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Schroeder 5.23

a)

Writing Φ = U −TS−µN in terms of infinitesimal changes of the quantities

involved:

dΦ = dU − TdS − SdT − µdN −Ndµ.

Inserting the thermodynamic identity for dU gives

dΦ = −PdV − SdT −Ndµ.

The partial derivatives of Φ wrt. T , V or µ is obtained by holding the two

other quantities fixed:(
∂Φ
∂T

)
V,µ

= −S,
(
∂Φ
∂V

)
T,µ

= −P,
(
∂Φ
∂µ

)
T,V

= −N.

b)

As was done for F and G in chapter 5.2 in Schroeder, express an infinitesimal

change in the total entropy Stotal as a sum of changes in the entropy S of the
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system and the entropy SR of the reservoir it is in contact with:

dStotal = dS + dSR.

Assuming V fixed, apply the thermodynamic identity to dSR (solve the ex-

pression for dUR in terms of dSR), and use the fact that dUR = −dU and

dNR = −dN to write dSR in terms of system variables. The total entropy of

the system plus reservoir (expressed in terms of system variables) is then

dStotal = − 1
T

(dU − TdS − µdN) = − 1
T
dΦ.

The tendency of the total entropy to increase therefore means that the grand

free energy tends to decrease (since dStotal is positive, dΦ must be negative

in order to make −dΦ/T positive).

c)

Φ = U − TS − µN

= U − TS + PV − PV − µN

= G− PV − µN

= −PV,

where we in the last step use that G = µN when T and P are constant (from

the thermodynamic identity of G, dG = −SdT +V dP +µdN with dN = 1).

d)

For the unoccupied state: U = S = N = 0⇒ Φ = 0.

For the occupied state: U = U0 = −13.6 eV, S = 0, N = 1
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Φoccupied = U0 − µ

= U0 + kT ln
V
N

(
2πmkT
h2

)3/2
 ,

where eq. 3.63 in Schroeder is used for the chemical potential of an ideal

gas. Here m is the electron mass, and the electron concentration is given

as N/V = 2 × 1019 m−3. Putting in numbers gives us (the logarithm is

calculated to be equal to 17.8)

Φoccupied = −13.6 eV + 8.62× 10−5 eV/K× 5800 K× 17.8

≈ −4.7 eV < Φunoccupied = 0 eV.

To find the temperature at which the occupied and unoccupied states are

equally likely, we set their grand free energies to be equal and solve for T

(neglecting the lnT 3/2 dependence, which is insignificant compared to the

factor T outside the logarithm, when T is varied):

Φoccupied = Φunoccupied

U0 − 17.8kT = 0

T = − U0

17.8k ≈ 8800 K

Schroeder 7.1

Probability of heme site being occupied:

P = 1
e(ε−µ)/kT+1

Blood in equilibrium with air, that we can view as an ideal gas, giving the

chemical potential:

µ = −kT ln(V Zint
NvQ

) = −kT ln(kTZint
PvQ

),

where P is the partial pressure.
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From this we get

P = 1
eε/kT

kTZint
PvQ

+1
= 1

P0
P

+1
,

where P0 = eε/kT kTZint
vQ

.

T = 310K, kT = 0.0267 eV, ε = -0.7 eV, P0 = 0.0072 bar

Schroeder 7.7

Grand potential/free energy:

Φ = U − TS − µN

Grand partition function:

Z =
∑
s

e−[E(s)−µN(s)]/kT

From exercise 5.23 we have(
∂Φ
∂µ

)
T,V

= −N .

For a Φ̃ = −kT lnZ we get(
∂Φ̃
∂µ

)
T,V

= −N̄ .

So Φ and Φ̃ obeys the same differential equation.

We set an initial value µ = 0, then Φ = U−TS = F and Z = Z (the ordinary

partition function). So for µ = 0, Φ̃ = −kT lnZ = −kT lnZ = F = Φ, where

we use F = −kT lnZ from section 6.5.
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Φ and Φ̃ obeys the same differential equation and and are the same at the

initial condition µ = 0, therefore they must be the same function, giving us:

Φ = Φ̃ = −kT lnZ.

Schroeder 7.14

From Figure 7.7 the distributions more or less coincide for ε− µ a few times

greater than kT. This gives:
n̄BE
n̄FD

= e(ε−µ)/kT+1
e(ε−µ)/kT−1 = 1+e−(ε−µ)/kT

1−e−(ε−µ)/kT ≈ 1 + 2e−(ε−µ)/kT , for (ε− µ)/kT � 1

For a 1% difference between n̄BE and n̄FD (Boltzmann distribution lies be-

tween BE and FD distributions (Boltzmann distribution lies between BE and

FD distributions) we require:

2e−(ε−µ)/kT < 0.01⇒ (ε−µ)
kT

> ln(200) ≈ 5.3

For particles at room temperature T = 300K we get:

(ε− µ) > 0.137 eV.

For an ordinary gas of particles in a box, energy levels measured in the usual

way ε is positive and −µ/kT is ln(V Zint/NvQ).

The condition above is then:
V Zint
NvQ

= kTZint
PvQ

> 200

For nitrogen at room temperature and atmospheric pressure:
kTZint
PvQ

= 3.0× 108,

which is easily satisfied.

Schroeder 7.15

Total number of particles:

N =
∑
s

n̄Boltzmann =
∑
s

= e−(εs−µ)/kT = eµ/kT
∑
s

e−εs/kT

Single-particle partition function:
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Z1 =
∑
s

= e−εs/kT

This gives:

N = Z1e
µ/kT ⇒ µ = −kT ln(Z1

N
)

Schroeder 7.20

For an electron gas at the centre of the sun we have the Fermi temperature:

TF = εF
k

= h2

8mk

(
3N
πV

)2/3
= 9.1× 106K

This temperature is close to the actual temperature in the sun, T = 107 K,

so we can not threat the electron gas as a degenerate Fermi gas (T ≈ 0) or

an ordinary “classical” ideal gas (T � TF ).

Schroeder 7.26

a)

The Fermi energy is:

εF = h2

8m

(
3N
πV

)2/3
≈ 6.9× 10−23J ≈ 4.3× 10−4eV,

with N/V = NA/(37cm3) where NA is the Avogadro number.

b)

From equation 7.48 we have:
CV
NkT

= π2k
2εF = π2

2TF ≈ 1.0K−1

The predicted heat capacity is smaller by almost a factor of 3.

c)

Entropy of liquid 3He:

S =
∫ T

0
CV
T ′
dT ′ = (2.8K−1)Nk

∫ T
0 dT ′ = (2.8K−1)NkT

Entropy of solid 3He: S = k ln(2N) = Nk ln 2,
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this applies for temperatures down to low values before it freeze out and goes

to 0.

Same entropy for:

Nk ln 2 = (2.8K−1)NkT ⇒ T = ln 2
2.8K−1 = 0.25K

By Clausius-Clapeyron relation the slope of the solid-liquid phase boundary

on the PT graph is proportional to the entropy difference Sliquid−Ssolid . We

predict the slope to be negative at temperatures lower than 0.25 K and

positive for temperatures greater than 0.25 K. We see this behaviour in Figure

5.13.
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