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Micro- and Macrostates in the Einstein Crystals

In this project we will address the micro- and macro-states of an Einstein crystal.
You will learn how to represent and count microstates in a simple model of a crystal
consisting of a set of independent oscillators, you will learn how to find the probability
of a macrostate for two Einstein crystals in thermal contact, and to find the time
evolution of the Einstein crystal using a Monte Carlo simulation technique.

A simple model for a crystal that still captures surpricingly many of the important
features of the statistical physics of a crystal is the Einstein crystal. A real crystal
consists of a set of atoms in a periodic configurations interacting through interatomic
interactions that include both short range and longer ranged forces. As a result,
individual atoms will oscillate around an equilibrium position while interacting mostly
with its nearest neighbors. As a simplified model for this system we consider each
atom, i, to behave like an independent harmonic oscillator with a potential energy
Ui:

Ui(~ri) =
1

2
kx(xi − xi,eq)2 +

1

2
ky(yi − yi,eq)2 +

1

2
kz(zi − zi,eq)2 , (1)

From quantum mechanics, we know that the energy of a harmoic oscillator i is

εi = ni∆ε , (2)

where ni is an integer describing the state of oscillator i. We can therefore describe
the state of a crystal with N independent (meaning non-interacting) oscillators by
the states ni for i = 1, . . . , N . The total energy of the crystal in this simplified model
is then:

U =

N∑
i=1

ε ni . (3)

For simplicity we will measure energy in units of ε:

q =
U

ε
=

N∑
i=1

ni , (4)

For a system with a given total energy, the sum of all the ni is constant, but we can
still change how the energy is distributed in the system. We can think of the energy
a given number of energy units that we are free to distribute between the oscillators.
Any distribution is allowed as long as we do not change the total energy.

We describe a microstate of this system by the numbers ni for each oscillator:

{n1, n2, . . . , nN} (5)

For example, for a system with N = 4 and q = 4, a possible microstate is {1, 0, 2, 1},
that is n1 = 1, n2 = 0, n3 = 2, and n4 = 1.

We will now find the various microstates of this system:

(a) For a system with N = 2 oscillators and q = 3, list all the possible microstates.

(b) For a system with N = 3 oscillators and q = 3, list all the possible microstates.

(c) For a system with N = 4 oscillators and q = 3, list all the possible microstates.

The general formula for the number of microstates for N oscillators with q units of
energy is:

Ω(N, q) =

(
q +N − 1

q

)
=

(q +N − 1)!

q!(N − 1)!
. (6)
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(d) Check that the results you found above are consistent with this formula.

We can now list and count the number of microstates for an Einstein crystal, and we
are ready to address what happens if two Einstein crystals come in contact. First,
we start by looking at a system consisting of two isolated Einstein crystals, system A
with NA oscillators and energy qA and system B with NB oscillators and energy qB .
Each system is surrounded by an insulating, rigid and impermeable outer wall so that
its energy, volume and number of oscillators (particles) is constant. The total system
consists of system A and system B, so that N = NA +NB and q = qA +qB . However,
the systems are initially isolated – meaning that they are independent systems with
constant energy, volume and number of particles.

(e) For a system consisting of subsystem A with NA = 2 and qA = 5 and subsystem
B with NB = 2 and qB = 1 list all possible microstates of the system.

The two systems are put in thermal contact, so that they can exchange energy, but
the number of particles and the volume of each subsystem does not change. The total
energy q = qA + qB = 6 is constant, but the energy can now be freely distributed
between the two systems. Let us now count the number of possible microstates for
each possible value of qA and qB .

(f) For NA = 2, NB = 2, and q = 6 what are the possible values of qA and qB?
We call a state with a given qA (and therefore also a given qB = q − qA) a
macrostate for the system.

(g) For each possible macrostate qA find the number of compatible microstates.

(h) Compare the total number of microstates available to the system before and after
the systems came in thermal contact. Comment on the result. What aspects of
this result do you think is general?

(i) If all microstates have the same probability, what are the probability of each of
the macrostates?

(j) What is the probability of the initial macrostate before the two systems came in
contact?

(k) What is the probability of finding all the energy in system A?

(l) What is the probability of finding exactly half the energy in system A?

We will now address larger systems numerically. You therefore need to write a scrip-
t/program to find the number of macrostates and the probability of the macrostates.
We start from the system we had above, but you will need to write a general program
you can use for any value of NA, NB , q, and qA.

(m) For NA = NB = 2 and q = 6 write a program to find the number of microstates
for each macrostate qA and the probability P (qA) = Ω(qA)/ΩTOT for each
macrostate. Compare with your results from above. Plot the probabilty P (qA)
as a function of qA.

We will now address a larger system with NA = 50, NB = 50 and q = qA + qB = 100.

(n) Plot the probability P (qA) as a function of qA for all possible values of qA.
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(o) What is the most probable macrostate? What is the probability of the system
being in the most probable macrostate compared to all other macrostates in the
system? Comment on the result.

(p) We start from a system with qA = 0 and qB = 100 before the systems come in
thermal contact. What is the probability of being in this state after the system
has reached equilibrium?

Explore if you dare..

We will now address how the system reaches thermal equilibrium. This is not an
essential part of the project, but it may give you additional insight into irreversible
processes and the second law of thermodynamics. Proceed if you dare...

The microstate of the system is given by the energy of each oscillator given as ni for
each of the oscillators. We start by studying a single system with N oscillators and
energy q. You can genereate the initial state by placing each energy unit in a random
oscillator. (Some oscillators may receive more than one energy units and some may
receive none). At each timestep we attempt a transfer of energy from one oscillator
to another oscillator using the following algorithm. Select an oscillator n1 at random.
If the oscillator has zero energy, do nothing, if the oscillator has a positive energy,
select another oscillator n2 at random and transfer one unit of energy from n1 to n2.
Repeat the process for as many “timesteps” as you want.

(q) Write a program to generate the initial microstate and the “time” development
of the microstate. Plot the initial state and the state after 100 flips.

(r) Divide your system into two parts, each part having N/2 oscillators. We call the
first N/2 oscillators system A corresponding to oscillators i = 1, N/2, and the
second N/2 oscillators system B, corresponding to oscillators i = N/2 + 1, N .
Plot qA/NA and qB/NB as a function of time. Comment on the result.

(s) Initialize the system with all the energy in the system A only. Plot the aver-
age energy per oscillator (qA/NA and qB/NB) as a function of time and and
comment on the result.

(t) Starting from an equilibrium configuration (either by starting from a random
configuration or by running a non-random configuration for a long time before
starting measurements) plot the probability of the macrostates. Comment on
the results.
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Figure 0.1: Example state (top) and time development of the average energy per oscillator
for a system divided into two parts A and B.
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