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Schroeder 4.1

a)

Net work done by gas during one cycle: |W| =2PV}
Heat absorbed (steps where Q>0): @), = %Plvl

Efficiency: e = % =2 =12%

b)

T

Efficiency of heat engine: e <1 — T

Use the ideal gas law, PV = NEKT, to find the ratio of T, to T},. Lower

left corner has the lowest temperature, 7' = T,.. Step A: P increases by a

factor 2 = T increases by the same factor 2. Step B: V increases by a factor

3 = T increases by a factor 3. The highest temperature is then found in

the upper right corner of the rectangular cycle in the PV -diagram, and is

T, =2 31, =6T..

Maximal efficiency: epa = 1 — 6TTCC =5/6=83%




Schroeder 5.2

Look up AyH and S for Ny, Hy and NHj at the back of the book, calculate
AG = AH — TAS for the reaction Ny + 3Hy — 2NHs and check with the
tabulated value of AG(NHj3). The change in Gibbs free energy in this process
is 2AG(NH3) = —32.90 kJ.

Schroeder 5.23

a)

Writing & = U —T'S — uN in terms of infinitesimal changes of the quantities

involved:
d® =dU —TdS — SdT' — pdN — Ndp.
Inserting the thermodynamic identity for dU gives
d® = —PdV — SdT — Ndyu.

The partial derivatives of ® wrt. T, V' or u is obtained by holding the two

other quantities fixed:

o0d o0d o0d
(w) = (av)m =" (au) -

b)

As was done for F' and G in chapter 5.2 in Schroeder, express an infinitesimal
change in the total entropy Siota s a sum of changes in the entropy S of the

system and the entropy Sk of the reservoir it is in contact with:

dStotal == dS + dSR



Assuming V fixed, apply the thermodynamic identity to dSg (solve the ex-
pression for dUg in terms of dSg), and use the fact that dUr = —dU and
dNr = —dN to write dSg in terms of system variables. The total entropy of

the system plus reservoir (expressed in terms of system variables) is then
dStoral = l(dU TdS dN) = ld<I>
total — T H - T .

The tendency of the total entropy to increase therefore means that the grand
free energy tends to decrease (since dSiea) is positive, d® must be negative

in order to make —d® /T positive).
c)

&=U—TS— uN
—U—-TS+ PV — PV —uN
=G — PV —uN
— _PV

where we in the last step use that G = uN when 7" and P are constant (from

the thermodynamic identity of G, dG = —SdT + VdP + udN with dN = 1).

d)

For the unoccupied state: U =S =N =0= & = 0.
For the occupied state: U = Uy = —13.6eV, S =0, N =1

(I)occupied = UO — K

=Uy+ kT In

9

1% (27rka>3/ 2

N\ A2




where eq. 3.63 in Schroeder is used for the chemical potential of an ideal
gas. Here m is the electron mass, and the electron concentration is given
as N/V = 2 x 10" m~3. Putting in numbers gives us (the logarithm is

calculated to be equal to 17.8)

Poceupicd = —13.6 eV +8.62 x 107° eV /K x 5800 K x 17.8

~ —4.7 eV < Dynoccupied = 0 €V.

To find the temperature at which the occupied and unoccupied states are
equally likely, we set their grand free energies to be equal and solve for T
(neglecting the In7T%/? dependence, which is insignificant compared to the

factor T outside the logarithm, when T is varied):

(I)occupied = q)unoccupied

Uy —178kT =0

Uy
T = — 2 K
17.8k 8800
Schroeder 5.32
a)
dP _ AS _ L

The Clausius-Clapeyron relation: 97 = X% = 757
When ice melts to water, the entropy increases (AS, L > 0), while the

volume decreases (AV < 0); therefore, dP/dT < 0.

b)

Latent heat for converting ice into water: L = 333 J/g
Density of ice: pice = 917 kg/m?® = 0.917 x 10° g/m?
Density of water: pyater = 1000 kg/m? = 1.000 x 10° g/m?

