
Introduction to diffusion and
random walks 4

In this chapter we will bridge insights from random walks with diffusion
and stochastic processes. We will start by describing and modeling
random walks, we will address their applications, their structure and
their scaling properties. Then we will address the probability distribution
for the end point of a random walk. This will be the starting point for
discussion diffusion. We will map random walks onto a diffusion process,
and describe the same process using both a random walk model and a
diffusion model, learning about advantages and disadvantages of both.
We will then address the stationary solution of the diffusion process —
the Poisson equation.

4.1 Random walks

A random walk is a fundamental physical process in which a random
walker — a particle, an atom, a measurement, an individual — moves in
random steps. A typical example is the Browian motion of small particles
due to the thermal motion of atoms. Another example is the spreading
of an atom throughout a fluid.
ams 1: Show diffusion model simulation in Atomify-Mac

99

100 4 Introduction to diffusion and random walks

4.1.1 Random walks as sum of random variables

In one dimension, we can describe a random walk by its random individual
steps, ui, where i is the step number. The step ui is a random variable
that may have some distribution. The position, x, of the walker after N
steps is the sum of the individual steps:

x(N) =
N∑
i=1

ui . (4.1)

Modeling a random walk in Python. We can model a random walk in
Python by selecting each of the steps, ui, randomly from some distribu-
tion, and then finding the sum. For example, we may flip a coin, so that
it is equal probabilities to go left and right:

ui =
{
−1 p = 1/2
+1 p = 1/2 (4.2)

We can select an integer number between 0 and 1 using the Python
command randint(2). Thus we can generate a sequence of random
number ui by

from pylab import *
N = 10
u = randint(0,2,size=N)
u
Out: array([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])

Ooops. This generates two possible outputs, but not -1 and 1, which is
what we wanted. We transform ui to its wanted range

u = 2*randint(0,2,size=N)-1
u
Out: array([1, 1, -1, 1, 1, 1, -1, 1, 1, 1])

This looks reasonable. How far does the walk get after N steps? This is
simply the sum of ui:

x = sum(u)
x
Out: 6

We can illustrate the walk by its position, x, as a function of the number
of steps, N , it has gone. Thus we need to find the sum over ui first, for
i = 1, then for i = 1, 2, and so on. This is done automatically by the
function cumsum:

4.1 Random walks 101

xs = cumsum(u)
xs
Out:array([1, 2, 1, 2, 3, 4, 3, 4, 5, 6])

We can now illustrate x(N):

N = 1000
u = 2*randint(0,2,size=N)-1
xs = cumsum(u)
plot(xs), xlabel(’N’),ylabel(’x(N)’)

The resulting plot is shown in Fig. 4.1. This is an interesting figure with
many features. We will soon discuss the basic properties of this figure.

Fig. 4.1 Plot of the po-
sition x(N) of a random
walk after N steps.

Random walks in two dimensions. We can define random walks in
any dimension, simply by assuming the individual steps can occur in
any dimension. In two dimensions we may introduce u, which may for
example be

u =

(1, 1) p = 1/4

(−1, 1) p = 1/4
(1,−1) p = 1/4

(−1,−1) p = 1/4

(4.3)

This simply corresponds to selecting one ui in the x-direction and an vi
in the y-direction with the same distribution. It is therefore very simple
to create such a walk in two dimensions:

u = 2*randint(0,2,size=(N,2))-1
r = cumsum(u,axis=0)

Where the axis option specifies along which axis the sum should be
taken. We plot the walk, producing the nice structure in Fig. for N =
10, 100, 1000, and 10000 in Fig. 4.2.
Characterizing these structures. The structues generated by a random
walk in two- or three dimensions corresponds to the structures generated
by for example a randomly coiling polymer. How can we characterize the
structure in one-, two- or higher dimensions?

