Notice that y(i) = sin(x[i]) must appear inside the loop – that is before
the end, otherwise it would only be executed once, using the value i had at the
end of the loop. Putting commands outside a loop that should be inside a loop is
a common mistake – sometimes also done by experienced programmers.

The while-loop

The for-loop is probably be the loop-structure you will use the most, but there
are also other tools for making a loop. For example, the while-loop. In the
while-loop the commands inside the loop are executed until the expression in the
while command is true. It does not automatically update a counter either. For
example, we could have implemented the same program above using a while loop

Anders Malthe-Sørenssen (2013)

Section 1.5. Plotting a function 9

in the following way:
from pylab import *
x0 = 0.0
x1 = 10.0
dx = 0.1
n = ceil ((x1 -x0)/dx) + 1
x = zeros ((n ,1))
y = zeros ((n ,1))
i = 0
while i <=n:

i = i + 1
x[i] = x0 + (i -1)*dx
y[i] = sin(x[i])

plot(x,y)
show ()

ere you notice that we must assign i=0 before the loop, and i=i+1 inside the
loop, since we now need to update the counter “manually” inside the loop. We
also introduce an “expression” i<=n which may be false (having the value 0) or
true (having the value 1). The loop continues until the expression becomes false.
Notice that a common source of error is to generate while loops that continue
forever, for example because you have forgotten to update the counter inside the
loop. You will notice this because your program never ends: Python will never
stop or plot your results.

You may wonder what the point of the while-loop is, since it looks more
cumbersome than the for-loop. We will use the while loop when we want to
continue a calculation for an unknown number of steps. For example, you may
want to find the motion of a falling ball until it hits the ground. But you may
not know beforehand how many steps you need before it hits the ground. For
example, the position of the ball may be given by x(t) = 1000 − 4.9 · t22. We
would then calculate the position for time in steps of dt as long as x is positive
using the following program:

This script is now a bit more complicated, and needs some explanation. First,
we notice that the variable we update in intervals now is t and not x as before.
Otherwise the update of t is as before. However, there is a common “trick” with
such while loops: We have to calculate the value of y[1] before the loop starts,
otherwise the first time we enter the loop, the expression may not be true, and the
loop would never start. This is also a common mistake. Therefore, ensure that
you understand why and what is done before the while-loop starts in this script.
The rest of the script follows the example from above.

1.5.2 Vectorization
While loops are generally powerful and useful methods, there is a much simpler
way to generate sequences of numbers and plot functions in Python– and the
method also allows your code to stay much more similar to the mathematical
formulas. This method is called vectorization.

We can make a sequence of x’es in several ways using functions that are built
into Python instead of using a loop. For example, the function linspace generates
a sequence of numbers that are equally spaced from the start 0 to the end 10.0:
>>> x = linspace (0 ,10 ,10)
>>> print x

[0. 1.11111111 2.22222222 3.33333333 4.44444444
5.55555556 6.66666667 7.77777778 8.88888889 10.]

In this case we generated 10 numbers, but you can fill in with your wanted resolu-
tion. An alternative to specifying the number of points you want – as we do with
linspace – is to specify the step size, the expression arange(0.0, 10.0, 0.3)
returns an array starting at the value 0 and ending at 10.0 in steps of 0.33:

2We can solve this particular problem analytically, to find when x becomes zero, but there
will be cases we cannot solve analytically, and general tools are needed.

3Notice the small difference between the two methods: Using linspace ensures that the first
and the last numbers are included in the list, but when you use arange(0.0, 10.0, 0.3) the

Anders Malthe-Sørenssen (2013)

10 Chapter 1. Getting started with programming

>>> x = arange (0.0 , 10.0 , 0.3)

array ([0. , 0.3 , 0.6 , 0.9 , 1.2 , 1.5 , 1.8 , 2.1 , 2.4 , 2.7 ,
3. ,

3.3 , 3.6 , 3.9 , 4.2 , 4.5 , 4.8 , 5.1 , 5.4 , 5.7 , 6. ,
6.3 ,

6.6 , 6.9 , 7.2 , 7.5 , 7.8 , 8.1 , 8.4 , 8.7 , 9. , 9.3 ,
9.6 ,

9.9])

Ok - so that was simply a simpler way of generating the array x. Why is this so
much simpler? Because of a powerful and nice feature of Python called vectoriza-
tion: We can apply the function sin(x) to the whole array x. Python will then
apply the function to each of the elements in x and return a new array with the
same number of elements as x. The three lines:
>>> x = linspace (0 ,10 ,10);
>>> y = sin(x);
>>> plot(x,y);

are equivalent to the program:
from pylab import *
x0 = 0.0
x1 = 10.0
dx = 1.0
n = ceil ((x1 -x0)/dx) + 1
x = zeros ((n ,1))
y = zeros ((n ,1))
for i in range (int(n)):

x[i] = x0 + (i -1)*dx;
y[i] = sin(x[i]);

plot(x,y);
show ()

Notice how simple the vectorized Python code is – it is almost identical to the
mathematical formula. We only have to define the range of x-values before we call
the sin(x) function. Beautiful and powerful.