Volume of 1 g of ice: Vige = W—O%g/mg) =1.091 x 1075 m?
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Volume of 1 g of water: Viaier = 1.000 x 1076 m?3
AV = Vyater — Viee = —0.091 x 107% m?
Ice melts at —1°C if the pressure is at least

P L 333 J
dT" TAV ~ 273 K x (—0.091 x 10~6 m3)

~ —1.35 x 10" Pa/K = —135 bar/K.

c)

The pressure P (force per area) under an ice column of height z and density
pis P = pgz. Therefore, the depth corresponding to a pressure of 135 bar is

P 135 x 10° N/m”
L AN/ 500 .
pg 917 kg/m” x 9.81 N/m

d)

As a crude approximation, take the area under the ice skate that’s in contact
with the ice to be ~ 1 mm in width and ~ 10 cm in length, that is ~ 1074 m?.
An ice skater weighing 50 kg would exert a force of ~ 500 N on the ice. This
amounts to a pressure on the ice of P = 500 N/107* m? = 5x 10% Pa = 50 bar.
Under this pressure the melting point only drops by ~ (50 bar)/(135 bar/°C)
~ 0.4°C. So the temperature needs to be within half a degree from the melting

point in the first place, in order for this to have any effect.

Schroeder 6.5

a)

Consider a particle with three energy levels: ¢; = —0.05 eV, ¢, = 0 eV and
e3 = 0.05 eV. At 300 K, kT =~ 0.026 eV. The partition function is then

7 = ¢ (70:05/0.026) 4 o0 4 o=(0.05/0.026) 84 4 1 4 (.15 = 7.99.



b)

The probability of an energy state ¢; is equal to

—¢; /KT
e
P(EZ) = Z )

giving
P(e; = —0.05 V) =~ 0.86

P(ea =0¢V) ~0.13

P(e3 = 0.05 V) ~ 0.02

c)

We now shift the zero point of energy so that: ¢, = 0 eV, e = 0.05 eV and

€3 = 0.10 eV. In this case the partition function becomes
Z = ¥ 4 ¢ (0:05/0:026) 4 ,=(0:10/0.026) o 1 4 (.15 + 0.02 = 1.17,
with corresponding probabilities

P(e; =0¢eV) ~ 0.86
P(es = 0.05 6V) ~ 0.13

P(es = 0.10 eV) & 0.02

The choice of zero-point of energy is arbitrary. Shifting the zero-point changes
the values of the Boltzmann factors and the sum of these. However, the prob-
ability of the energy states (P; = e~%/*T/Z that is, the ratio of individual

Boltzmann factors to the sum) are not dependent on this choice.



Schroeder 6.6

Hydrogen atom in the ground state (n =1): E; = —13.6 eV.

Hydrogen atom in the first excited state (n = 2): Ey = —3.4 V.

AE = FEy— E; =102 ¢V

Probability of finding a Hydrogen atom in one of its first excited states com-
pared to the ground state:

P(sy) e BT
P(Sl) ~ e—E(s1)/kT

Degeneracy of energy levels: d(n) = Y/ (21 + 1) = n?
There are four states with energy Es, hence finding a Hydrogen atom at room
temperature (300 K) in a state with energy Es compared to the ground state

becomes

! (E2> —(E2—E I - ] -
de (E2 1)/k ~ 4e 10.2/0.026 ~ 10 171'
! (El)

Hence, you will never find a Hydrogen atom in its first excited state at room
temperature.

Now, doing the same calculation for a Hydrogen atom in the atmosphere of
the star v UMa, with surface temperature 7' = 9500 K:

P(E5)
P(Ey)

— 46—10.2 eV/(kx9500 K) ~ 1.6 x 10—5'

In the atmosphere of v UMa approximately 1 in 64 000 Hydrogen atoms will

be found in one of their first excited states.