102 4 Introduction to diffusion and random walks

Fig. 4.2 Plot of the posi-
tions r of a random wal.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

4

3

2

1

0

1

2

y

20 15 10 5 0 5
x

10

8

6

4

2

0

2

4

6

y

40 35 30 25 20 15 10 5 0 5
x

70

60

50

40

30

20

10

0

10

y

120 100 80 60 40 20 0 20 40
x

40
20

0
20
40
60
80

100
120
140

y

If we look at either Fig. 4.1 or Fig. 4.2 we see that the random walk
does not stray very far from its initial position. We can characterize the
two dimensional structure by its extent, for example by its deviation. We
could measure this as the maximum deviation, rmax in two-dimensions
or xmax − xmin in one dimension. However, it is customary to describe
the deviations by the quadratic deviation (corresponding to the variance
or the standard deviation). That means that we characterize the extent
of the walk by

∆x2 = 〈(xi − 〈xi〉)2〉 , (4.4)

where the 〈..〉 means the average. We calculate this directly as

x̄ = 〈x〉 = (1/N)
∑
i

xi , (4.5)

and
∆x2 = (1/N)

∑
i

(xi − x̄)2 . (4.6)

Measured deviation in one dimension. We can now implement and
measure the deviation, ∆x, for one walk. However, each walk is different,
but we can observe statistical trends by analyzing many walks. We would
therefore like to measure ∆x(N) by averaging over M walks.

We implement this in a Python program using the function std to
calculate the deviation in one go:

Find deviation of random walks
Nvalues = [10,20,40,80,160,320,640]
walkdev = zeros(len(Nvalues))
for i in range(len(Nvalues)):

4.1 Random walks 103

N = Nvalues[i]
M = 10000 # Nr of samples
for im in range(M):

x = cumsum(2*randint(0,2,size=N)-1)
xdev = std(x)**2
walkdev[i] = walkdev[i] + xdev

walkdev[i] = walkdev[i]/(M*1.0)
plot(Nvalues,walkdev,’-o’),xlabel(’N’),ylabel(’dx^2(N)’)

The resulting plot in Fig. 4.3 is astonishing. It is a completely straight
line! This indicates that ∆x2 ∝ N .

Fig. 4.3 Plot of the devia-
tion, ∆x2, as a function of
the number of steps, N .

0 100 200 300 400 500 600 700
N

0

20

40

60

80

100

120

d
x
^

2
(N

)

Exercise: Measure extent of a two-dimensional walk. Write a program
to perform the same measurement in two dimensions. Plot the deviation
as a function of N and comment on the results.

Hint: Notice that the deviation is independent in the x and the y
directions:

∆r2 = 〈(ri − ravg)2〉 = 〈(xi−xa)2+(yi−ya)2〉 = 〈(xi−xa)2〉+〈(yi−ya)2〉.
(4.7)

Theory for the extent of a random walk. Because the observed behav-
ior is so clear, we look for a theoretical argument.

First, we find the average of x:

〈x〉 = 〈
∑
i

ui〉 =
∑
i

〈ui〉 = 0 (4.8)

as long as there is no net movement in one direction. (In that case we
can subtract the net movement).

104 4 Introduction to diffusion and random walks

Then we look at the deviation of x:

〈x2
i 〉 = 〈

∑
i

∑
j

uiuj〉 = 〈
∑
i

uiui〉 = N〈u2
i 〉 . (4.9)

This argument is independent of dimensionality, and independent of
the individual steps ui as long as they are uncorrelated. (This is why
〈uiuj∠ = 0 when i 6= j). The argument is valid for any distribution of ui
— as long as the distribution has finite variance. (The number δ2 = 〈u2

i 〉
must be finite).

Thus we have found very generally that the variance of the random
walk is proportional to the number of steps. This means that it moves
slowly away from zero!
Structure and dimensionality. If we think of the random walk as rep-
resenting a polymer, we could argue that the mass of the polymer
corresponds to the number of monomers — the number of steps. Thus,
the mass would be M = m0N , where m0 is the mass of one step in the
walk. We have therefore found that the mass of the polymer scales with
its extent ∆r2 according to:

M = m0N = m0(∆r/δ)2 . (4.10)

This means that the mass is proportional with the exent to the second
dimension. In two dimensions this means that it fills the same. However,
this result also holds in three-dimensions. The random walk reprensents
a two-dimensional structure also in three dimensions.