The program above generates the blue plot in figure 1.2. However, this plot
has too sharp corners, because we have too few data-points. Let us generate 1000
points of x-values, and plot sin(x) with this resolution in the same plot:
>>> x = linspace (0 ,10 ,1000)
>>> y = sin(x)
>>> hold(’on ’)
>>> plot(x,y,’-r’)
>>> hold(’off ’)

The result is shown in figure 1.2 with a red line. Here, we have used a few more
tricks. We use the command hold(’on’) to ensure that Python does not generate
a new plot, which would remove the previous one, but instead plots the data in
the same plot as we have already used. Typing hold(’off’) stops this behavior
– otherwise all subsequent plots will be part of the same plot. We have also used
the string ’-r to tell Python that we want a red line. You can find more plotting
methods in the summary at the end of the chapter.

The vectorization technique is very general, and usually allows you to translate
a mathematical formula to Python by typing in the corresponding expression in
Python, for example, we can plot the function

f(x) = x2e−ax sin(πx) , (1.3)

from x = 0 to x = 10 by typing (when a = 1):
>>> x = linspace (0 ,10 ,1000)
>>> a = 1.0
>>> f = x **2.* exp(-a*x)*sin(pi*x)
>>> plot(x,f)

As soon as you have learned to transcribe mathematical expressions from the
mathematical notation to Python you are ready to calculate and plot any function
in Python.

last number is 9.9 and not 10.0!

Anders Malthe-Sørenssen (2013)

Section 1.6. Random numbers 11

The technique of vectorization is a powerful and efficient technique. Python is
usually very fast at calculating vectorized commands, and we can often write very
elegant programs using such techniques, ensuring that the Python code follows
the mathematical formulation closely, which makes the code easy to understand.

1.6 Random numbers
Sometimes you need randomness to enter your physical simulation. For example,
you may want to model the motion of a tiny dust of grain in air bouncing about due
to random hits by the air molecules, so called brownian motion. As a result you
want the grain to move a random distance during a given time interval. How do
we create random numbers on the computer? Unfortunately, we cannot generate
really random numbers, but most programs have decent pseudo-random number
generators, that generates a sequence of numbers that appear to be random. In
Python, we can simulate the throw of a dice using
>>> randint (6) + 1

3

where randint(n) generates a random integer between 0 and n− 1 – where each
outcome has the same probability. If you type the command several times, you
will get a new answer each time. Python includes several functions that returns
random numbers: It can generate random real numbers between 0 and 1 using
the rand function and normal-distributed numbers (with average 0 and standard
derivation 1) using the function randn.

1.7 Conditions – if/else/end

Now, if we return to discuss the motion of the grain of dust, we want to model
its motion according to a simple rule: I throw a dice, if I get between 1 and 3,
the grain moves a step forward, otherwise it moves a step backward. How can we
handle such conditions? We need a set of conditional statements – so that we can
perform a given set of commands when a particular condition is fulfilled – we need
an if-statement:
if expr:

<statement a1 >
<statement a2 >
..

else :
<statement b1 >
<statement b2 >
..

Here the expression (expr) is an expression such as randint(6)>3 which may
be true or false. If the expression is true, statements a1, a2, ... are executed,
otherwise the statements b1, b2, ... are executed.

Let us use this to find the motion of the grain. Every time we throw the dice,
the grain moves a distance dx = ±1. If the grain is at position xi at step i, the
grain will be at a position

xi+1 = xi + dx . (1.4)

We can use this rule and an if-statement to write the script to find the position
at subsequent steps i = 1, 2, . . .:
from pylab import *
n = 1000
x = zeros ((n ,1))
for i in range (1,n -1):

if (randint (6) + 1 <=3):
dx = -1

else :
dx = 1

x[i+1] = x[i] + dx

plot(x)

Anders Malthe-Sørenssen (2013)

12 Chapter 1. Getting started with programming

0 200 400 600 800 1000
−40

−20

0

20

40

i

x
(i
)

0 200 400 600 800 1000
−40

−20

0

20

40

i

x
(i
)

