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Compendium 4.1

a)

P (an ace of spades) = 1
52

b)

P (a 2 of spades) = 1
52

c)

P (a black card) = 26
52 = 1

2

d)

P (a spade) = 13
52 = 1

4

e)

P (not a spade) = 1− P (a spade) = 1− 13
52 = 1

4
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f)

P (two spades) = 13
52 ·

12
51

g)

P (five cards, four of equal value) = 13·48
(52

5 ) = 13 · 48 · 5!·47!
52! ≈ 2.4× 10−4.

A deck of cards has four suits, and each suit has 13 cards of different value.

Then there are 13 ways of drawing four cards of equal value (not caring about

in which order they are drawn), and for each of these 13 sets there are 48

possibilities for the fifth card. We divide this by the total number of ways

of drawing 5 cards out of 52 (unordered), which is equal to the binomial

coefficient
(

52
5

)
("52 choose 5").

Compendium 4.2

a)

P (throw one die, get a 1) = 1
6

b)

P (throw one die, not get a 1) = 1− P (throw one die, get a 1) = 1− 1
6 = 5

6

c)

P (throw two dice, get two 6s) = 1
6 ·

1
6 = 1

36

d)

P (throw two dice, get sum 3) = 2
36 = 1

18

There are two ways of getting a sum of 3 when throwing two dice: 1+2 and

2+1; with 36 different outcomes in total.

2



e)

Sum j Outcomes # of outcomes P (j)

2 1+1 1 1
36

3 1+2, 2+1 2 2
36

4 1+3, 2+2, 3+1 3 3
36

5 1+4, 3+2, 2+3, 4+1 4 4
36

6 1+5, 2+4, 3+3, 4+2, 5+1 5 5
36

7 1+6, 2+5, 3+4, 4+3, 5+2, 6+1 6 6
36

8 2+6, 3+5, 4+4, 5+3, 6+2 5 5
36

9 3+6, 4+5, 5+4, 6+3 4 4
36

10 4+6, 5+5, 6+4 3 3
36

11 5+6, 6+5 2 2
36

12 6+6 1 1
36

sum = 36

One can also find a general expression for the probability:

P (two dice, sum j) = 6−|7−j|
36 .

f)

P (throw two dice twice, get two 6s at least once)

= 1− P (throw two dice twice, not get two 6s in either throw) = 1− 35
36 ·

35
36 .

There are 36 possible outcomes in total when throwing two dice. Out of

these 36, only one outcome has both dice showing the value 6. Therefore,

the probability of not getting two 6s when throwing two dice is 35
36 , and the

probability of this happening in both throws is 35
36 ·

35
36 .
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g)

P (four dice, at least two 6s) = 1− P (four dice, less than two 6s)

= 1− [P (four dice, one 6) + P (four dice, no 6s)]

= 1− [Binomial(k = 1, N = 4) + Binomial(k = 0, N = 4)]

= 1−
[(

4
1

)
(1

6)1(5
6)3 +

(
4
0

)
(1

6)0(5
6)4
]

= 1−
[
453

64 + 154

64

]
= 1− 125

144 = 19
144

h)

P (two dice, both show same value)

= P (first die, any value) · P (second die, same as first value)

= 1 · 1
6 = 1

6 .

There are no restrictions on what the value on the first die should be, hence

all six outcomes are valid, and the probability of getting any value is 6· 16 = 1.

Since there is only one outcome for the second die that gives the same value

as the first die, the probability of this is 1
6 .

i)

P (two dice, odd sum)

= P (first die, any value) · P (second die, a value that gives odd sum)

= 1 · 1
2 = 1

2 .

No restrictions on the value on the first die. If the first value is an odd

number, the second needs to be even to give an odd sum. There are then

three out of six possible outcomes for the second die that give an odd sum.

A similar argument applies if the first value is even; then there is a 1
2 proba-

bility of getting an odd value on the second die. The probability of getting

an even sum can be found by corresponding arguments, or by noting that

P (two dice, even sum) = 1− P (two dice, odd sum) = 1
2 .
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j)

P (one die six times, at least one 6) = 1− P (one die six times, no 6s)

= 1−
(

5
6

)6
≈ 67 %.

