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Schroeder 5.23

a)

Writing & = U —T'S — N in terms of infinitesimal changes of the quantities

involved:
d® =dU —TdS — SdT' — ndN — Ndp.
Inserting the thermodynamic identity for dU gives
d® = —PdV — SdT — Ndyu.

The partial derivatives of & wrt. T, V' or u is obtained by holding the two

other quantities fixed:

o0d o0d o0d
(w) = (av)m =r (au) -

b)

As was done for F' and G in chapter 5.2 in Schroeder, express an infinitesimal

change in the total entropy Sietal as a sum of changes in the entropy S of the

1



system and the entropy Sg of the reservoir it is in contact with:
dStotal = dS + dSR

Assuming V fixed, apply the thermodynamic identity to dSg (solve the ex-
pression for dUg in terms of dSg), and use the fact that dUr = —dU and
dNr = —dN to write dSg in terms of system variables. The total entropy of

the system plus reservoir (expressed in terms of system variables) is then

1 1
dSiota = —7(dU = TdS — pdN) = —d®.

The tendency of the total entropy to increase therefore means that the grand
free energy tends to decrease (since dSioa) is positive, d® must be negative

in order to make —d® /T positive).
c)

O=U-TS—uN
—U—TS+PV—PV—uN
=G — PV —uN
— PV,

where we in the last step use that G = u/N when T and P are constant (from
the thermodynamic identity of G, dG = —SdT + VdP + pdN with dN = 1).
d)

For the unoccupied state: U =5 =N =0= & = 0.
For the occupied state: U = Uy = —13.6eV, S=0, N =1



(I)occupied = UO — K

=Uy+ kT In
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where eq. 3.63 in Schroeder is used for the chemical potential of an ideal
gas. Here m is the electron mass, and the electron concentration is given
as N/V = 2 x 10 m~3. Putting in numbers gives us (the logarithm is

calculated to be equal to 17.8)

Doccupicd = —13.6 eV +8.62 x 107° eV /K x 5800 K x 17.8

~ —4.7 eV < Dynoccupied = 0 V.

To find the temperature at which the occupied and unoccupied states are
equally likely, we set their grand free energies to be equal and solve for T
(neglecting the In73/? dependence, which is insignificant compared to the

factor T outside the logarithm, when T is varied):

(I)occupied = q)unoccupied
Uy — 17.8kT =0

Uo

= — ~ K
17.8k 5800

Schroeder 7.1

Probability of heme site being occupied:
1
P = G
Blood in equilibrium with air, that we can view as an ideal gas, giving the
chemical potential:
— VZint —_ kTZint
= len(—NyQ) ET In( o ),

where P is the partial pressure.



From this we get

7) — 1 — 1
e€/kT 7k£fgt +1 %—&—1 !
where Py = e/ "“TLU?“R

T = 310K, kT = 0.0267 eV, ¢ = -0.7 eV, Py = 0.0072 bar
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Schroeder 7.7

Grand potential /free energy:
d=U-TS—uN
Grand partition function:

Z = Y e BN G

S
From exercise 5.23 we have

(g%)T,V =N
For a ® = —kT'In Z we get
(%)T,V =—N.

So @ and P obeys the same differential equation.
We set an initial value g = 0, then ® = U—-T'S = F and Z = Z (the ordinary
partition function). So for p = 0, O =—kI'hZ=—kTInZ=F = ®, where

we use I' = —kT In Z from section 6.5.



® and ® obeys the same differential equation and and are the same at the

initial condition p = 0, therefore they must be the same function, giving us:

d=b=—kTInZ.

Schroeder 7.14

From Figure 7.7 the distributions more or less coincide for € — p a few times
greater than kT. This gives:

n (e—p)/kT —(e—p)/kT —(e—
NBE e +1 1+e ~ e—p)/kT _
fipp | e W/FT—1 — T—e (e-w/FT ™ 14 2e~ (T for (e — p) /KT > 1

For a 1% difference between ngg and ngp (Boltzmann distribution lies be-
tween BE and FD distributions (Boltzmann distribution lies between BE and
FD distributions) we require:

2e~ (/AT < 0,01 = 4 > In(200) ~ 5.3

For particles at room temperature T = 300K we get:

(€ —p) > 0.137 eV.

For an ordinary gas of particles in a box, energy levels measured in the usual
way € is positive and —pu/kT is In(V Ziy /Nvg).

The condition above is then:

VZn _ kT Zint
Vi — K7 900

For nitrogen at room temperature and atmospheric pressure:

M2 — 3.0 x 10,
vQ

which is easily satisfied.

Schroeder 7.15

Total number of particles:

N = ZﬁBoltzmann = Z = 6_(55_“)/kT — e;L/kT Z e—Es/kT

S S
Single-particle partition function:



Zl _ Z — efes/kT

This gives:
N = Z1et/*l = = —len(%)

Schroeder 7.20

For an electron gas at the centre of the sun we have the Fermi temperature:

. ) 2/3
Tp =% =20 (37 =91 x 10°K

This temperature is close to the actual temperature in the sun, T = 107 K,
so we can not threat the electron gas as a degenerate Fermi gas (T ~ 0) or

an ordinary “classical” ideal gas (T > Tp).

Schroeder 7.26

a)

The Fermi energy is:
2/3
er = 12 (30)7 ~ 6.9 % 1072 ~ 4.3 x 1074V,

with N/V = N,/(37cm?) where N, is the Avogadro number.

b)

From equation 7.48 we have:

Cv _ mk _ 7 -1
NkKT ~— 2ep ~ 2Tp LOK

The predicted heat capacity is smaller by almost a factor of 3.

c)

Entropy of liquid 3He:

S = Jy SedT" = (28K )Nk [} dT" = (28K ')NkT
Entropy of solid ®He: S = kIn(2") = NkIn2,



this applies for temperatures down to low values before it freeze out and goes
to 0.
Same entropy for:

Nkln2= (28K )NKT = T = ;2227 = 0.25K

By Clausius-Clapeyron relation the slope of the solid-liquid phase boundary

on the PT graph is proportional to the entropy difference Siiquid—s; We

solid *
predict the slope to be negative at temperatures lower than 0.25 K and
positive for temperatures greater than 0.25 K. We see this behaviour in Figure

5.13.
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