Figure 1.3: Plot of the position x(i) of a random walker (a bouncing grain of dust) as
a function of the number of steps i done (left), and when the walker is constrained to the
zone −5 ≤ x ≤ +5 (right).

xlabel (’i’)
ylabel (’x(i)’)
show ()

The resulting motion is shown in figure 1.3.
We will use if-statements throughout the text, often to enforce particular

conditions on the motion. For example, we could add a level of complexity to the
motion of the grain by requiring that the grain moved inside a narrow channel of
width 10: The grain cannot move outside a region spanning from -5 to +5:
from pylab import *
n = 1000
x = zeros ((n ,1))
for i in range (1,n):

if (randint (2) ==1):
dx = -1

else :
dx = +1;

x[i] = x[i -1] + dx
if (x[i] >5):

x[i] = 5

if (x[i]<-5):
x[i] = -5

plot(x)
xlabel (’i’)
ylabel (’x(i)’)
show ()

The resulting motion xi as a function of i is shown in figure 1.3.
For the interested reader, we include a particularly compact formulation of the

random walk
>>> x = cumsum (2*(randint (1 ,7 ,1000) <=3) -1)
>>> plot(x)

1.8 Reading real data
When you work with physics you need to handle real data: NASA publishes data
for the motion of most stellar objects; Your mobile phone has an accelerometer
and a GPS that measures thousands of data-points in a few seconds. You do not
want to type these numbers by hand. Therefore you need to be able to read files
containing numbers. For example, the motion of a sprinter running 100m is given
in the file run100m.d. The file looks like this if you open it in a text editor (such
as emacs, textedit, winedit):

0.0000000 e+000 -2.1155775e -001
1.0000000e -002 -1.7485406e -001
2.0000000e -002 -1.3798607e -001
3.0000000e -002 -1.0095306e -001
4.0000000e -002 -6.3754256e -002
5.0000000e -002 -2.6388915e -002
...

Anders Malthe-Sørenssen (2013)

http://folk.uio.no/malthe/mechbook/run100m.d

Section 1.8. Reading real data 13

A total of 972 lines of data. The first column gives the time, measured in seconds,
and the second column gives the position of the runner, measured in meters.
Fortunately, it is very simple to read such as file into Python. It is done by a
single command:
>>> run100m = loadtxt (" run100m .d")

We split the data into two arrays t and x by:
>>> t = run100m [: ,1]
>>> x = run100m [: ,2]

and plot the data using
>>> plot(t,x)

If you experience a problem where Python cannot find the file, getting an error
message like:
>>> loadtxt (" run100m .d")

...
IOError : [Errno 2] No such file or directory : ’run100m .d’

It means that the file run100m.d is not in your current working directory.

Example 1.1: Plot of function and derivative

Problem: Plot the function

f(x) = e−x2
, (1.5)

and its derivative by using the formula:

f ′(x) ' f(x+ h)− f(x− h)
2h , (1.6)

as an approximation for the derivative on the interval −5 ≤ x ≤
5. You may use the value h = 0.001 for h.
Solution: The function can be plotted directly by a vectorized
approach:
>>> from pylab import *
>>> x = linspace (-5 ,5 ,1000)
>>> f = exp(-x**2)
>>> plot(x,f)
>>> show ()

In order to use the numerical approximation for the derivative,
we need to perform the approximation for each of the x-values
in the x-array. We access them by a for-loop through the 1000
elements in the x-array:
>>> h = 0.001
>>> df = zeros ((1000 ,1))
>>> for i in range (1000) :
... df[i] =

(exp (-(x[i]+h)**2) -exp (-(x[i]-h)**2))/(2*h)
...
>>> plot(x,df)
>>> show ()

The resulting plot is shown in figure 1.4.

−5 0 5
0

0.5

1

x

f
(x
)

−5 0 5
−1

−0.5

0

0.5

1

x

df
(x
)/
d
x

Figure 1.4: Plot of f(x) as a function of x and its derivative
df/dx as a function of x calculated using a numerical method.

Even simple problems such as these are useful to implement
as scripts saved in a file, since this makes debugging – the pro-
cess of finding and removing errors in the script – simpler. If you
make a small mistyping, you have to retype all the commands
when you operate on the command line, but if you use a script,
you simply make a small change in the script, rerun, and that is
it.

Anders Malthe-Sørenssen (2013)

14 Summary – Chapter 1

Summary – Chapter 1
.

Using Python as a calculator

• Direct calculations on the command line
>>> 10.0* sin(pi /3.) +4.0**3

• Defining and reusing variables
>>> a = 2.0

>>> b = 4.5
>>> c = a**2 + b**2

• Vectorized plotting of functions
>>> x = linspace (0 ,10 ,0.01)
>>> y = exp(-x)*sin(x)
>>> plot(x,y)

Functions and scripts

• A script is a sequence of executable commands stored
in a separate .m file.

