[11:40:24 October 8, 2019]
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The sound of air, argon, and CO2. By exploiting interference (resonance) in Kundt’s tube to
measure the speed of sound we can extract some thermodynamic quantities. We will examine how
these depend on temperature, and by comparing our measurements with the expected behaviour of
ideal gases we can find the number of thermodynamic degrees of freedom, and determine if the gas

is ideal or not.

Sections I — V summarize the most important ideas to
be investigated in this lab. Results that are necessary to
complete the assignment in Section VI may be found in
the five numbered boxes.

An appendix is devoted to explaining why numbers in
physics are completely different from mathematical num-
bers, and how to treat experimental data (numbers) with
the respect they deserve. A comparison of experimen-
tal numbers and theoretical (mathematical) numbers is
meaningless unless you have a “stick” (“ruler”) to mea-
sure the distance between them. This measuring stick is
the “error” or “uncertainty” of your measurement.

I. WHAT IS A PHYSICAL THEORY?

A theory should be as simple as possible, but
not simpler. Albert Einstein

Real materials consist of atoms, which are made of elec-
trons, protons and neutrons, which are made of quarks
and gluons, which are .... How can we do physics when
matter is so complicated? The answer is that we can
model the “cosmic onion” one layer at a time. Physics
is the art of simplification, i.e., of ignoring those details
that are irrelevant for what one has chosen to model.

This is possible because most of the details that are
important (relevant) for microphysics are unimportant
(irrelevant) for macrophysics. Consider the Solar sys-
tem. Compared to a planet you are microscopic, and
completely irrelevant for the planet’s trajectory through
space and time. Planetary trajectories can be determined
to very good accuracy by modelling the Sun and planets
as points obeying Newtonian mechanics.

It is not unusual that macroscopic concepts have no
microscopic meaning. An atom has neither pressure nor
temperature. This phenomenon, that the whole (collec-
tive behaviour) is more than (or at least different from)
the sum of its parts, is called emergence. That the “col-
lective” (the gas) forgets the “personality of its individ-
uals” (microscopic details of the molecules) is called uni-
versality. Without these concepts we cannot understand
physics or any other natural science. The prime example
of this is thermodynamics and statistical mechanics.

One of the purposes of this lab is to encourage you to

Figure 1. Original illustration from the article by August
Kundt in Annalen der Physik in 1866, which shows stand-
ing waves inside Kundt’s tube.' We shall here repeat his ex-
periment with modern equipment, with one of the objectives
being to test thermodynamic gas theory.

reflect on what is important, and what is not, in ther-
modynamic gas theory. Our first task is find out how to
model the molecules in a gas: what is relevant, and what
is not? We wish to find out how thermodynamic vari-
ables like pressure and temperature capture the collec-
tive macroscopic behaviour of the myriad of microscopic
constituents (atoms or molecules).

II. FROM MOLECULES TO MOLES

The simplest model of a molecule is that atoms are rep-
resented by indivisible mathematical points (rigid balls
or spherical “stones”) without “personality” (i.e., no
other physicially measurable attributes), which are con-
nected by “sticks” with no structure. This stickséstones
molecule can move and rotate in space, but that is all. A
better model is to replace the sticks with springs, so that
the molecule also can vibrate (ballédspring model). An
even better model is to replace the balls with Bohring
atoms, where the electrons can be excited to various
states with distinct, discrete (quantized) energies (quan-
tum oscillatoréspring model), but we will not consider
this model here.

At room temperature (T' ~ 300 K) the stickséistones
model of air works surprisingly well. In this model air
molecules do not interact, which means it is treated as



an ideal gas. For ideal gases we have a very direct bridge
between micro- and macro-physics, via the heat capacity.
The only information that thermodynamics retains about
this “mathematical” gas is how many thermodynamic de-
grees of freedom f the molecules have, and how heavy
they are. The more degrees of freedom the molecules
have, the more heat they can store. This is measured by
the molar heat capacities ¢, (constant pressure; isobaric
process) and cy (constant volume; isochoric process).
In an ideal gas at normal temperature (less than
1000 K) every degree of freedom contributes R/2 to cy:

R R
ev=F3, p=(f+2) 2
where R is the molar gas constant (a.k.a. the universal
or ideal gas constant):?
¢p —cy = R =8.3144598(48) J/(X - mol).

