
Week 3 � Continuous charge have a lot of potential

The world is continuous, but the mind is

discrete.

David Mumford

Exercise 3.1: Field from continuous charge distributions

When we have continuous charge distributions the usual sum over point charges must be replaced by an
integral

E(r) =
1

4πε0

∫
r− r′

|r− r′|3
dq,

where |r− r′| is the distance from the in�nitesimal charge source to the point r with charge dq. Further-
more dq = λ dx for a line, dq = σ da for a surface and dq = ρ dv for a volume1.

Here we will study the electric �eld from a rod placed along the x-axis of length 2L and with charge
density λ. The situation is shown in �gure 1.

a) Determine the direction of the �eld in the point P , a distance z normal to the middle of the rod (on
the z-axis). Show that the strength of the electric �eld can be written as

Ez =
2λz

4πε0

∫ L

0

1

(x2 + z2)3/2
dx.

1You might be more used to the notation dV for a volume element, but we use a little v in dv to distinguish from the

electrostatic potential V

1
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Figure 1: A �nite line segment. Notice the symmetry across the z-axis.
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Figure 2: We can use the �eld from a �nite rod to �nd the �eld from a square loop.
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Figure 3: Pairing up contributions at x and at −x it becomes clear that only the z-component of the �eld survives.

where Ex = Ey = 0. Hint: Pair up one contribution at −x with another at x. Is there some
cancellation going on here?

Solution:

Pairing up contributions from a little charge dq at x and another one at -x we see that the all the
components of the �eld except for the z-component will cancel. The z-component from a little charge
element at x is given by

dEz = |dE| cos θ =
1

4πε0

dq

x2 + z2
z√

x2 + z2
,

where θ is the angle between the vector dE and the z-axis and dq = λdx. The total �eld at P is
therefore

Ez =
1

4πε0

∫ L

−L

dq

(x2 + z2)3/2
=

λ

4πε0

∫ L

−L

dx

(x2 + z2)3/2

and because the contributions at the negative part of the x-axis is equal to those at the positive part
(mathematically because 1/(x2 + z2)3/2 is an even function) this can be written as

Ez =
2λ

4πε0

∫ L

0

dx

(x2 + z2)3/2
.

b) Evaluate the integral. You might want to use the substitution x = z tan θ.
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Solution:

x = z tan θ ⇒ dx = z
1

cos2 θ
dθ

(x2 + z2)3/2 = z3(tan θ + 1)3/2 = z3
1

cos3 θ

such that

∫
dx

(x2 + z2)3/2
=

1

z2

∫
1

cos2 θ
cos3 θdθ (1)

=
1

z2

∫
cos θdθ (2)

=
1

z2
sin θ (3)

=
1

z2
x√

x2 + z2
. (4)

Therefore

Ez =
2λz

4πε0

∫ L

0

dx

(x2 + z2)3/2
=

2λz

4πε0

1

z2

[
x

(x2 + z2)3/2

]L
0

=
2λz

4πε0

1

z2
L√

L2 + z2

where sin θ can be expressed in terms of x by looking at the triangle in �gure 3

Answer:

Ez =
2λz

4πε0

1

z2
L√

L2 + z2

c) What do you expect the �eld to look like when you move very far away from the rod, i.e. for z � L?
Does the expression you have for the �eld make sense in this limit?

Solution:

Everything looks like a point when we're far enough away, so the �eld from the rod should look like
the �eld from a point charge. When z � L, L is negligible compared to z such that

√
L2 + z2 ≈ L

and

Ez =
1

4πε0

2λL

z
√
L2 + z2

≈ 1

4πε0

Q

z2

where 2Lλ = Q is the total charge on the rod. Indeed, this looks like the �eld from a point charge.
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Answer: Looks like the �eld from a point charge.

Ez =
1

4πε0

2Lλ

z2

d) What does the �eld look like for an in�nite rod, L→∞? The expression you found in (b) was only
valid along the z-axis. Where is this expression valid?

Solution: For an in�nite rod we take the limit L→∞ of Ez.

lim
L→∞

Ez = lim
L→∞

1

4πε0

2λ

z

√
1 +

(
z
L

)2 =
1

4πε0

2λ

z
.

For a �nite rod we could exploit the fact that on the axes normal to the middle of the rod the
contributions from equidistant charges dq would cancel the x-component of the total �eld. Now we
have an in�nite rod which means that we'll always be able to pair up equidistant contributions having
the same cancelling e�ect. So in comparison with the �nite rod where we could only use this argument
along the axis normal to the middle of the rod, this is now true everywhere. This means that for an
in�nite rod the �eld

E =
1

4πε0

2λ

r
r̂,

where r is the distance from the rod in cylindrical coordinates, is valid everywhere.

e) Use your result from (b) to �nd the �eld at the point P a distance z from the center of a square loop
with sides of length a (�gure 2).