– All variables are available on from the command
line afterwards

– The script is run by typing F5 in the editor
– Scripts allow rapid rerunning a program after

changes in parameters

A function has the syntax
def myfunction (a,b,c):

v = a*b*c;
d = v**2;
y = 2*d;
return y

• Variables defined inside the function, such as v and d
are not available outside the function

Plotting

• You plot two arrays t and x versus each other by
plot(t,x,’-b’)
xlabel (’t [s]’)
ylabel (’x [m]’)

• Line markers and colors are:

Colors Lines
b blue - solid
g green : dotted
r red -. dashdot
c cyan -- dashed
m magenta (none) no line
y yellow
k black
w white

• Plotting symbols are:

Symbols Symbols
. point v triangle (down)
o circle ^ triangle (up)
x x-mark < triangle (left)
+ plus > triangle (right)
* star p pentagram
d diamond h hexagram

• Plotting several plots in the same figure:
Either
plot(t1 ,x1 ,’-b’,t2 ,x2 ,’-r’)
Or
plot(t1 ,x1 ,’-b’)
hold(’on ’)
plot(t2 ,x2 ,’-r’)
hold(’off ’)

• Plotting several plots above each other:
subplot (2 ,1 ,1)
plot(t1 ,x1 ,’-b’)
subplot (2 ,1 ,2)
plot(t2 ,x2 ,’-r’)

• Saving a figure to a file: either by using the save
button from the figure window. You can also save a
figure as a pdf from the command line by
savefig (’myfigure .pdf ’)

where myfigure.pdf is the name of the generated
file,

Anders Malthe-Sørenssen (2013)

Summary – Chapter 1 15

Loops

• for-loops run a counter sequentially through a list of
values
for i in range (100) :

x[i] = sin(i /100.0)

• while-loops run until a given expression is true
i = 0;
while (i <100) :

i = i + 1
x[i] = sin(i /100.0)

Expressions

• if-statements are used to run a sequence of com-
mands given a particular expression is true:
if (x >10.0) :

y = 10.0
else :

y = -10.0

• Expressions return true (1) or false (0):

Expression Name Example
== equal (x==0.0)
!= no-equal (x!=0.0)
>= greater than or equal (x>=0.0)
<= less than or equal (x<=0.0)
>= greater than (x>0.0)
<= less than (x<0.0)

• Expressions can be joined using logical operators such
as or and and:

Operator Name Example
and logical AND (x==0.0) and (y>0.0)
or logical OR (x==0.0) or (y>0.0)

Anders Malthe-Sørenssen (2013)

16 Exercises – Chapter 1

Exercises – Chapter 1

1.1: Seconds.
(a) Write a script that calculates the number of seconds, s, given

the number of hours, h, according to the formula:

s = 3600 · h , (1.7)

(b) Use the script to find the number of seconds in 1.5 hours,
12 hours, and 24 hours.

1.2: Spherical mass.
(a) Write a script that calculates the mass of a sphere given its

radius r and mass densit ρ according to the formula:

m = 4π
3 ρr3 , (1.8)

(b) Use the script to find the mass of a sphere of steel of radius
r = 1mm, r = 1m, and r = 10m.

1.3: Angle.
(a) Write a function that for a point (x, y) returns the angle θ

from the x-axis using the formula:

θ = arctan
(
y

x

)
, (1.9)

(b) Find the angles θ for the points (1, 1), (−1, 1), (−1,−1),
(1,−1).

(c) How would you need to change the function to return values
of θ in the range [0, 2π]?

1.4: Unit vector.
(a) Write a function that returns the two-dimensional unit vec-

tor corresponding to an angle θ with the x-axis. You can
use the formula: [

ux

uy

]
=
[

cos θ
sin θ

]
. (1.10)

where θ is given in radians.

(b) Find the unit vectors for θ = 0, π/6, π/3, π/2, 3π/2.

(c) Rewrite the function to instead take the argument θ in de-
grees.

1.5: Plotting the normal distribution.
The normal distribution, often called the Gaussian distribu-

tion, is given as:

P (x;µ, σ) = 1√
2πσ2

e
− (x−µ)2

2σ2 , (1.11)

where µ is the average and σ is the standard deviation.

(a) Make a function normal(x,mu,sigma) that returns the nor-
mal distribution value, P (x, µ, σ) as given by the formula.