May illustrate other physical fractal structure, such as percolation
clusters, here.
Other types of random walks. The random walk may cross itself, but
a polymer cannot. Instead, a polymer will behave like a self-avoiding
random walk. But how do we expect such as walk to behave? (Indicate
scaling behavior for small and large dimensions).

4.1.2 Distribution of positions of a random walker

We have only looked at how wide the walk goes. What about the distri-
bution of end-points, x of a walk of N steps. (Actually, you may know
that this problem has an exact solution for some processes and an exact
limit for most distribution of individual steps, ui, but we will concentrate
on studying the properties numerically here).

4.1 Random walks 105

Let us generate a random walk with the following probabilities for a
single step:

ui =

1
3 +1
1
3 0
1
3 −1

(4.11)

We want to measure the probability PN (x) that the walker lands in
the position x after N steps. Or, we may want to find the probabilty for
the walker to stop in an interval dx from x to x+ dx. We measure this
by finding the frequency of occurence of such an event. We perform M
experiments, and count how many times Nx the walker ends in boxes in
the interval from x to x+ dx. Then we estimate the probability as

PN (x)dx = Nx

M
⇒ PN (x) = Nx

M dx
. (4.12)

We did this in detail to ensure that we remember to divide by the box
size when we generate a histogram. We can count how many events falls
into a box of width dx by using the histogram function in Python. We
can either specify the boundaries for all the boxes or let Python specify
the box positions.

We prefer to choose the box positions ourselves. Since the possible
positions after N steps span from −N to N we choose the box size to
be 1 and generate a set of edges for the boxes spanning from −N − 1/2,
−N + 1/2 to N + 1/2 using the range command. This is implemented
in the program walk1dscaling00.py1:

Random walk in one dimension - measurement
from pylab import *
N = 100
nsample = int(10000000/N)
x = zeros(nsample)
for i in range(nsample):

z = randint(3,size=N)-1
x[i] = sum(z)

edges = array(range(-N,N+1))-0.5
Nx,e = histogram(x,edges)
x = (edges[:-1]+edges[1:])/2.0
dx = diff(edges)
Px = Nx/(dx*nsample)
plot(x,Px), xlabel(’x’), ylabel(’P(x)’)
show()

The resulting plot of P (x) as a function of x is shown in Fig. 4.4.
1 http://folk.uio.no/malthe/compcourse/walk1dscaling00.py

http://folk.uio.no/malthe/compcourse/walk1dscaling00.py

106 4 Introduction to diffusion and random walks

Fig. 4.4 Plot of P (x) for
N = 100.

Finding PN (x) as a function of N . How does this distribution change
as the number of steps increases. We plot PN (x) for various values of N
using walk1dscaling01.py2:

Random walk in one dimension - scaling
from pylab import *

Nvalues = [10,50,100,200,400]

for N in [10,50,100,200,400]:
nsample = int(1000000/N)
x = zeros(nsample)
for i in range(nsample):

z = randint(3,size=N)-1
x[i] = sum(z)

edges = array(range(-N,N+1))-0.5
Nx,e = histogram(x,edges)
x = (edges[:-1]+edges[1:])/2.0
dx = diff(edges)
Px = Nx/(dx*nsample)
plot(x,Px)

show()

Zooming in provides some insight into the structure. The distribution
becomes wider as N increases. Indeed, we have found that the deviation
increases with N . Can we rescale the plot to include this insight?

We plot PN (x) as a function of x/
√
N . However, this does not produce

the wanted behavior, because we see that the plots are too high. We also
need to rescale the other axis.