The adiabatic index (a.k.a. the heat capacity ratio,
the ratio of specific heats, Laplace’s coefficient, or the
isentropic expansion factor) for an ideal gas is

ci_f+2
cy f

(1)

This ratio determines the macroscopic adiabatic equa-
tions for an ideal gas, which assert that pV?, TV771,
and T p'/7~1 are constants. For an ideal gas the equation
of state is

pV = nmolRTv

where ny,o is the amount of matter measured in the SI
unit mol. The number of moles of gas molecules is 7,0, =
m[Mmol = N/N4, where m is the mass of the gas, My,
is the mass of one mole of the gas (the molar mass), N is
the number of molecules in the gas, and N4 is Avogadro’s
number.

The connection to statistical mechanics is evident from
an examination of the equation of state:

pV = NkgT, kg =1.38064852(79) x 1072% J/K

where kp is Boltzmann’s constant.? The thermodynamic
gas constant R is proportional to Boltzman’s constant
kp in statistical mechanics, and their ratio is Avogadro’s
constant:?

N4 = R/kp = 6.022140857(74) x 10?3 /mol.

Thermodynamics is universally true (anywhere, at any
time), provided that a few simple conditions are satisfied.

III. COUNTING DEGREES OF FREEDOM

We must distinguish between the number of mechanical
degrees of freedom (fmecn) and the number of thermody-
namic degrees of freedom (f ), because they usually do not
coincide at high temperature.

If the temperature T is significantly lower than the
characteristic temperaure © ~ 1000K where the atoms
in a molecule start to vibrate, then the molecule will
behave like a rigid body. Three numbers are needed to
specify the location of the center of mass (3 translational
degrees of freedom). In addition there are at most three
rotations of the molecule that can store energy, but if the
molecule has one or more axes of rotational symmetry
(s > 0), then these rotations cannot store energy, and
the number of rotational degrees of freedom relevant for
thermodynamics is f,o; = 3 —s. For T << © the number
of “rigid” degrees of freedom is therefore given by

frig:3+frot:6_5‘ (2)

where s is the number of rotational symmetries of the
molecule. Every rigid degree of freedom contributes R/2
to the heat capacity. So, for rigid molecules (i.e., at low
temperature®) the number of atoms does not matter, only
which shape the molecule has (and its total mass).

Confusing vibes

This section is not relevant for this lab, but is intended
to clarify a topic of much confusion that you may en-
counter elsewhere.

If T > © ~ 1000K we must include other degrees of free-
dom. The total number of mechanical degrees of freedom
for n atoms is always fpech = frig + foiv = 31, because we
need three coordinates to determine the position of each
of the n points, no matter how they move. The number
of mechanical vibrational degrees of freedom is therefore
fvib = 3n—6+s. Each of these can be modelled by replac-
ing the rigid rods between pairs of atoms with springs,
i.e., harmonic oscillators.

Each vibration mode contributes an amount R to the
heat capacity, so we can write the total heat capacity as
cy = fR/2, where we will call f = fig+2fpip = 6(n-1)+s
the number of thermodynamic degrees of freedom. At
high temperature the number of thermodynamic degrees
of freedom does not equal the number of mechanical de-
grees of freedom if n > 2: f = feen = 3 for n = 1, but
f> fmeen =3n 26 for n > 2.

If these concepts are confused, as sometimes happens
even in textbooks, then the counting of relevant degrees
of freedom will be wrong. Since a vibrational mode can
not be excited at room temperature, in this lab there will
be no confusion: f = fig = 6—5 for Tyoom << © = 1000K.

The reason that we have to double the counting of
vibrational modes is that an oscillator has both kinetic
and potential energy. If we model the bond between two
atoms with a spring of a given stiffness v, (which is deter-
mined by how strong the bond is), then the molecule can
store potential energy proportional to v in the spring
when it is stretched or compressed. At sufficiently high
temperature each spring can store equal amounts of ki-
netic and potential energy (the equipartition theorem), so



each vibration contributes twice as much as translations
and rotations to the capacity of the gas to store energy
(the heat capacity cy ).

We define O (k=1,2,..., fyib) to be the characteristic
temperature that must be exceeded in order to excite the
vibration mode labeled by k. The value of Oy o< v4/kp
is determined by the spring constant v;. For normal
molecules O is over a thousand degrees, and by “room
temperature” we mean Tyoom << O (for all k).