(b) Use this function to plot the normal distribution for −5 <
x < 5 for µ = 0 and σ = 1.

(c) Plot the normal distribution for −5 < x < 5 for µ = 0 and
σ = 2 and for σ = 0.5 in the same plot.

(d) Plot the normal distribution for −5 < x < 5 for σ = 1 and
µ = 0, 1, 2 in three subplots above each other.

1.6: Plotting 1/xn.
The function f(x;n) is given as:

f(x;n) = 1
xn

. (1.12)

(a) Make a function fvalue(x,n) which returns the value of
f(x;n).

(b) Use this function to plot 1/x, 1/x2 and 1/x3 in the same
plot for −1 < x < 1.

1.7: Plotting sin(x)/xn.
The function g(x;n) is given as:

g(x;n) = sin(x)
xn

. (1.13)

(a) Make a function gvalue(x,n) which returns the value of
g(x;n).

(b) Use this function to plot sin(x)/x, sin(x)/x2 and sin(x)/x3

in the same plot for −5 < x < 5.

(c) Use the help function to find out how to place legends for
each of the plots into the figure.

1.8: Logistic map. The iterative mapping

x(i+ 1) = r x(i) (1− x(i)) , (1.14)

is called the logistic map.

(a) Make a function logistic(x,r) which returns the value of
x(i+ 1) given x(i) and r as inputs.

(b) Write a script with a loop to calculate the first 100 steps
of the logistic map starting from x(1) = 0.5. Store all the
values in an array x with n = 100 elements and plot x as
a function of the number of steps i:

(c) Explore the logistic map for r = 1.0, 2.0, 3.0 and 4.0.

1.9: Numerical integration. Given a function f(x) we can
find the integral from 0 to b:∫ b

0
f(x)dx , (1.15)

using the following formula:∫ x

0
f(x)dx '

n∑
i=0

f(xi)∆x , (1.16)

where xi = b · (i/n) and ∆x = b/n.
Let us use use this technique to calculate the integral of

f(x) = sin(x)/x.

(a) Define a function myfunc(x) which returns the value of
f(x) = sin(x)/x for a given value of x.

(b) Write a script that calculates the integral of f(x) = sin(x)/x
from 0 to 1 using the numerical scheme presented above
using a for-loop.

Anders Malthe-Sørenssen (2013)

Exercises – Chapter 1 17

So far you have calculated the specific integral from 0 to b.
Now, we want to find the function g(x) which is given as the
integral:

g(x) =
∫ x

0
f(x)dx , (1.17)

where f(x) = sin(x)/x as above. We find this function by
simply calculating the values of the integral at all the points
xi = b · (i/n):

g(x0) = 0 (1.18)
g(x1) = g(x0) + f(x0) ·∆x (1.19)
g(x2) = g(x1) + f(x1) ·∆x (1.20)
g(x3) = g(x2) + f(x2) ·∆x (1.21)
. . . = . . . (1.22)

g(xn) = g(xn−1) + f(xn−1) ·∆x (1.23)
(1.24)

(c) Write a script to calculate the values g(xi) given f(x) =
sin(x)/x for n = 1000 x’es in the range from 0 to b = 1.
Plot g(x) as a function of x.

(d) What would you need to change to instead find the integral
of f(x) = x exp(−x4) on the interval from 0 to 2?

1.10: Euler’s method. In mechanics, we often use Euler’s
method to determine the motion of an object given how the ac-
celeration depends on the velocity and position of an object. For
example, we may know that the acceleration a(x, v) is given as:

a(x, v) = −kx− cv . (1.25)

If we know the position x and the velocity v at a time t = 0:

x(0) = x0 = 0 , (1.26)

and
v(0) = v0 = 1 , (1.27)

we can use Euler’s method to find the position and velocity after
a small timestep ∆t:

v1 = v(t0 + ∆t) = v(t0) + a(v(t0), x(t0))∆t (1.28)
x1 = x(t0 + ∆t) = x(t0) + v(t0)∆t (1.29)
v2 = v(t1 + ∆t) = v(t1) + a(v(t1), x(t1))∆t (1.30)
x2 = x(t1 + ∆t) = x(t1) + v(t1)∆t (1.31)

(1.32)

and so on. We can therefore use this scheme to find the posi-
tion x(t) and the velocity v(t) as function of time at the discrete
values ti = i∆t in time.

(a) Write a function acceleration(v,x,k,C) which returns the
value of a(x, v) = −kx− Cv.

(b) Write a script that calculates the first 100 values of x(ti)
and v(ti) when k = 10, C = 5, and ∆t = 0.01. Plot x(t),
v(t), and a(t) as functions of time.