Our theory is that the probability distribution depends on
√
N in the

following way
PN (x) = Naf(x/

√
N) . (4.13)

We can then use the normalization condition to find out how to rescale
the other axis. Since the integral of PN (x) must be normalized, we find

2 http://folk.uio.no/malthe/compcourse/walk1dscaling01.py

http://folk.uio.no/malthe/compcourse/walk1dscaling01.py

4.1 Random walks 107∫ ∞
−∞

PN (x)dx =
∫ ∞
−∞

Naf(x/
√
N)dx (4.14)

=
∫ ∞
−∞

Naf(u)
√
Ndu = 1 (4.15)

which requires that Na = 1/
√
N . We rescale with this as well in

walk1dscaling02.py3:

Random walk in one dimension - scaling
from pylab import *

Nvalues = [10,50,100,200,400]
clf()
for N in [10,50,100,200,400]:

nsample = int(1000000/N)
x = zeros(nsample)
for i in range(nsample):

z = randint(3,size=N)-1
x[i] = sum(z)

edges = array(range(-N,N+1))-0.5
Nx,e = histogram(x,edges)
x = (edges[:-1]+edges[1:])/2.0
dx = diff(edges)
Px = Nx/(dx*nsample)
plot(x/sqrt(N),Px*sqrt(N))

show()

Proving that this is indeed the scaling behavior of the probability
distribution. Notice that this of course corresponds to the exact solution
from the Central Limit theorem. However, it is nice to see how we can
obtain such results in a more empirical fashion. Indeed, this is how we
often look for scaling structures in nature.

Measuring PN (x) for two-dimensional walks. Generating and charac-
terizing the probability distribution for the position rN of a random
walker after N steps follows the same principles as in one dimension.
We generate M walks, each of length N . Each walk consists of a series
of independent steps, ui. We select the x- and y-component of ui in-
dependently of each other, each is chosen in the same way as for the
one-dimensional walk:

ux,i =
{

1
2 +1
1
2 −1 uy,i =

{
1
2 +1
1
2 −1 (4.16)

We find the position, rN after N steps as the sum of the individual steps:
3 http://folk.uio.no/malthe/compcourse/walk1dscaling02.py

http://folk.uio.no/malthe/compcourse/walk1dscaling02.py

108 4 Introduction to diffusion and random walks

rN =
N∑
i=1

ui . (4.17)

In order to find the probability distribution, we count the number
of walkers N(nx, ny) that end up in the box (nx, ny). We prescribe the
edges of the boxes so that all integers fall into a specific box by giving
the edges in the x- and the y-direction as spanning from −N − 1/2 to
N + 1/2 in steps of 1. The implementation contains the following steps:

Random walk in two dimensions
from pylab import *

dim = 2
N = 100 # nr of steps
nsample = 100000 # nr of samples
x = zeros((nsample,dim))
n = zeros(nsample)
for i in range(nsample):

Generate random walk of N steps
z = 2*randint(2,size=(N,dim))-1
x[i,:] = sum(z,axis=0)
nrm = norm(x[i])
n[i] = nrm

#plot(n)
Nn,edges = histogram(n)
#3hist(n)
#%%
xedges = array(range(int(min(x[:,0])),int(max(x[:,0])),2))+0.5
yedges = array(range(int(min(x[:,1])),int(max(x[:,1])),2))+0.5
Nn,xedges,yedges = histogram2d(x[:,0],x[:,1],[xedges,yedges])
imshow(Nn,interpolation=’nearest’, origin=’low’,

extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
axis(’equal’)

Notice that we generate all the ui values with the command

z = 2*randint(2,size=(N,dim))-1

which returns a matrix consisting of two-dimensional vector specifying
the individual steps of the walker. Also notice the use of the sum function
to sum all the x-displacements and all the y-displacements. That is, the
command

x[i,:] = sum(z,axis=0)

returns a vector containing
∑
i uxi as the x-component and

∑
i uyi as the

y-component.
Notice also the use of the histogram2d function to generate the two-

dimensional histogram with the specified edges. The resulting plot is

4.2 Random walks and diffusion 109

shown in Fig. 4.5. We could perform a similar scaling analysis for the
two-dimensional system as we did for the one-dimensional system. ams
2: Include in next version

Fig. 4.5 Image showing the
local probability PN (x, y)
for the walker to be in
the position (x, y) aften
N steps when it starts at
(0, 0) .