Compendium 4.3

a)

P (heads) = p and P (tails) = 1− p. The probability to get tails on the first

N − 1 flips, and then a heads on the N ’th flip is: P (N) = (1− p)N−1p.

b)

Need to show that
∞∑
N=1

P (N) = 1.

We will use the following relation for a geometric series,
∞∑
n=0

xn = 1
1− x,

when |x| < 1. The sum of P (N) over all N can then be expressed as
∞∑
N=1

P (N) =
∞∑
N=1

(1− p)N−1p

= p
∞∑
N=1

(1− p)N−1.

Substituting the summing index, M = N − 1, we recognize the expression

for a geometric series, and get
∞∑
N=1

P (N) = p
∞∑

M=0
(1− p)M

= p
1

1− (1− p)

= p
1
p

= 1,

which shows that P (N) is normalized.
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c)

Defining q = 1− p, the average, or expectation value, of N , given the prob-

ability P (N), is

〈N〉 =
∞∑
N=1

NP (N) =
∞∑
N=1

NqN−1p

=
∞∑
N=1

N
qN

q
p = p

q

∞∑
N=1

NqN .

We notice that summing from N = 0 doesn’t add anything to the series,

because 0 · q0 = 0. We then recognize the sum given in the question, and use

the corresponding relation
∞∑
N=0

NqN = q

p2 .

This results in

〈N〉 = p

q

∞∑
N=0

NqN = p

q

q

p2 = 1
p
.

d)

The expectation value of the return r(N) = 2N is

〈r〉 =
∞∑
N=1

r(N)P (N) =
∞∑
N=1

2NqN−1p

= 2p
∞∑
N=1

(2q)N−1.

Again substituting the summing index, M = N − 1, and recognizing the

expression for a geometric series, we get

〈r〉 = 2p
∞∑

M=0
(2q)M = 2p 1

1− 2q

= 2p
1− 2(1− p) = 2p

2p− 1 = 1
1− 1

2p
.

When p → 1/2 from above, 〈r〉 → ∞. Hence, the casino would need an

unfair coin, with probability p > 1/2, in order to avoid losing money on the

game.
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e)

If p = 0.6, the entry fee for the game needs to be at least

〈r(p = 0.6)〉 = 1
1− 1

2·0.6
= 6 rubles

in order to avoid losing money on the game in the long run.

Compendium 4.4

a)

1 M = 1E4; % number of trials

2 c1 = 0; % counter for how many times person 1 has won

3 c2 = 0; % counter for how many times person 2 has won

4

5 % Loop to simulate M=10000 coin−flip games.

6 % Draw random float, x, in the range [0,1) for person 1 and 2.

7 % Let 0 <= x < 0.5 represent tails, and 0.5 <= x < 1 represent

heads

8 while c1+c2 < M % continue flipping coins until 10000

games have been won

9 x1 = rand; % draw random number for person 1

10 x2 = rand; % draw random number for person 2

11 if x1 >= 0.5 % check first if person 1 wins the game

12 c1 = c1 + 1; % add 1 to person 1's victory counter

13 continue % person 1 has won the game, start new

game

14 elseif x2 >= 0.5 % if person 1 did not get heads, check

if person 2 did
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15 c2 = c2 + 1; % add 1 to person 2's victory counter

16 end

17 end

18 c1 % print number of times person 1 has won

19 N = c1 + c2 % print total number of wins (check that it's

equal to M)

20 p1 = c1/N % print estimated probability that person 1 wins

the game

The probability that the person who starts flipping wins the game, is found

to be approximately 0.67.

b)

