
Week 4 - Oblig teaser, Gauss and marbles of electrons

Further, the dignity of the science itself

seems to require that every possible means

be explored for the solution of a problem so

elegant and so celebrated.

Carl Friedrich Gauss

In this problem set we're starting out with a teaser for the oblig that will be published later this week.
The exercises refer to Jørgen Midtbø and Jørgen Trømborg's note on the Jacobi method that should
have been published together with this problem set. Read that �rst and work through the �rst exercise
in this problem set. The other exercises are unrelated to the note on the Jacobi method.

Exercise 4.1: Electrostatics with partial di�erential equations

a) Copy or rewrite the code from Section 2.2 in the note on the Jacobi method. Verify that it works
and that you can produce something similar to Figure 1 in the same note.

b) Find the electric �eld E. If you use the NumPy gradient() function, remember that the step length
h is part of the numerical derivative, and cannot be omitted.

c) Verify that Gauss's law is satis�ed by calculating the �ux of E out of the domain and comparing this
to the charge q within.

d) What does the boundary condition V = 0 represent physically, i.e. what material(s) could you use to
build something with this property?
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Figure 1: For an in�nite plane the Gaussian surface might be a box. E will be constant along the top and bottom

and the sides won't contribute to the integral since the electric �eld is perpendicular to them.

Gauss' law

Earlier we have looked at two methods of �nding the electric �eld. Direct integration and by the electric
potential. Finding the potential is usually easier than direct integration, and it can always be used, but
in situations with great symmetry there exists an even easier method. The idea is to exploit Gauss' law.
It states that ∮

S
E · da =

Q

ε0
=

1

ε0

∫
V
ρdτ,

or equivalently written in di�erential form ∇ · E = ρ
ε0
, where Q is the total charge enclosed any the

surface S and ρ is the charge density which is generally a function of position. ρ = ρ(r). Gauss law is a
fundamental statement about electric �elds that always holds, but it can be used to �nd the �eld itself.
The key is to construct a surface S, if such a surface exists, on which E is constant and points in the
direction normal to the surface. Then ∮

S
E · da = E

∮
da = EA

and since the left side is known from the charge distribution we deduce E. After some practice you'll be
able to deduce some �elds really fast using Gauss' law, so instead of remembering them you can deduce
the �elds quickly. Let's deduce some easy �elds �rst

Exercise 4.2: Calculating the �eld

In the previous problem set we found the �eld from a �nite plane and wire and took the limit as these
geometrical objects got in�nitely large. Of course no objects are really in�nite, but the �elds derived
from such assumptions give good approximations to �elds close to large objects.

a) By using Gauss' law, show that the �elds from an in�nitely long wire is

E =
1

2πε0

λ

r
r̂

where r̂ is now a cylindrical coordinate unit vector pointing away from the axis of symmetry.

Solution: The key is to exploit the symmetry of the problem. For an in�nite wire the symmetry of
the problem implies that the �eld has to be pointing radially away from the axis of symmetry and
it has to be of equal strength at equal distances from this axis. So if we want a surface for which
the �eld is equal in strength and is normal to the surface at all points a cylinder will do the job. We
contruct a coaxial cylinder S with length L and radius r and consider

∮
S
E · dA =

∫
top+bottom

E · dA+

∫
sides

E · dA = 0 + E

∫
dA = E(2πrL)

such that by Gauss' law
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Figure 2: Cylinder with charge density ρ.

E2πrL =
Qenc
ε0

=
λL

ε0

⇒ E =
λ

2πε0r
r̂

b) Again using Gauss' law, show that the �eld from an in�nite plane parallell with the xy-plane is

E =
σ

2ε0
k̂ .

Solution: Construct a box like in �gure ??. Because the �eld is normal to the plane the �ux integral
get no contributions from the sides and therefore

∮
S
E · dA = EA+ EA =

Qenc
ε0

=
σA

ε0

and thus

E =
σ

2ε0
n̂

where A is the area of the top and bottom of the box and n̂ is normal to the in�nite plane.