Compendium 8.1

a)

First law of thermodynamics: AU = Q + W
Adiabatic process: Q =0= AU =Q = AU —W =0
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Finding expressions for AU and W:
Equipartition theorem: U = % fnRT = AU = % fnRAT
Work: W = —PAV = —2ELAV (the ideal gas law has been used in the last

step)
Inserting the expressions for AU and W:

AU-W =0

1 nRT
FRAT AV
5 T —i—Rv =0

Now, what remains is to show that cy,,, = fR/2. In general the heat capacity

can be expressed as

Q AU-W AU+ PAV

C=AT AT AT

Heat capacity at constant volume is then

o — AU\  fnRAT/2  fnR
—\ar), - AT T 27

which for 1 mole of gas (n = 1) becomes

_ IR

Cvm 9

Inserting this last relation, we end up with the expression we were asked to

show:

AT AV
CV’mT + R7 =0



b)

Let AT — dT and AV — dV, and integrate the expression in a) over 7" and
V' between two states, 1 and 2:

T dT Va dV

Vim T T w V
IEN Vo o Vi
CV,mlni— lev1 —Rlnv2

In <T2>Cvm =1In (VI>R
T B Vs

T CV,m V R
<T2> <V1> (exponentiating both sides)
1 2
TQCV,TVL ‘/2R — Tlcvvm ‘/:[R

T 2V2R/ vim — T1V1R/ Ve (taking the cy,,,-root of both sides)
Ly =TVS,

where a = R/cy .

c)

. . : _ PV.
Using the ideal gas law to insert T' = —:

PV P
— Va —

TV = = - a—i—l'
v nik nRV



The heat capacity at constant pressure is

e (), (M),

_ ( FfRRAT/2 + PAV)
»

AT

_ J/nR AV
=7y PP\ ,
fnR A(nRT/P)p
= P
> AT
_ fnR  _nRAT/P
2 +F AT

:fan—i—nR.

The specific heat capacity for one mole at constant pressure, is then

This gives us

For one mole

Inserting V' = RT/P in the equation above, we can in a similar manner

rewrite it on the following form
TP =TyF;,
where 3 = (1 —7)/7.
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Compendium 8.2

a)

Isentropic = adiabatic + quasistatic. A quasistatic process means a change
in volume that is sufficiently slow so that the gas has time to equilibrate
to the changing conditions, and therefore maintains a uniform pressure. In
order to compress the gas non-quasistatically, one would need to compress
the gas faster than it is able to respond. This corresponds to a speed at least
as fast as the speed of sound in the gas, and so quasistatic compression is

often a reasonable assumption.

b)

For an ideal gas undergoing an adiabatic process, we know that PV = C|
where C is some constant. Solved for V, this becomes V = (C/P)7. The

isentropic compressibility (with constant entropy S) is then
_1fovy 10 <c)1/7
=Tv\or),” "VoP\P
N R Ve B W G A Vi
v U pht) T v \ppin

1 O\ 1 v
_W(P) " APV
_ L
-5

For an isothermal process (T is constant) we use the ideal gas law to find an

expression for V' in terms of P: V = (nRT)/P. The isothermal compress-
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ibility is then

1 [0V 1a<nRT)

P A IR

T v\er), VoP\ P
B _l <_nRT> B nRT

v P2 ) PV

_ LnRT_ P

Y% P?

_ 1

==

The ratio

kr  1/P P

ks 1J(yP) P

therefore tells us that kg is smaller than xp by a factor v, as we wanted to

show.

c)

“1/2 where kg =

The speed of sound in air can be expressed as v = (kgp)
1/(+P) is the isentropic compressibility and p = nM/V, with n equal to the
number of moles, M the mass of one mole and V' the total volume of the gas.

Using this information we can write

3 1 nM\ V2
e

Mo\ 2
= (fyT:zRT) (using PV = nRT)

|7 RT
_HiM'

d)

Using that v = (f 4+ 2)/f, where the number of active degrees of freedom f

in air at room temperature (7' = 300 K) is assumed to be 5 (3 translational
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and 2 rotational), the speed of sound in air is calculated to be

. J (5-+2)/5] x 8.315 J/mol K x 300K _ 0

2.9 x 1072 kg/mol

e)
The average translational kinetic energy per molecule is

Ktrans,molecule = §mv2 = §m<?)§ + U; + Uz) = §kT

For n moles of air, with molar mass M, this amounts to

— 1 — 3
Ktrans = §TLM'U2 = §TLRT

Solving for 12 gives

— _ 3RT
-

Taking the square root on both sides does not give us the average speed, but

the root-mean-square (rms), which is a close approximation to the average:

— [3RT
UrmSE\/”l;: W%508 m/S.
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