Now, finding an analytical solution to the problem: Let p1 be the probability

that the person that starts flipping (person 1) wins the game, and assume

the coin to be fair with probability 1/2 of showing heads and 1/2 of showing

tails. Person 1 wins if he/she flips a head on the first flip, with probability

1/2. If person 1 instead gets a tail on the first flip, person 2 must then also

flip a tail on the following flip, in order for person 1 to stilll have a chance to

win. The probability of flipping tails two times in a row is 1/4. But then we

are back in the initial situation, with person 1 having the same probability

to win as before the first flip. We can express the probability for person 1 to

win as

p1 = 1
2 + 1

4p1 ⇒ p1 = 2
3 ,

where we have solved the expression for p1 and found that the person that

starts flipping has a 2/3 probability of winning the game. This is consistent

with the result of the numerical simulation in a).
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Compendium 4.5

a)

We divide the range [0, x] in n intervals of width ∆x, giving x = n∆x and

∆x = x/n. We then get the following probabilities:

P (scattered in the interval ∆x) = p∆x,

P (not scattered in the interval ∆x) = 1− p∆x,

P (not scattered in the interval n∆x) = (1− p∆x)n =
(

1− px
n

)n
=
[
1 +

(−px
n

)]n
−−−→
n→∞

e−px,

where we in the last step have used the relation

lim
n→∞

(
1 + x

n

)n
= ex.

b)

dP (scattered in [x, x+ dx]) = P (not scattered in [0, x]) · dP (scattered in interval dx)

= e−pxpdx.

c)

The expected distance traveled by an electron before it is scattered, is

〈x〉 =
∫ ∞

0
xP (x)dP =

∫ ∞
0

xe−pxpdx = p
∫ ∞

0
xe−pxdx.

By partial integration with u = x and v′ = e−px, we get

〈x〉 = − xe−px
∣∣∣∞
0

+
∫ ∞

0
e−pxpdx = 0 +

∫ ∞
0

e−pxpdx.

Substituting w = −px, we end up with

〈x〉 = −1
p

∫ −∞
0

ewdw = 1
p

[ew]0−∞ = 1
p
.
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d)

The probability of the electron not being scattered before a distance x is

reached, is

P (x) = e−px.

Simply inserting the relation x = vt in P (x), we get the probability of an

electron not being scattered before a time t,

P (t) = e−pvt = e−t/τ ,

where τ ≡ 1/pv.

e)

Similar to the calculation of the expected distance traveled before scattering,

the expected time traveled before scattering is

〈t〉 =
∫ ∞

0
te−pvtpvdt = 1

pv
= τ,

where τ is the mean-free-time between scattering.

Compendium 4.6 (not given as a weekly exercise)

a)

P (N, 1) = (1− p)N−1p.

b)

This is simply the probability mass function of the binomial distribution

P (N, n) =
(
N

n

)
pn(1− p)N−n.
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The average, or expected value, of n is

n̄ = 〈n〉 =
∞∑
n=0

nP (N, n)

=
∞∑
n=0

n
N !

n!(N − n)!p
n(1− p)N−n

= Np
∞∑
n=0

n
N !

n!(N − 1− n+ 1)!p
n−1(1− p)N−1−n+1

= Np
∞∑
n=1

(N − 1)!
(n− 1)![(N − 1)− (n− 1)]!p

n−1(1− p)(N−1)−(n−1)

= Np
∞∑
n=1

(
N − 1
n− 1

)
pn−1(1− p)(N−1)−(n−1), m = n− 1, M = N − 1

= Np
∞∑
m=0

(
M

m

)
pm(1− p)M−m

= Np(p+ (1− p))m, where the binomial theorem has been used

= Np · 1m

= Np.

c)

From b) we know that n̄ = Np, which gives p = n̄/N . Inserting this in

P (N, n) gives

P (N, n) =
(
N

n

)
pn(1− p)N−n

=
(
N

n

)
n̄n

Nn

(
1− n̄

N

)N−n
= N !/(N − n)!

Nn

n̄n

N !

(
1− n̄

N

)N (
1− n̄

N

)−n
.
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In the limit where N → ∞ and n̄ = Np is held fixed, which means p � 1,

we get

lim
N→∞

P (N, n) = lim
N→∞

N

N
· N − 1

N
· · · N − n+ 1

N︸ ︷︷ ︸
1

n̄n

N !