4.2 Random walks and diffusion

How can we relate random walks to the number of atoms/particles in a
given region in space. Fig. 4.6 shows random walkers on a course grained
grid on the left. There is initially a number Ni,j walkers in the center
grid box, but after a few time steps, corresponding to some steps of the
random walkers, some of the walkers have walked from Ni,j and to its
surrounding boxes, and some walkers have walked from the surrounding
boxes and into Ni,j .

Fig. 4.6 Illustration of the
motion of random walkers
and the number of random
walker per box.

Ni,j

Ni,j+1

Ni,j-1

Ni-1,j Ni+1,j

110 4 Introduction to diffusion and random walks

Analysis of one-dimensional system. We can address this process in
detail in a one-dimensional system. In this case, we have a given number
of walkers, Ni(t) in box i at time t. We assume that each walker has a
probability p = R∆t to leave the box and move into box i + 1 during
a time interval ∆t. This means that the number of walkers that moved
from box i into box i+ 1 will be pNi in the time interval ∆t. Similarly,
there is a number pNi that moves from box i and into box i− 1. There
will also be walkers walking from box i− 1 and into box i, and walkers
moving from box i + 1 into box i. Let us include these effects into an
equation for Ni:

Ni(t+∆t) = Ni(t)− R∆tNi(t)︸ ︷︷ ︸
(moving into i−1)

− R∆tNi(t)︸ ︷︷ ︸
(moving into i+1)

(4.18)

+ R∆tNi−1(t)︸ ︷︷ ︸
(coming from i−1)

+ R∆tNi+1(t)︸ ︷︷ ︸
(coming from i+1)

. (4.19)

We collect term on each side to get

Ni(t+∆t)−Ni(t)
∆t

= R∆x2 (Ni+1(t)−Ni(t))− (Ni(t)−Ni−1(t))
∆x2

(4.20)
We recognize this as the discrete form of a partial differential equation
in N(x, t):

∂N

∂t
= R∆x2∂N

2

∂x2 . (4.21)

If we instead describe the system by the number of particles per box,
c(x, t) = N/Vb, where Vb is the volume per box, we get the diffusion
equation:

∂c

∂t
= D

∂c2

∂x2 . (4.22)

where D = R∆x2 is called the diffusion constant.
Two approaches to address diffusion. This points to two possible
approaches to address diffusion. We may consider an ensamble of many
particles the diffuse individually, and then count how many particles
have ended up in a particular box/position after a given time, or we can
describe the number of particles per box, and then calculate how this
number changes with time.
Mapping random walks onto diffusion. We can map the random walk
model directly onto the diffusion equation. We know that the probability
for a particle to move a distance ∆x, which is the box size, over a time

4.2 Random walks and diffusion 111

∆t is p = R∆t. This allows us to solve the random walk problem or the
diffusion problem and compare the results directly.
Comparing random walks and diffusion in one dimension. We com-
pare the two descriptions directly by describing the diffusion processes
by the number of walkers, Ni, in each box. We start the system by all
M walkers starting from x = 0, which means that N0 = M and Ni = 0
(i 6= 0) initially.

Each time step, ∆t, each walker has a probability p to move to the box
to its left, and p to move to the box to its right. (It means that it has the
probabilty 1− 2p not to move at all). Notice that we here describe this
as a single step for the random walker, but we may think of this process
as a result of many small steps that lead to the walker moving out of
the box (with probability p) or remaining in the box (with probability
1− 2p).