Hint: Note that the z-axis in (b) does not correspond to the z-axis in �gure 2. What is z and L in
this case?

Solution:

From (b) we had that

Ez =
2λz

4πε0

1

z2
L√

L2 + z2
.

Here L→ a/2 and z →
√
z2 + (a2 )

2 so that the �eld from one side from the square loop in point P is

E1 =
2λ
√
z2 + (a2 )

2

4πε0

a
2((

a
2

)2
+ z2

)√(
a
2

)2
+ z2 +

(
a
2

)2 r̂ =
1

4πε0

λa√
z2 + a2

2

√(
a
2

)2
+ z2

r̂,

where the �eld points radially away as show in �gure 4. Now there are 4 sides in total and the �eld
from the other 3 sides will cancel the component parallel to the plane of the square, so we get the
total �eld by multiplying by 4 cos θ. Expressed in terms of the lengths in the problem this becomes
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Etot = 4
1

4πε0

λa√
z2 + a2

2

√(
a
2

)2
+ z2

z√(
a
2

)2
+ z2

k̂ =
1

4πε0

4λaz((
a
2

)2
+ z2

)√
z2 + a2

2

k̂.

Exercise 3.2: Potentials, voltmeters and static electricity

a) If the electric �eld is zero in a region of space, what value is the electric potential? Is it also zero?

Answer: No. The potential is always relative to another point, and so it can inherit any value without
regard to the absolute value of the electric �eld.

b) In circuits we often use a voltmeter (voltage being just another word for the electric potential) to
measure potential. How can the voltmeter know what to read when the potential is a value relative
to any reference point O?

Answer: It reads out the potential di�erence between the two terminals on the voltmeter. Thus, it
does not read out the potential, but the potential di�erence.

c) If you shu�e your shoes across a nylon carpet you can obtain a potential di�erence between yourself
and the �oor of several thousand volts. If you then touch a metal sink you might feel a mild shock,
but touching a power line of the same voltage could be lethal. Why doesn't touching the sink kill
you?

Answer: Even if there is a high potential di�erence, it might not carry enough energy to kill you.
The power line is lethal because it does not only have a high potential di�erence, but also a huge
amount of current ready to push through your body.
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Figure 5: Disk of radius R.

Exercise 3.3: Electrostatic potential

One fundamental property of electric �elds is that ∇×E = 0 which allows us to de�ne a potential

V (r) ≡ −
∫ r

O
E · dr,

where O is some reference point which are often chosen to be at in�nity. When O is at in�nity one �nds
the potential for a discrete set of charges by

V (r) =
1

4πε0

∑
i

qi
|r− ri|

and for the continuous case we have

V (r) =
1

4πε0

∫
dq′

|r− r′|
,

where dq′ = ρ(r′)dv′.

The electric �eld can then be found by the relation

E = −∇V.

Because the potential is a scalar function is it usually much simpler to �nd by integration than the electric
�eld itself. Therefore the potential, along with numerous other applications, can serve as a simplifying
intermediate step in �nding the electric �eld. We'll study this property in the next exercises.

a) Find the potential from a disk of radius R with uniform surface charge σ a distance z above the center
of the disc and show that it can be written as

V (z) =
σ

2ε0

(√
R2 + z2 − z

)
The situation is shown in �gure 5.

Solution:

Here the distance r to the point where we are trying to �nd the potential is z, i.e r = z.
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V (z) =
1

4πε0

∫
dq′

|r− r′|

and from the �gure 5 we see that the distance from the source charge dq′ and the point P is |r−r′| =√
z2 + r′2. Since we are considering a surface dq′ = σda = σr′dθdr′ such that

V (z) =
1

4πε0

∫ 2π

0

∫ R

0

σr′dr′dθ√
z2 + r′2

(5)

=
2πσ

4πε0

1

2

∫ z2+R2

z2

du

u1/2
(6)

=
1

2σ

(√
z2 +R2 − z

)
(7)

where we used the substitution u = z2 + r′2 ⇒ du = 2r′dr′.

b) Compute the electric �eld.

Solution: The electric �eld is found from the relation ∇V = −E.