Exercise 4.3: Non-uniform charge densities

In all the examples we've studied ρ has been uniform. But this need not be the case. In this example
we'll study a long coaxial cable carrying a charge density ρ(r) = kr in the region a < r < b and ρ = 0
everywhere else, where r is the distance from the axis of symmetry and k is a constant. The situation is
shown in �gure 2.

a) Use Gauss' law to �nd the electric �eld inside for all r and plot E as a function of r.

Week 4 � September 11, 2011 3 compiled September 12, 2011



Solution:

Construct cylinder with radius r. For 0 < r < a the enclosed charge is zero, so therefore the �eld
here is also zero. For a ≤ r ≤ b

∮
S
E · dA = E2πrL =

Qenc
ε0

=
1

ε0

∫
ρ(r)dv

Qenc =

∫
ρ(r)dv =

∫ L

0

∫ 2π

0

∫ r

0

kr2drdφdz = 2πL

∫ r

a

kr2dr =
2

3
Lπk

(
r3 − a3

)

⇒ E =
k
(
r3 − a3

)
3ε0r

r̂.

For r > b we essentially get the same derivation, but now

E =
k
(
b3 − a3

)
3ε0r

r̂.

b) Calculate the divergence of E and verify that ρ(r) = ε0∇ ·E.

Solution: Rewrite E as

E =
k

3ε0

(
r2 − a3

r

)
r̂

such that

∇ ·E =
k

3ε0

(
∇ · r2r̂− a3∇ · r̂

r

)
.

Now by either transforming this expression to cartesian coordinates or by using the divergence in
cylindrical coordinates (search for 'del in cylindrical coordinates' on wikipedia) one can show that

∇ · r2r̂ = 3r

and

∇ · r̂
r
= 0.

Therefore

∇ ·E =
k

3ε0
3r =

ρ(r)

ε0
.
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Exercise 4.4: The electron marble

We want to construct a marble solely out of electrons. Let's say we have the same glass marble as before,
with R = 1 cm in radius and weighing m = 10 g. Consider that we remove all the protons and are left
with only the electrons. Last week we found that the electrons in this marble have a total charge of
Q = 48 180C.

a) Let us model the marble as a sphere with uniform charge density ρ. Find the electric �eld inside and
outside the sphere.

Hint: When you're inside the sphere, the total charge enclosed is not Q.

Note: This is the exact same problem as we had in the last exercise in the previous problem set. Do

you �nd it easier to calculate the electric �eld with this method?

Answer: For r < R:
E =

ρ

3ε0
r

For r > R:

E =
Q

4πε0r2

Solution: We use Gauss' law to determine the electric �eld for r < R and r > R. Since the charges
are placed uniformly over the volume, we can use a constant ρ as the charge density. For r < R we
have ∮

S

E · dA =
Qenc

ε0

which gives

E4πr2 =
1

ε0

∫
V

ρdV

E4πr2 =
ρ

ε0

4

3
πr3

E =
ρ

3ε0
r

Furthermore, for r > R we get

E4πr2 =
Q

ε0

E =
Q

4πε0r2

b) To construct this marble, we assemble the electrons slowly one by one, until the charge is Q, and
placed uniformly over the marble's volume. Due to the conservation of energy, the work done will be
stored as energy in the the electric �eld. Therefore, you might want to use the energy density of the
electric �eld,

uE =
1

2
ε0E

2

to �nd the total energy. Find the total required work.
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Hint: See chapter 2.4 in �Generell Fysikk�.

Answer:
3

5

Q2

4πε0R

Solution: The work needed is equal to the total energy stored in the electric �eld after the charges
are assembled.

Now we may use that the energy density in the electric �eld is given as

uE =
1

2
ε0E

2

We can integrate over all space where we have an electric �eld. To do this, we make up a small
in�nitesimal volume element dV = 4πr2dr and see that this results in an in�nitesimal energy element

dU = uEdV =
1

2
ε0E

24πr2dr

For the �eld where r < R, we get

U1 =

∫ R

0

1

2
ε0(

ρ

3ε0
r)24πr2dr

=

∫ R

0

4πρ2r4

2 · 32ε0
dr

=
4πρ2R5

5 · 2 · 32ε0

Since the charge density is uniform, we have that the total charge must be the density times the
volume, Q = ρ4/3πr3, so that

ρ =
3

4

Q

πR3

Inserting for ρ we get the energy as

U1 =
Q2

5 · 2 · 4πε0R

For r > R we get

U2 =

∫ ∞
R

1

2

Q2

4πε0r2
dr =

1

2

Q2

4πε0R

In total, this is

U = U1 + U2 =
3

5

Q2

4πε0R

This can also be solved by using

U =
ρ

2

∫ R

0

4πr2drV (r)

or by modeling the total charge by bringing shells with charge ρ4πr2dr from r → ∞ for a sphere of
radius r and then integrate r from 0 to R.