(
1− n̄

N

)N
︸ ︷︷ ︸

e−n̄

(
1− n̄

N

)−n
︸ ︷︷ ︸

1

= n̄n

N !e
−n̄.

Compendium 4.9

a)

P (N flips, all heads) = pN

b)

P (N flips, n heads, N− n tails) = P (N, n) =
(
N
n

)
pn(1− p)N−n

c)

From 4.5 b) we have

n̄ = 〈n〉 =
∞∑
n=0

nP (N, n) = Np.
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To calculate the variance (n− n̄)2 = n2− n̄2, we first need to find an expres-

sion for n2:

n2 = 〈n2〉 =
∞∑
n=0

n2P (N, n)

=
∞∑
n=0

n2
(
N

n

)
pnqN−n

=
∞∑
n=0

(n2 − n+ n)
(
N

n

)
pnqN−n

=
∞∑
n=0

(n2 − n)
(
N

n

)
pnqN−n +

∞∑
n=0

n

(
N

n

)
pnqN−n.

Using that

p
d

dp
pn = nppn−1 = npn,

and

p2 d
2

dp2p
n = p2n

d

dp
pn−1 = p2n(n− 1)pn−2 = n(n− 1)pn = (n2 − n)pn,

we get

n2 =
∞∑
n=0

(n2 − n)
(
N

n

)
pnqN−n +

∞∑
n=0

n

(
N

n

)
pnqN−n

= p2 d
2

dp2

∞∑
n=0

(
N

n

)
pnqN−n + p

d

dp

∞∑
n=0

(
N

n

)
pnqN−n

= p2 d
2

dp2 (p+ q)N + p
d

dp
(p+ q)N

= Np2 d

dp
(p+ q)N−1 +Np(p+ q)N−1

= N(N − 1)p2(p+ q)N−2 +Np(p+ q)N−1

= N(N − 1)p2(p+ 1− p)N−2 +Np(p+ 1− p)N−1

= N(N − 1)p2 +Np

= N2p2 −Np2 +Np

= N2p2 −Np(1− p).
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Finally, we can calculate the variance

n2 − n̄2 = (Np)2 − [N2p2 −Np(1− p)] = Np(1− p) = Npq.

d)

P (N squares, all conducting) = pN ,

P (N squares, all but one conducting) = P (N,N − 1)

= N !
(N − 1)![N − (N − 1)]!p

N−1(1− p)N−(N−1)

= N !
(N − 1)!1!p

N−1(1− p)

= NpN−1(1− p),

where we don’t care about which square is isolating.

e)

P (one isolating column) = (1− p)(1− p) = (1− p)2,

P (one conducting column) = 1− P (one isolating column)

= 1− (1− p)2,

P (N conducting columns) = [P (one conducting column)]N

= [1− (1− p)2]N .

f)

Total number of different configurations when there are 2N squares of which

N +M are conducting:

Ωtot =
(

2N
N +M

)
= (2N)!

(N +M)![2N − (N +M)]! = (2N)!
(N +M)!(N −M)! .
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g)

For the double strip to be conducting, there needs to be at least one con-

ducting square per column. To find all conducting arrangements, we first

consider placing one conducting square in every column. With two squares

in each column, there are 2N ways we can construct a conducting configu-

ration in this way. Since there are N + M conducting squares in total, we

have M conducting squares to distribute among the remaining N squares in

the double strip. There are
(
N
M

)
ways to arrange these for each of the 2N

conducting configurations. The total number of conducting configurations

are then

Ωcond = 2N
(
N

M

)
= 2N N !

M !(N −M)! .

h)

Pcond = Ωcond

Ωtot
=

2N
(
N
M

)
(

2N
N+M

) =
2N N !

M !(N−M)!
(2N)!

(N+M)!(N−M)!

= 2NN !(N +M)!
(2N)!M !
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