∇V =
∂

∂x
V î+

∂

∂y
V ĵ+

∂

∂z
V î (8)

=
∂

∂z

σ

2ε0

(√
z2 +R2 − z

)
k̂ (9)

=
σ

2ε0

(
z√

z2 +R2
− 1

)
k̂ (10)

= −E (11)

so that

E =
σ

2ε0

(
1− z√

z2 +R2

)
k̂

c) Check the limit when z � R and �nd the �eld for an in�nite disc by letting R→∞.

In the case of the in�nite disk, how does the �eld vary with distance? How can you justify this result?

Solution: One could �rst try to argue that when z � R
√
z2 +R2 ≈ z, but then

E ≈ σ

2ε0

(
1− z

z

)
k̂ = 0k̂

which is certainly true when we get too far away, but before the �eld vanishes it should look like the
�eld from a point charge. Setting z/

√
z2 +R2 ≈ 1 is in fact only keeping the �rst term in the taylor

expansion. Expanding we see that
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z

z

√
1 +

(
R
z

)2 =

(
1 +

(
R

z

)2
)−1/2

= 1− 1

2

(
R

z

)2

+ . . .

so by keeping the �rst two terms we get

E ≈ σ

2ε0

(
1−

(
1− 1

2

(
R

z

)2
))

k̂ =
πR2σ

4πε0z2
k̂ =

1

4πε0

Q

z2
k̂

which is indeed the �eld from a point charge.

Exercise 3.4: Plotting the �eld from an uniformly charged sphere

In the next exercise you will be asked to �nd the �eld from an uniformly charged solid sphere, but �rst;
let's have a look at the �eld and play around with its properties.

To �nd the �eld, it is often easier to �nd the potential �rst. As you will see in the next exercise, the �eld
inside an uniformly charged sphere is

V (r) =
Q

8πε0R

(
3− r2

R2

)
while outside the sphere, it is

V (r) =
Q

4πε0

1

r
.

a) Use the contour3d() function in Mayavi to visualize the �eld in 3D. Set the number of contours to
20 and the opacity to 0.5 to be able to see through the contours (see the code in the hint below on
how to do this).

Hint: Use the following code to �nd the distance to each point in space. You need to use the distance
to calculate the potential.

from numpy import *

x,y,z = mgrid[−100.:101.:5., −100.:101.:5., −100.:101.:5.]
r = sqrt(x**2 + y**2 + z**2)

V = 0*x

for i in range(len(r)):

for j in range(len(r)):

for k in range(len(r)):

# This prints out the distance to the point in question.

# Replace it with your calculation of the potential.

print r[i][j][k]

V[i][j][k] = ...

...

contour3d(x, y, z, V, contours=20, opacity=0.5)

b) Use the Numpy function gradient() to �nd the electric �eld as E = −∇V . Plot the electric �eld
using the quiver3d() function.
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Solution: An example script:

from numpy import *

from enthought.mayavi.mlab import *

x,y,z = mgrid[−100:101:5., −100:101:5., −100:101:5.]
R = 40

Q = 1.0

r = sqrt(x**2 + y**2 + z**2)

V = 0*x

for i in range(len(r)):

for j in range(len(r)):

for k in range(len(r)):

if r[i][j][k] < R:

V[i][j][k] = Q / (8 * pi * R) * (3 − r[i][j][k]**2/R**2)

else:

V[i][j][k] = Q / (4 * pi * r[i][j][k])

contour3d(x, y, z, V, contours=20, opacity=0.5)

Ex,Ey,Ez = gradient(V)

Ex = − Ex

Ey = − Ey

Ez = − Ez

#quiver3d(x, y, z, Ex, Ey, Ez)

See the course pages for information on how to set up and use Python and Mayavi.

Exercise 3.5: Finding the �eld from an uniformly charged solid

sphere

As you already know Newton's universal law of gravitation is very similar to Coulomb's law and the
electric �eld. The force laws give us the force of attraction between two point masses or point charges
separated by a distance r in space. However there is really no such thing as a point mass/charge, especially
not when you're formulating laws for the attraction between the earth and the sun. So Newton had to
prove that the force between planets were as if all their mass was located at the center.

In other words he had to prove the equivalence between spherical mass distributions and that of a point
mass2. Here we will do the same thing for charge distributions and we will do it by using the potential3.

a) The situation is shown in �gure 6. The sphere has a radius R and is uniformly charged with a
charge density ρ. The distance from a contributing volume element dv is now |r − r′|, but this
distance varies with θ so we need to need to relate the two. Use the law of cosines to show that
|r− r′|2 = r2 + r′2 − 2rr′ cos θ and use this to show that the potential can be written as

2Newton claimed he discovered the law of gravitation in his early years, but held back the publication for a long time

because he could not prove the equivalence between spherical and point mass distributions. He �rst had to invent the

calculus.
3Proving it by direct integration of the �eld is challenging, but absolutely doable.
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Figure 6: A sphere of uniform charge density.

