Solutions to exercises week 38 FYS2160

Kristian Bjørke, Knut Oddvar Høie Vadla

November 7, 2017

Schroeder 2.30

a) $\Omega_{\text{total}} = \frac{2^{4N}}{\sqrt{8\pi N}}$ $\frac{S}{k} = \ln \Omega_{\text{total}} = \ln \left[\frac{2^{4N}}{\sqrt{8\pi N}}\right] = 4N \cdot \ln 2 - \ln \sqrt{8\pi N}$ $N = 10^{23} \Rightarrow \frac{S}{k} = 2.77 \cdot 10^{23} - 28.1$ b) $\Omega_{\text{most likely}} = \frac{2^{4N}}{4\pi N}$ $\frac{S}{k} = \ln \Omega_{\text{most likely}} = \ln \left[\frac{2^{4N}}{4\pi N}\right] = 4N \cdot \ln 2 - \ln 4\pi N$ $N = 10^{23} \Rightarrow \frac{S}{k} = 2.77 \cdot 10^{23} - 55.5$ c)

Small difference in entropy, $\Delta S/k = 55.5 - 28.1 = 27.4$, time scale irrelevant. d)

Entropy decrease by 27 units out of 2.8×10^{23} , insignificant.

Schroeder 2.37

 $N_A = (1 - x)N, N_B = xN$

 $V_i^A = (1 - x)V_f, V_i^B = xV_f$ Use $\Delta S_X = -N_X k \ln \frac{V_i^X}{V_f}$ to get:

$$\Delta S_{\text{mixing}} = \Delta S_A + \Delta S_B$$
$$= -(1-x)Nk\ln(1+x) - xNk\ln x$$
$$= -Nk\left[x\ln x + (1-x)\ln(1-x)\right]$$

For $x = \frac{1}{2}$: $\Delta S_{\text{mixing}} = -Nk \left[\ln \frac{1}{2} \right] = Nk \ln 2$ (N is total number of molecules, which is 2N in eq. 2.54)

Schroeder 2.38

When we allow the system to mix, assuming an ideal mixture, the only changes will be that the different molecules can change places with each other. This gives:

 $\Delta \Omega = \binom{N}{N_A} = \frac{N!}{N_A!N_B!}$ $\Delta S_{\text{mixing}} = k \ln \binom{N}{N_A} = k \ln \frac{N!}{N_A!N_B!}$ Use Stirling's approximation $(\ln N! \approx N \ln N - N)$ to get: $\Delta S_{\text{mixing}} = -Nk \left[x \ln x + (1-x) \ln(1-x) \right]$

Schroeder 3.3

Initially: $\frac{\delta S_A}{\delta U_A} > \frac{\delta S_B}{\delta U_B}$ U_A will increase, U_B will decrease until: $\frac{\delta S_A}{\delta U_A} = \frac{\delta S_B}{\delta U_B}$

Schroeder 3.38

From ideal gas law:

 $P_i = x_i P = x_i N k T / V = N_i k T / V$

, so if P_i is fixed the gas component i is unchanged when adding another component to the mix.

For a mix of two ideal gases total entropy given by:

$$S_{\text{total}} = S_A(U_A, V, N_A) + S_B(U_B, V, N_B)$$

Chemical potential for gas A is:

 $\mu_A = -T \left(\frac{\delta S}{\delta N_A}\right)_{U,V,N_B} = -T \left(\frac{\delta S_A}{\delta N_A}\right)_{U,V},$ same as if gas *B* was not present.

Schroeder 4.3

a)

$$Q_c = W\left(\frac{1}{e} - 1\right) = 1.5GW$$

b)

Every second $1.5\times10^9~{\rm J}$ dumped in $10^5~{\rm kg}$ water.

Heat capacity of water: C = 4186 J/°C.

$$\Delta T = \frac{Q}{C} = \frac{15 \text{kJ}}{4.2 \text{kJ/}^{\circ}\text{C}} = 3.6 \text{ }^{\circ}\text{C}$$

c)

Latent heat at room temp: L = 2.4 kJ/gEvaporation rate: $\frac{Q}{L} = 600 \text{ kg/s} = 0.6 \text{ m}^2/\text{s}, 0.6\%$ of river

Schroeder 4.7

Need to dump heat into "cold" reservoir separate from room to be effective, otherwise it would raise temperature not lower it.

Schroeder 4.8

 Q_h always bigger than Q_c , so temperature in room will increase.

Schroeder 4.14

a)

COP is defined as benefit divided by cost, heat pump aims to heat up so:

$$COP = \frac{\text{benefit}}{\text{cost}} = \frac{Q_h}{W}$$

b)

$$Q_h = Q_c + W$$

$$COP = \frac{1}{1 - Q_c/Q_h} > 1$$

c)
2. law of thermodynamics:

$$\frac{Q_h}{T_h} \ge \frac{Q_c}{T_c}$$

$$COP \ge \frac{T_h}{T_h - T_c}$$
d)

Electric heater: $Q_h = W, COP = 1$

Heat pump: COP > 1

For $T_h = 25^{\circ}$ C and $T_c = 0^{\circ}$ C COP can in principle be as high as 12 for heat pump (usually much lower but still larger than 1).

Compendium 6.1

a)		
Z_4	$\{X_1, X_2, X_3, X_4\}$	
4	$\{+, +, +, +\}$	
2	$\{+,+,+,-\}$	
	$\{+,+,-,+\}$	
	$\{+, -, +, +\}$	
	$\{-,+,+,+\}$	
0	$\{+,+,-,-\}$	
	$\{+, -, +, -\}$	
	$\{-,+,+,-\}$	
	$\{+, -, -, +\}$	
	$\{-,+,-,+\}$	
	$\{-, -, +, +\}$	
-2	$\{+, -, -, -\}$	
	$\{-,+,-,-\}$	
	$\{-, -, +, -\}$	
	$\{-, -, -, +\}$	
	$\{-, -, -, -\}$	
b)		
$P(Z_4 = 4) = \frac{1}{16}, P(Z_4 = 2) = \frac{4}{16}, P(Z_4 = 0) = \frac{6}{16}$		
$P(Z_4 = -2) = \frac{4}{16}, \ P(Z_4 = -4) = \frac{1}{16}$		
b)		
$\Omega(Z_4 = 4) = \binom{4}{0} = 1, \ \Omega(Z_4 = 2) = \binom{4}{1} = 4, \ \Omega(Z_4 = 0) = \binom{4}{2} = 6$		
$\Omega(Z_4 = -2) = \binom{4}{3} = 4, \ \Omega(Z_4 = -4) = \binom{4}{4} = 1,$		