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Schroeder 2.18

Ω(N, q) =
(
q+N−1

q

)
= (q+N−1)!

q!(N−1)!

Use that (N − 1!) = N !/N :

Ω(N, q) = N
q+N ·

(q+N)!
q!N !

Use Stirling’s approximation (N ! ≈ NNe−N
√

2πN):

Ω(N, q) ≈ N
q+N ·

(q+N)q+Ne−(q+N)
√

2π(q+N)
qqe−q

√
2πq NNe−N

√
2πN = (q+N)(q+N)

qqNN

√
N

2πq(q+N)

Write (q +N)(q+N) as (q +N)q(q +N)N :

Ω(N, q) ≈
(
q+N
q

)q ( q+N
N

)N √
N

2πq(q+N)

Schroeder 2.24

a)

Most likely macrostate is N↑ = N↓ = N/2:

Ωmax = N !
N↑!N↓!

= N !
( N

2 !)2 ≈ NNe−N
√

2πN
(( N

2 )N/2e−N/2
√

2πN/2)2
= 2N

√
2
πN

b)

By Stirling’s approximation we have:

Ω ≈ NN

N
N↑
↑ N

N↓
↓

√
N

2πN↑N↓
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Using N↑ = (N/2) + x and N↓ = (N/2)− x we get:

Ω ≈ NN

( N
2 +x)

N
2 +x( N

2 −x)
N
2 −x

√
N

2π( N
2 +x)( N

2 −x) = NN

[( N
2 )2−x2]N/2( N

2 +x)x( N
2 −x)−x

√
N

2π [( N
2 )2−x2]

Take the logarithm:

ln Ω = N lnN − N
2 ln

[
(N2 )2 − x2

]
− x ln(N2 + x) + x ln(N2 − x)

+ ln
√

N
2π −

1
2 ln

[
(N2 )2 − x2

]
Assume x << N and expand logarithms:

ln
[
(N2 )2 − x2

]
= ln(N2 )2 + ln

[
1− (2x

N
)2
]
≈ 2 ln(N2 )− (2x

N
)2

and

ln
(
N
2 ± x

)
= ln(N2 ) + ln

[
1± 2x

N

]
≈ ln(N2 )± 2x

N

Applying to ln Ω:

ln Ω = N lnN−N ln N
2 + 2x2

N
−x ln N

2 −
2x2

N
+x ln N

2 −
2x2

N
+ln

√
N
2π− ln N

2 + 2x2

N2

= N ln 2− 2x2

N
− ln

√
2
πN
− 2x2

N2

We can neglect the last term and exponentiate to get:

Ω = 2N
√

2
πN
e−2x2/N (for x << N).

This is a Gaussian function with a peak at x = 0 with the value from a).

c)

The function Ω falls of to 1/e of the peak for x =
√
N/2. Width of peak is

twice of this, giving us a width of
√

2N .

d)

N = 106. Half width is
√

5 · 105 ≈ 700.

An excess of 1000 heads or tails is a little beyond the half width, and such a

result would not be surprising.

An excess of 10 000 heads is far beyond the half width and the peak. At this

point the multiplicity falls of by e−200 ≈ 10−87, and this would be surprising

and an indication that the coins are not fair.
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Schroeder 2.25

a)

Most likely to end where you start. Equally likely to go back and forward

for each step randomly.

b)

Can use the same distribution we got in 2.24, a Gaussian of the form e−2x2/N ,

where N is number of steps and x is the excess of forward steps over N/2.

When we introduce step length l we get the distribution on the form e−x
2/2l2N ,

where x→ x/2l is the distance travelled from where we started.

We get the half width (multiplicity falls of to 1/e) at
√

2Nl, or
√

2N step

lengths. For N =10 000 we get a half width of 140 steps, so there is a good

chance to end up withing 140 steps in either direction from where we started.

Getting farther away then 500 steps is negligible.

c)

Mean free path: l ≈ 150 nm

Average collision time: ∆̄t ≈ 3× 10−10 s

In 1 second we approximately N = 3× 109 steps (collisions).

Expected net distance travelled:
√

2N = 80 000 steps, which corresponds to

12× 106 nm, or 12 mm.

For longer times the number of steps N increase in proportion to the time t,

so average distance travelled increases in proportion to
√
t.

For higher temperatures:

• Mean free path which is proportional to V /N would increase propor-

tional to T (PV = nRT ).

• Molecules move faster in proportion to
√
T (vrms =

√
3kT
m

).

• Collision time ∆̄t = l/v̄ increase in proportion to
√
T .
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• Number of steps increase in proportion to 1/
√
T .

• Expected net steps travelled increase proportional to
√
N ∝ T−1/4.

• Expected net distance, which is expected net steps multiplied with

mean free path, increase in proportion to T 3/4

Schroeder 3.1

For qA = 1:

TA = (∂UA

∂SA
)N,V = 2ε−0ε

10.7k−0k = 0.19 ε
k

= 220K

TB = (∂UB

∂SB
)N,V = 100ε−98ε

187.5k−185.3k = 0.91 ε
k

= 1060K

For qA = 60:

TA = (∂UA

∂SA
)N,V = 61ε−59ε

160.9k−157.4k = 0.57 ε
k

= 660K

TB = (∂UB

∂SB
)N,V = 41ε−39ε

107.0k−103.5k = 0.57 ε
k

= 660K

Schroeder 3.3

Initially: δSA

δUA
> δSB

δUB

UA will increase, UB will decrease until:
δSA

δUA
= δSB

δUB

Schroeder 3.4

A “miserly” system A can be in thermal equilibrium with another system B.

If B is “miserly” a small flow of energy from B to A give increase in temper-

ature of B and decrease in temperature of A causing a run-away effect, with

more and more energy flowing from B to A.

If B is a large “reservoir” where the temperature doesn’t change significantly.

With a small transfer of energy from B to A leads to decrease in temperature
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of A causing a run-away effect again.

If B is a “normal” system that is sufficiently small (low heat capacity) such

that a spontaneous transfer of energy from B to A causes B to cool off more

than A does. In this case A will become a bit hotter than B and the energy

will spontaneously flow back giving us a stable thermal equilibrium.
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