(c) What would you need to change to instead find x(t) and v(t)
is the acceleration was given as a(v, x) = k sin(x)− Cv?

1.11: Throwing two dice. You throw a pair of six-sided
dice and sum the number from each of the dice:

Z = X1 +X2 , (1.33)

where Z is the sum of the results from dice 1, X1, and dice 2, X2.
If we perform this experiment many times (N), we can find the

average and standard deviation from standard estimators from
statistics. The average, 〈Z〉, of Z is estimated from:

〈Z〉 = 1
N

N∑
j=1

Zj , (1.34)

and the standard deviation, ∆Z, is estimated from:

∆Z = 1
N − 1

(
N∑

j=1

(Zj − 〈Z〉

)2

. (1.35)

(a) Write a function that returns an array of N values for Z.

(b) Write a function that returns an estimate of the average of
an array z using the formula provided.

(c) Write a function that returns an estimate of the standard
deviation of an array z using the formula provided.

(d) Find the average and standard deviation for N = 100
throws of two dice.

1.12: Reading data. The file trajectory.dat contains a
list of numbers:

t0 x0 y0
t1 x1 y1
t2 x2 y2
..
tn xn yn

corresponding to the time t(i) measured in seconds, and the
x and y positions x(i) and y(i) measured in meters for the
trajectory of a projectile.

(a) Read the data file into the arrays t, x, and y.

(b) Plot the x and y positions as function of time in two plots
above each other.

(c) Plot the (x, y) position of the object in a plot with x and y
on the two axes.

1.13: Numerical derivative of a data-set. The file
trajectoryy.dat contains a list of numbers:

t0 y0
t1 y1
t2 y2
..
tn yn

corresponding to the time t(i) measured in seconds, and the y
position y(i) measured in meters for the trajectory of a projec-
tile.

(a) Read the data file into the arrays t, and y.

(b) Plot y(t) as function of time.

For a data-set t(i), y(i), you can estimate the time deriva-
tive of the corresponding function y(ti) at the time ti using:

v(ti) '
y(ti + ∆t)− y(ti)

ti+1 − ti
= y(ti+1)− y(ti)

ti+1 − ti
, (1.36)

where y(ti) =y(i) and ti =t(i).

(c) Write a script to calculate the time derivative v(ti) of the
dataset using this formula. Implement using a for-loop.
(Remember that this definition of the numerical derivative
is not defined for the last point in the array).

(d) Plot the position y(t) and the derivative v(t) as functions
of time in two plots above each other.

Anders Malthe-Sørenssen (2013)

18 Exercises – Chapter 1

1.14: Numerical integration of a data-set. The file
velocityy.dat contains a list of numbers:

t0 v0
t1 v1
t2 v2
..
tn vn

corresponding to the time t(i) measured in seconds, and the
velocity y(i) measured in meters per second for the trajectory
of a projectile.
(a) Read the data file into the arrays t, and v.
(b) Plot v(t) as function of time.

For a data-set t(i), v(i), you can estimate the function cor-
responding to the integral of v(t) with respect to t at the times

ti using the iterative scheme:

y(t1) 'y(t0) + v(t0) (t1 − t0) (1.37)
y(t2) 'y(t1) + v(t1) (t2 − t1) (1.38)
. . . ' . . . (1.39)

y(tn) 'y(tn−1) + v(tn−1) (tn − tn−1) (1.40)
(1.41)

where v(ti) =v(i) and ti =t(i). You can assume that the mo-
tion starts at y(t0) = 0.0m at t = t0.

(c) Write a script to calculate the time integral y(ti) of the
dataset using this formula. Implement using a for-loop.

(d) Plot the position y(t) and the derivative v(t) as functions
of time in two plots above each other.

Anders Malthe-Sørenssen (2013)

Project: Sliding on snow

In this project we address the motion of an object sliding on a slippery surface
such as a ski sliding in a snowy track. You will learn how to find the equation of
motion for sliding systems both analytically and numerically, and to interpret the
results.

We start by studying a simplified situation called frictional motion: A block
is sliding on a surface as illustrated in, moving with a velocity v in the posi-
tive x-direction. The forces from the interactions with the surface results in an
acceleration:

a =

 −µ(|v|)g v > 0
0 v = 0

µ(|v|)g v < 0
,

where g = 9.8m/s2 is the acceleration of gravity. Let us first assume that µ(v) =
µ = 0.1 for the surface. That is, we assume that the coefficient of friction does
not depend on the velocity of the block. We give the block a push and release it
with a velocity of 5m/s.

(a)

Find the the velocity, v(t), of the block.

(b)

How long time does it take until the block stops?