IV. SOUND WAVES

Sound is a longitudinal pressure wave, and the speed
of this wave depends on temperature, pressure, and
other thermodynamic quantities. We are here going
to use Kundt’s tube to measure the speed of sound
(cf. Fig. 1), use this to investigate how the heat capacity
¢+ (8, Mmo1, T) depends on molecular structure and tem-
perature, and compare and contrast this with the theory
of ideal gases.

A comparison of experimental data and theoretical re-
sults is meaningless unless you have a “stick” to measure
the distance between them. This measuring stick s the
“error” or “uncertainty” of your measurement!

It makes no difference whether the theoretical model
is analytical or numerical. You may be able to solve a
sufficiently simple model analytically and thereby obtain
exact theoretical values of observables, but this has no
value unless you have experimental data with error bars
that can be used measure how well the model simulates
reality.

In the absence of “the untimely intrusion of reality”
(experiments), no matter how hard you work on your
model this will only teach you something about the model,
nothing at all about the real world.

Furthermore, since all models have limited validity, it
is not sufficient to only rely on the experimental data that
led to the construction of the model in the first place: it
may break down at any time, so you must keep checking
the model with new experiments adapted to your needs.

In other words, in physics an experimental number
without units and error bars is worthless, and a theo-
retical number detached from reality is equally worthless.

A. Experimental determination of the speed of
sound by finding resonances in the tube

We can determine the speed of sound in a gas by iden-
tifying the resonance frequencies of standing waves inside
a tube, since we know that the velocity c of a wave always
is given by ¢ = Av, where A is the wavelength. From wave
mechanics we know that a standing wave in a closed tube
with resonance frequency v, has wavelength \,, = 2L/n,
where L is the length of the tube and n is an integer

(n=1,2,3,...). Combining these results we obtain the
linear function
+b c (3)
Uy =an a=—
n b 2L

where the speed of sound is determined by the slope a.
To get a better linear fit for the slope we leave the value
of b undetermined.?

The uncertainty dc of your best estimate ¢ = 2La of the
speed of sound is obtained by using the “Pythagorean
method” (described in the appendix) for calculating how
the uncertainties of a and L propagate through the func-
tion ¢(a, L) = 2La. The value of L and 6L is given on
each tube (they are not all the same).

B. Theoretical calculation of the speed of sound in
ideal gases

From wave mechanics we know that the speed of sound
¢ depends on the density p of the material (gas) and the
adiabatic compression modulus K :°

d
K:—V—p:"yp =

dv
e JE_ o [(f+2)p
p p fo
where we have used that K = vp follows from the adia-
batic equation p o< V™7 and Eq. (1).

Example: The density of air is py =» 1.29kg/m3 at
Ty = 0°C at sea level, where the air pressure is py = 1
atmosphere ~ 1.0125 x 10°Pa. If air is an ideal gas,
then f = from =3+3 -1 =15 gives the speed of sound
¢o # 331.5m/s, which is in good agreement with the ex-
perimental value.?

From p = m/V = nMp,a/V and pV = nRT we get a
thermodynamic equation for ¢ in an ideal gas:

(f +2)RT

aall) = J Mol

(4)

where T is the absolute temperature (measured in K).

Notice that the molar mass M, determines the speed
of sound: the lighter the gas, the faster sound waves move
through it. Compare for example the speed of sound in
helium, which at room temperature (20°C) is more than
1000 m/s (cf. inset in Fig. 2), with the speed of sound
in air. An exception from this rule is neon, which is
a bit heavier than ammonia and water: My,q(NH;s) =
17.03g/mol < Mye1(H2O) = 18.02¢g/mol < My, (Ne) =
20.12g/mol. The reason is that neon has fewer degrees
of freedom, which in this case is enough to overcome the
small difference in molecular masses.
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Figure 2. By measuring the electrical resistance R:[€2] in a
thermistor, we can read off the temperature T [°C] from this
diagram. Bottom: The red graph is our approximate (empir-
ical) thermistor function T (7) ~ 25 - 24In7 [r = Ry/(10° )],
which has been fitted to the manufacturer’s table (blue dots).

V. THERMISTOR PHYSICS

The purpose of this part of the lab is to emphasize that
the apparatus (sensors) we use for mesurements also are
physical systems. They are therefore only useful to the
extent that we understand their physics. Often we use
tables and graphs to convert the independent variable we
actually measure to the dependent variable we need.