By insertion of Q = 48 180C, we �nd
U = 2.6 · 1016 J
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c) Impressed as you are by the numbers, �gure out how many trucks, all with an engine power of 745 kW
(or 1000HP, if you prefer) you'd need to push all this charge together. We're in no hurry, so let's say
they'll use a day. 1

Answer: 403928 trucks

Solution: The total energy produced by one truck would be

UT = 745000
J

s
· 24 · 60 · 60 s = 6.4368 · 1010 J

So the total number of trucks becomes

n =
U

UT
=

2.6 · 1016 J
6.4368 · 1010 J

≈ 403928

d) If we were actually able to assemble such a marble of electrons, the electrons would obviously want to
immediately repel each other. The number of electrons where found last week to be ne = 3.011 · 1023.
If we assume that all the electrons are thrown out into space with an equal velocity for each electron,
what would the speed of each electron be? (Is your answer reasonable or should we've considered the
e�ects of relativity?)

Answer: 1.87 · 1023 m/s. No it is not reasonable, and relativity should be taken into account.

Solution: The speed would be determined by the potential energy going over to kinetic energy. If
each electron gets the same amount of the potential energy, each would gain

Ue =
U

ne
=

2.6 · 1016 J
3.011 · 1023

= 8.63 · 10−8 J

If all this potential energy was to be turned into kinetic energy, the velocity of each electron would
be given by Ue = 1/2mev

2
e .

ve =

√
2Ue
me

= 1.87 · 1023 m/s

which obviously is out of proportions compared to the speed of light. This means that the problem
should be solved by proper use of relativity.

Exercise 4.5: Sensors

Since a conductor is an equipotential, we can unambiguously talk about the potential di�erence between
them. Furthermore V is proportional to Q, so if we stick +Q on one and −Q on the other conductor we

1Don't worry about that the trucks would crash if the radius is 1 cm. This is a thought experiment, we're not really

planning to do this.
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A
Figure 3: A keyboard application of a plate capacitor.

can de�ne a useful quantity called the capacitance C of the arrangement by C = Q/V , where V here is
the potential di�erence between the two conductors.

A parallel-plate capacitor is constructed by bringing two conducting plates with charge ±Q and of area
A a distance d apart. As long as d is small in comparison to A and we stay away from the edges, we can
model the �eld as the sum of the �eld from a pair of in�nite plates2.

a) Find the �eld everywhere for the plate capacitor described above and show that the capacitance can
be written as

C =
Aε0
d

.

Solution:

C =
Q

V

E =
σ

ε0
n̂

(between the plates)

V = Ed =
σd

ε0
=

Qd

ε0A

(homogeneous �eld)

⇒ C =
Q

V
=
Aε0
d

b) What is the force experienced by each of the plates? Hint: Remember that a body cannot exert a force

on itself.

Solution: The upper plate can only exert a force on the lower plate and vise verca. The �eld from
the plate with the positive charge Q is Q

2Aε0
such that the magnitude force on the other plate is

F = Q2

2Aε0
.

2We've found this �eld before in exercise 3.3.c.
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Answer:

F =
Q2

2Aε0

c) One application of a capacitor is to use it as a sensor. This is used in some computers. Consider
the button in �gure 3 with A = 50mm2 and d = 0.6mm. When you push a button, the distance
d decreases and the capacitance goes up. When the capacitance get bigger than C ′ = 0.250 pF the
keystroke is registered. Find the distance we need to press the button down in order for the keystroke
to be registered.

Solution: So the keystroke is registered when the capacitance is bigger than some minimal capacitance
C ′. Thus

C =
Aε0
d
≥ C ′ ⇔ d ≤ Aε0

C ′

Answer:

d ≤ Aε0
C ′
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