V (r) =
1

4πε0

∫
ρr′2 sin θdφdθdr′√
r2 + r′2 − 2rr′ cos θ

,

where this is evaluated as a triple integral. What are the limits of the integral?

Solution: In this problem it's important to keep in mind that r is the point we're trying to �nd the
potential at, while r′ is the point where the source charge dq′ is located. When we are summing up
(integrating) the contributions from all source charges dq′ we integrating over r′ and not r because
r′ is varying due to the di�erent locations of the di�erent dq′s. We are trying to �nd

V (r) =
1

4πε0

∫
dq′

|r− r′|
.

Using the law of cosines, or just using the dot product

(r− r′) · (r− r′) = |(r− r′)|2 (12)

= r · r+ r′ · r′ − 2r · r′ (13)

= r2 + r′2 − 2rr′ cos θ. (14)

Now we are integrating over a volume, so dq′ = ρ(r′)dv′ = ρr′2 sin θdθdφdr′ where ρ(r′) = ρ is a
constant because the sphere is uniformly charged. Thus

V (r) =
1

4πε0

∫
dq′

|r− r′|
=

1

4πε0

∫
ρr′2 sin θdθdφdr′√
r2 + r′2 − 2rr′ cos θ

.

The limits of integration are 0 < θ < π, 0 < φ < 2π and 0 < r′ < R.
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b) Evaluate the integral and �nd the potential outside the sphere. Show that it can be written as

V (r) =
Q

4πε0

1

r
.

Hint: A simple substitution might be good here. Hint:
√
r2 + r′2 − 2rr′ =

√
(r − r′)2 = |r − r′|

Solution:

V (r) =
ρ

4πε0

∫ 2π

0

dφ

∫ R

0

∫ π

0

r′2 sin θdθdr′√
r2 + r′2 − 2rr′ cos θ

∫ π

0

r′2 sin θ√
r2 + r′2 − 2rr′ cos θ

dθ =
r′2

2rr′

∫ r2+r′2+2rr′

r2+r′2−2rr′
u−1/2du (15)

=
r′

r

(√
r2 + r′2 + 2rr′ −

√
r2 + r′2 − 2rr′

)
(16)

=
r′

r

(√
(r + r′)2 −

√
(r − r′)2

)
(17)

=
r′

r
(r + r′ − |r − r′|) (18)

= {
2r′2

r r > r′

2r′ r < r′
(19)

where we have used the substitution u = r2 + r′2 − 2rr′ cos θ ⇒ du = 2rr′ sin θ. As long as we're
outside the sphere r will always be greater than r′, but in (d) we'll �nd the potential inside the sphere
and then this is not the case. Thus

V (r) =
2πρ

4πε0

[∫ R

0

2r′2

r
dr′

]
=

(
4/3πρR3

)
4πε0r

=
1

4πε0

Q

r

where we have used that Q = 4/3πR3ρ.

c) Find the electric �eld from the sphere and compare it with the electric �eld from a point charge.

Solution:

∇V =
Q

4πε0
∇1

r
= − Q

4πε0

r̂

r2
= −E

such that

E =
1

4πε0

Q

r2
r̂,

which is exactly the same as the �eld from a point charge.
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Answer:

E =
1

4πε0

Q

r2
r̂

d) Go a few steps back in your derivation above and �nd out what's di�erent when we want to �nd the
potential inside the sphere. Show that the potential here can be written as

V (r) =
Q

8πε0R

(
3− r2

R2

)
and �nd the electric �eld here. Is the �eld continuous in r = R?

Solution: When we're inside the sphere, r < R and when integrating the contributions to the
potential from all charges dq′ r′ can now be both greater and less than r. Thus

V (r) =
2πρ

4πε0

[∫ r

0

2r′2

r
dr′ +

∫ R

r

2r′dr′

]
(20)

=
4πρ

4πε0

(
r3

3r
+
R2 − r2

2

)
(21)

=
1

8πε0R

(
3− r2

R2

)
(22)

∇V =
Q

4πε0R
∇
(
3− r2

R2

)
= − Q

4πε0

r

R3
r̂ = −E

E =
1

4πε0

Qr

R3
r̂

and in r = R this gives

E =
1

4πε0

Q

R2
r̂

so the electric �eld is continuous in r = R.

Answer:

E =
1

4πε0

Qr

R3
r̂
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