A good example that we have encountered before is
the Hall effect, which appears when an electrical current
in a solid encounters a magnetic field. This is an inter-
esting phenomenon that we studied in FYS1120: Electro-
magnetism to get a better understanding of both elec-
tromagnetism and the (quantum mechanical) band struc-
ture of semiconductors. Having understood the physics of
this phenomenon, we can then use it to make devices that
measure magnetic fields with great precision, by measur-
ing the Hall potential transverse to the current. Such
Hall probes are now widely used, and so cheap and tiny
that you probably have a handful in your phone.

To give a quantitative comparison of our sound data

with thermodynamic gas theory we must be able to mea-
sure the temperature accurately. We do this by mea-
suring the electrical resistance R; of a particular type
of semiconductor called a thermistor. The “thermistor
function”

| To(r) =25 - 241nr | (5)

where r = R;/(10° Q) and R, is the Ohmic resistance of
the thermistor,® is plotted in Fig. 2. Notice that it gives
the temperature in Celsius (°C'), not in Kelvin (K)!

We see that this empirical formula (best fit to manu-
facturer’s data over a small range of temperatures) devi-
ates slightly from tabulated values at high temperatures,
but since it fits very well (with the uncertainties of our
measurements) in the temperature range we are going to
study, it is sufficient for our purposes.®

VI. EXERCISES

Exercise 1: What is sound?
(reminder of wave physics)

The purpose of this exercise is to remind ourselves
what sound is (Fig. 3), what plane and standing pressure
waves inside a tube are (Figs. 8 and 9), and how the res-
onance condition depends on boundary conditions, i.e.,
whether we plug the ends or not.

1.1 Plane pressure waves

Use the appended analog pressure wave simulator #1
(Fig. 8) to remind yourself what a plane longitudinal pres-
sure wave is.

1.2 Standing pressure waves

Use the appended analog pressure wave simulator #2
(Fig.9) to remind yourself what a standing longitudinal
pressure wave is.

THREE WAYSTO LOOK AT PLANAR HARMONIC SOUND WAVES
(LONGITUDINAL COMPRESSION WAVES)

Molecular density (pressure gradient) @ time't = 0 shown as 'temperature map'.
Use analog compuiter to visualize time—evolution of particle density (pressure).

distance from left wall (black): x

0
0

displacement in x—direction

Y(X, t) oc cos (kx — wt) @ t
pressure

px, t) o« sin(kx — wt) @ t

blue (‘cold’): rarefied gas  red (‘hot'): compressed gas

Figure 3. Three ways to “visualize” sound.



1.3 Resonance condition

From earlier courses (FYS2130: Svingninger og bglger,
or similar) we know that the condition for resonance and
standing waves inside a tube of length L that is plugged
at both ends is A, = 2L/n, where n is an integer. Discuss
this, and deduce a formula for the difference Avy = vy, —
1o between the resonance frequencies v, o< ng = ng + k
and an arbitrary reference resonance vy determined by
an unknown resonance number ng [cf. Eq. (3)]. We will
extract the speed of sound from the slope of the graph of
Ayk.

Exercise 2: Measuring the speed of sound
(experimental part of this lab)

We are going to use standing waves to measure the
speed of sound, with an apparatus sketched in the dia-
gram shown in Fig. 4.

The gas is contained inside a long tube (with a spec-
ified internal length L with uncertainty 6L = +£1.5 mm,
measured with a laser), which is plugged at both ends
with massive metal disks. One of the plugs has a small
hole in the center that emits sound waves from a loud-
speaker attached to the outside of the plug. The speaker
is driven by an alternating harmonic current delivered by
a signal generator, which has a number of knobs on the
right hand side where the amplitude (signal strength) can
be adjusted so that the sound detector does not “clip”
the signal.

The plug at the other end of the tube is equipped with
a miniature microphone, which is connected to a bat-
tery driven amplifier attached to the outside of the plug
(cf. Fig. 5). The signal from this amplifier, which is pro-
portional to the pressure in the gas at the microphone,
is sent to an oscilloscope. Make sure that both the input
and output signals are unclipped harmonics (sines).

Our task is to identify resonance frequencies where
the signal is much stronger than neighboring frequencies.
The advanced signal generator can deliver frequencies
with a precision of 1073 Hz, but we cannot determine the
maximum peaks on the oscilloscope with anything like
this precision. Estimate the uncertainty in your read-
ings.

There will be four groups analysing the speed of sound
in four different tubes: [ATTENTION: You are not al-
lowed to fill any gas other than air by yourself!]