Each time step we also update the numbers Ni of particles in boxes i
accordring to the diffusion equation in (4.20):

Ni(t+∆t)−Ni(t) = R∆t ((Ni+1(t)−Ni(t))− (Ni(t)−Ni−1(t))) ,
(4.23)

which gives

Ni(t+∆t) = Ni(t) +R∆t (Ni+1(t)− 2Ni(t) +Ni−1(t)) , (4.24)

where we can replace R∆t = p.
Simultaneous implementation in Python. We implement both meth-
ods at the same time in Python in order to compare the results. This is
done in the program diffwalk1d.py4:

Comparing random walks and diffusion in 1d
from pylab import *

M = 10000 # Nr of walkers
L = 100 # Max size of lattice

Each time step - move walkers and propagate diffusion solution

p = 0.1 # Prob for motion
pinv = 1.0-p
nsteps = 3001 # Nr of timesteps

Initialize walkers
x = zeros(M) # Initial position of walkers
edges = array(range(-L,L+1))-0.5

4 http://folk.uio.no/malthe/compcourse/diffwalk1d.py

http://folk.uio.no/malthe/compcourse/diffwalk1d.py

112 4 Introduction to diffusion and random walks

xc = 0.5*(edges[:-1]+edges[1:])

Initialize concentrations
c = zeros((2*L+1,2))
i0 = 0
i1 = 1
c[L] = M # c[L] corresponds to x = 0
cx = range(-L,L+1)
D = p

#%%
ion()
noutput = 10
for it in range(nsteps):

First update positions of all random walkers
for iw in range(M):

rnd = rand(1)
dx = -1*(rnd<p)+1*(rnd>pinv)
x[iw] = x[iw] + dx

Perform explicit step for diffusion equation
for ix in range(1,len(c)-1):

use i0 and generate i1
c[ix,i1] = c[ix,i0] + D*(c[ix-1,i0]-2*c[ix,i0]+c[ix+1,i0])
Notice how the end points are avoided - issues?

Flip i0 and i1
ii = i1
i1 = i0
i0 = ii

Plot the two concentrations
if (mod(it,noutput)==0):

Nx,e = histogram(x,edges)
clf()
plot(cx,c,’-r’,xc,Nx,’-b’)
xlabel(’x’),ylabel(’N’),pause(0.001)

Notice the nice way the step dx that we add to each walker includes
the possibility to stay and the possibilities to move either left or right.

dx = -1*(rnd<p)+1*(rnd>pinv)

The resulting plots after M = 100, 500, 1000 and 2000 time steps are
shown in Fig. 4.7. We notice that the two solutions follow each other
closely, but that the random walker model has more noise. However, the
amount of noise would be reduced if the number of walkers was increased.

4.2 Random walks and diffusion 113

Fig. 4.7 Illustration of
the distribution N(x) of
walkers for the diffusion
model (red) and the ran-
dom walker model (blue).

100 50 0 50 100
x

0
100
200
300
400
500
600
700
800
900

N

D

100 50 0 50 100
x

0
50

100
150
200
250
300
350
400
450

N

D

100 50 0 50 100
x

0

50

100

150

200

250

300

N

D

100 50 0 50 100
x

0

50

100

150

200

250

N

D

4.2.1 The diffusion equation

We motivated the diffusion equation from the number of random walkers
passing from one box to another:

Ni(t+∆t) = R∆t (−Ni(t)−Ni(t) +Ni−1(t) +Ni+1(t)) . (4.25)

This was done for the one-dimensional case, but a similar argument can
be made in two (or higher dimensions):

Ni,j(t+∆t) = Ni,j(t)+R∆t (−4Ni,j(t) +Ni−1,j(t) +Ni+1,j(t) +Ni,j−1(t) +Ni,j+1(t)) .
(4.26)

We can again rearrange this into a set of derivatives:

∂N

∂t
= R∆x2

(
∂2N

∂x2 + ∂2N

∂y2

)
, (4.27)

where we again may divide by the volume, Vb, per boxing, resulting in
an equation for the concentration c(x, t) of particles:

∂c

∂t
= D

(
∂c2

∂x2 + ∂c2

∂y2

)
= D∇2c . (4.28)

Solving the diffusion equation is efficient. Solving the diffusion equa-
tion is an efficient way to model the changes in concentration — more
efficient than using random walkers. We can solve it using the explicit
scheme presented for Ni,j above. This is not the most robust or efficient
method to solve the diffusion equation, but it is simple and easy to
understand.

