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Density of states in one and two dimensions

The energy states of a particle in a box of size L are given as

εn =
h̄2

2m

(π
L

)2 (
n2x + n2y + n2z

)
, (1)

for a three dimensional system. For a two and one dimensional system, the states
have similar forms, but with only nx for the one-dimensional case

ε1d =
h̄2

2m

(π
L

)2 (
n2x
)
, (2)

and with only nx and ny for the two-dimensional case:

ε2d =
h̄2

2m

(π
L

)2 (
n2x + n2y

)
. (3)

(a) Show that the density of states D1d(ε) for a free particle with spin 1/2 in one
dimension is:

D1d(ε) =

(
L

π

)(
2m

h̄2ε

)1/2

. (4)

(b) Show that the density of states D12(ε) for a free particle with spin 1/2 in two
dimensions is:

D2d(ε) =
mL2

πh̄2
, (5)

which is independent of ε.

(c) Plot or sketch the density of state as a function of energy in one, two, and three
dimensions.

(d) (For discussion in class) Explain graphically why the initial curvature of µ(T )
is upward in 1d and downward in 3d. (Hint: Set upt the integral for N and
use the graphs to consider the behavior of the integrand from T = 0 to a finite
temperature.)

Relativistic Fermi Gas

For relativistic electrons – that is for electrons where ε � mc2 – the energy is given
as ε ' pc, where p is the momentum. For a particle in a square box of size L×L×L,
the momentum is

p =
πh̄

L

(
n2x + n2y + n2z

)1/2
, (6)

just as for non-relativistic electrons.

(a) Show that the density of states has the form

D(ε) =
π

a3
ε2 , (7)

where a = cπh̄/L.

(b) Show that the Fermi energy of a gas of N electrons is

εF = h̄cπ (3n/π)
1/3

, (8)

where n = N/V .
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(c) Show that the total energy when T = 0 is

U0 =
3

4
NεF . (9)

Chemical potential in a Fermi Gas

For a Fermi-gas with N particles and volume V we can define the chemical potential
µ by solving the following equation with respect to µ:

N =

∫ ∞
0

D(ε)f(ε, µ, T ) dε , (10)

where the density of states, D(ε) for particles with spinn 1/2 is given as

D(ε) =
3N

2ε
3/2
F

ε1/2 =
4V√
π

(
2πm

h2

)3/2

ε1/2 , (11)

and f is given as

f(ε, µ, T ) =
1

1 + exp
(
ε−µ
kT

) . (12)

Equation 10 can be solved numerically to find µ(T ), and we will here show how to
proceed to do this.

In order to solve the equations numerically, it is useful to non-dimensionalize the
equations. We do this by introducing a characteristic energy, εF , corresponding to
the Fermi energy:

εF =
h2

8m

(
3N

πV

)2/3

. (13)

Based on this energy, we introduce new dimensionless variables t = kT/εF , c = µ/εF
and x = ε/εF .

(a) Show that equation 10 can be written as

1 =
3

2

∫ ∞
0

x1/2

exp((x− c)/t) + 1
dx , (14)

using the dimensionless variables.

(b) What happens when t = 0? What is c in this case? Explain.

(c) Now we will find c(t) numerically by varying c while holding t fixed until the
integral gives the desired value. You should do this for t in the range from 0.1
to 2 and plot the results. (Hint: You can use the function Integrate(F,0,Inf)

to find the integral of the function for a given set of values for t and c. You
then need to adjust c until the integral becomes 2/3.)

(d) Use your calculated values for µ(T ) to find the energy U(T ) numerically for
temperatures up to t = 2. Plot the result.

(e) Find the heat capacity as a function of temperature from your numerical calcu-
lation of the energy as a function of temperature.

(f) Plot the distribution function f(ε, µ(T ), T ) as a function of ε for a range of values
of T using your calculated values for µ(T ). Comment on the results.
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(g) (For discussion in class) Explain graphically why the initial curvature of µ(T )
is upward in 1d and downward in 3d. (Hint: Use the integral for N and use
the graphs to consider the behavior of the integrand from T = 0 to a finite
temperature. You have found the density of states in 1d previously.)

End of Oblig 8