(c)

Write a program where you find v(t) numerically using Euler’s or Euler-Cromer’s
method. (Hint: You can find a program example in the textbook.) Use the
program to plot v(t) and compare with your analytical solution. Use a timestep
of ∆t = 0.01.

The description of friction provided above is too simplified. The coefficient of
friction is generally not independent of velocity. For dry friction, the coefficient of
friction can in some cases be approximated by the following formula:

µ(v) = µd + µs − µd

1 + v/v∗ ,

Figure 1.5: A block moving on a slippery surface.

19

20 Exercises – Chapter 1

where µd = 0.1 often is called the dynamic coefficient of friction, µs = 0.2 is called
the static coefficent of friction, and v∗ = 0.5m/s is a characteristic velocity for the
contact between the block and the surface.

(d)
Show that the acceleration of the block is:

a(v) = −µdg − g
µs − µd

1 + v/v∗ ,

for v > 0.

(e)
Use your program to find v(t) for the more realistic model, with the same starting
velocity, and compare with your previous results. Are your results reasonable?
Explain.

The model we have presented so far is only relevant at small velocities. At
higher velocities the snow or ice melts, and the coefficient of friction displays a
different dependency on velocity:

µ(v) = µm

(
v

vm

)− 1
2

when v > vm ,

where vm is the velocity where melting becomes important. For lower velocities
the model presented above with static and dynamic friction is still valid.

(f)
Show that

µm = µd + µs − µd

1 + vm/v∗ ,

in order for the coefficient of friction to be continuous at v = vm.

(g)
Modify your program to find the time development of v for the block when vm =
1.5m/s. Compare with the two other models above: The model without velocity
dependence and the model for dry friction. Comment on the results.

(h)
The process may become more clearer if you plot the acceleration for all the three
models in the same plot. Modify your program to plot a(t), plot the results, and
comment on the results. What would happen if the initial velocity was much
higher or much lower than 5m/s?

Anders Malthe-Sørenssen (2013)

Appendices

21

Solutions to exercises

Chapter 1

1.1(a)
s = 3600 * h

1.1(b) 5400s, 43200s, 86499s

1.2(a)
m = (4* pi /3)*rho*r**3

1.3(a)
def angle (x,y):

theta = arctan (float (y)/ float (x))
return theta

1.4(a)
def vector (theta):

ux = cos(theta)
uy = sin(theta)
return array ([ux , uy])

1.5(a)
def normal (x,mu , sigma):

return 1/ sqrt (2* pi* sigma **2) *
exp (-(x-mu) **2/(2* sigma **2))

1.5(b)
from pylab import *
x = linspace (-5 ,5 ,100)
P = normal (x ,0 ,1)
plot(x,P)
show ()

1.5(c)
hold(’on ’)
P = normal (x ,0 ,2)
plot(x,P,’-r’)
P = normal (x ,0 ,0.5)
plot(x,P,’-g’)

1.5(d)
from pylab import *
x = linspace (-5 ,5 ,1000)
P = normal (x ,0 ,1)
subplot (3 ,1 ,1)
plot(x,P,’-b’)
P = normal (x ,1 ,1)
subplot (3 ,1 ,2)
P = normal (x ,2 ,)
subplot (3 ,1 ,3)
plot(x,P,’-g’)
show ()

1.6(a)
def fvalue (x,n):

f = 1.0/(x**n)
return f

1.6(b)
from pylab import *
x = linspace (-1 ,1 ,1000)
f1 = fvalue (x ,1)
f2 = fvalue (x ,2)
f3 = fvalue (x ,3)
plot(x,f1 ,x,f2 ,x,f3)
show ()

1.7(a)
def gvalue (x,n):

g = sin(x)/(x**n)
return g

1.7(b)
from pylab import *
x = linspace (-5 ,5 ,1000)
g1 = gvalue (x ,1)
g2 = gvalue (x ,2)
g3 = gvalue (x ,3)
plot(x,g1 ,x,g2 ,x,g3)
show ()

1.8(a)
def logistic (x,r):

g = r*x*(1 -x)
return g

1.8(b)
r = 1.0
n = 100
x = zeros ((n ,1))
x[0] = 0.5
for i in range (1 ,100):

x[i] = logistic (x[i -1]
i = range (1 ,100)
plot(i,x)
show ()

1.9(a)
def myfunc (x):

f = sin(x)/x
return x

1.9(b)

23

24 Solutions to exercises

n = 100
b = 1.0
dx = b/n
sum = 0.0
for i in range (n):

xi = b*i/ float (n)
fxi = myfunc (xi)
sum += fxi*dx

1.9(c)
n = 1000
b = 1.0
dx = b/n
x = zeros ((n ,1))
f = zeros ((n ,1))
g = zeros ((n+1 ,1))
g[0] = 0.0
for i in range (n):

x[i] = b*i/ float (n)
f[i] = myfunc (x[i])
g[i+1] = g[i] + f[i]* dx

plot(x,g)
show ()

1.9(d) You only need to chang the function myfunc and the
value of b in the script.
def myfunc (x):

f = x * exp(-x**4)
return f

1.10(a)
def acceleration (v,x,k,C):

a = -k*x - C*v
return a

1.10(b)
from pylab import *
k = 10
C = 5
n = 100
dt = 0.01
x = zeros ((n ,1))
v = zeros ((n ,1))
a = zeros ((n ,1))
t = zeros ((n ,1))
x[0] = x0
v[0] = v0
for i = range (1,n)

a[i] = acceleration (v[i],x[i],k,C)
v[i+1] = v[i] + a[i]* dt
x[i+1] = x[i] + v[i]* dt
t[i+1] = t[i] + dt

subplot (3 ,1 ,1)
plot(t,a)
xlabel (’t’)
ylabel (’a’)
subplot (3 ,1 ,2)
plot(t,v)
xlabel (’t’)
ylabel (’v’)
subplot (3 ,1 ,3)
plot(t,x)
xlabel (’t’)
ylabel (’x’)

1.10(c) You only need to chang the function acceleration.
def acceleration (v,x,k,C):

a = k * sin(x) - C*v
return a

1.11(a) In vectorized notation:
def dice(N)

Z = zeros ((N ,1))
for i in range (N):

X1 = randint (1 ,7)
X2 = randint (1 ,7)
Z[i] = X1 + X2

return Z

1.11(b)
def average (z)

N = len(z)
sum = 0
for i in range (N)

sum += z[i]
return sum/ float (N)

1.11(c)
def standarddeviation (z)

ave = average (z)
N = len(z)
sum = 0
for i in range (N)

sum += (z[i] - ave)
return sum **2/ float (N -1)

1.12(a)
from pylab import *
trajectory = loadtxt (" trajectory .dat")
t = trajectory [: ,0];
x = trajectory [: ,0];
y = trajectory [: ,2];

1.12(b)
subplot (2 ,1 ,1)
plot(t,x)
xlabel (’t [s]’)
ylabel (’x [m]’)
subplot (2 ,1 ,2)
plot(t,y)
xlabel (’t [s]’)
ylabel (’y [m]’)
show ()

1.12(c)
plot(x,y)
xlabel (’x [m]’)
ylabel (’y [m]’)
show ()

1.13(a)
from pylab import *
trajectory = loadtxt (" trajectory .dat")
t = trajectory [: ,0];
y = trajectory [: ,1];

1.13(b)
plot(t,y)
xlabel (’t [s]’)
ylabel (’y [m]’)
show ()

1.13(c)
n = len(t)
v = zeros ((n -1 ,1))
for i in range (n -1):

v[i] = (y[i+1] - y[i]) /(t[i+1] -t[i])

Anders Malthe-Sørenssen (2013)

Solutions to exercises 25

1.13(d)
subplot (2 ,1 ,1)
plot(t,y)
xlabel (’t [s]’)
ylabel (’y [m]’)
subplot (2 ,1 ,2)
plot(t[0:n -1] ,v)
xlabel (’t [s]’)
ylabel (’v [m/s]’)

1.14(a)
from pylab import *
velocity = loadtxt (" velocityy .dat")
t = velocityy [: ,0]
v = velocityy [: ,1]

1.14(b)
plot(t,v)
xlabel (’t [s]’)
ylabel (’v [m/s]’)

show ()

1.14(c)
n = len(t)
y = zeros (n ,1)
y[0] = 0.0
for i in range (n -1):

y[i+1] = y[i] + v[i]*(t[i+1] -t[i])

1.14(d)
subplot (2 ,1 ,1)
plot(t,y)
xlabel (’t [s]’)
ylabel (’y [m]’)
subplot (2 ,1 ,2)
plot(t,v)
xlabel (’t [s]’)
ylabel (’v [m/s]’)
show ()

Anders Malthe-Sørenssen (2013)

	Contents
	Getting started with programming
	Terminal basics
	A Python calculator
	Scripts and functions
	Scripts
	Functions

	Plotting data-sets
	Plotting a function
	Loops
	Vectorization

	Random numbers
	Conditions – if/else/end
	Reading real data
	Summary
	Exercises

	Appendices
	Solutions to exercises