K1: contains air at T' = Tyoom

K2: contains air at T > Troom (Imax = 0.3A)
K3: contains air at T >> Troom (Tmax ~ 70°C)
K4: contains argon or COs at T = Tioom

All results from K1 - Kj will be shared, so that you can
compare and contrast them. After completing the next

loudspeaker

reflector with hole (do not remove) reflector with microphone

L. ) \
I:< ”4/ acoustic tube \>
multimeter oscilloscope
—1 0000
VAC 000
000000000 G ROO
signal generator Q000G

Figure 4. Sketch of the device used to measure the speed of
sound in a gas (air, argon or CO> in this lab). The tempera-
ture inside the tube is monitored by inserting a tiny thermis-
tor (not shown here) that does not obstruct the sound waves.
Some of the tubes are wrapped with a heating cable and in-
sulation (not shown here) so that the gas can be heated to
at most 70°C. OBS: the heating current should not exceed
Imax = 0.3 A.

Battery check:
Voltage should be
2.5-3.0Vdc

Red dot
=ON

Figure 5. Photograph of the circuit board with on/off switch
for the microphone amplifier, which runs on a small battery
(round disk on the right hand side) that should have a nominal
voltage of at least 2.3 V.

excercise you will compare these experimental results with
theoretical expectations for ideal gases.

2.1 Resonances

Find all resonance frequencies in K1 - K4 in the fre-
quency interval from about 200 Hz up to about 2 kHz.
You may find a resonance below 200 Hz, but that one
is so uncertain that it is better to use higher frequen-
cies. Each reading should be as accurate as you can
manage with about 30 seconds of “fine-tuning” for each
resonance. Estimate (roughly) the uncertainty in each
frequency measurement. Since it is difficult to find the
longest wave (how long?) it is better to plot differences.
This eliminates any systematic mislabeling of the data,
i.e., use Ay from the previous exercise.

Find the best linear fit to the data, and use Eq. (3)
to find the speed of sound. What is the most important
contribution to the uncertainty?

You may find the PYTHON code in the appendix use-
ful. It will return the least squares fit to the data, includ-



ing the uncertainty in the slope. Verify that including
more points shrinks this uncertainty.

2.2 Temperature dependence

If your tube is not wrapped up in a shiny thermal blan-
ket, try to change the temperature inside the tube by
placing your (2,4,6,...) hands on the tube, or blow on
it. Is the temperature change measurable? Estimate the
uncertainty in the temperature measurement.

Exercise 3: Sound of molecules

We first analyse how the number of microscopic degrees
of freedom depends on molecular structure.

3.1 Geometry

How many rotational symmetries s,, can a molecule
made of n=1,2,3,... point-like atoms have?

3.2 Atomic physics Use your results from Exercise 3.1
and the periodic table of the elements to construct a table
giving the molar masses and number of mechanical and
thermodynamic degrees of freedom for noble gases, air,
hydrogen, water, carbon dioxide and ammonia. Draw
all the rotational and vibrational modes that can store
energy in diatoms and CO,. (Hint: The symmetry of the
molecule depends on which group each atom belongs to.)

3.3 Temperature dependence

Use the theory of ideal gases to make a diagram show-
ing the speed of sound in hydrogn, helium, neon, argon,
nitrogen, oxygen, air, carbon dioxide and ammonia, as a
function of temperature.

3.4 Comparison of experiment and theory
Compare your experimental data from Exercise 2 with
your theoretical results from Exercise 3.3. What can you

conclude about air (mostly N2 and Oz) and about carbon
dioxide?

Exercise 4: Thermistor thermometer
(metrology, semiconductors and thermodynamics)

We have used that the electrical resistance of a semi-
conductor has a strong temperature dependence, which
we exploit to make a sensitive thermometer. This phe-
nomenon is itself a consequence of thermodyamics, which
we wish to understand better.

4.1 Resistance and temperature dependence

Electrical resistance in a metal increases approximately
linearly with temperature, (7)) = o+ 8T + ..., because
the atoms in the crystal act as “barrage balloons” that
obstruct electron flight through the metal lattice.

We have in this lab observed the opposite behaviour in
semiconductors. Why does resistance in a semiconductor
decrease when the temperature increases?

4.2 Band population

What is the physical reason that the “thermistor equa-
tion” Eq. (5) is more or less correct? In other words, can
you find a qualitative explanation for why the tempera-
ture dependence of a semiconductor is logarithmic, rather
than linear, as it is for metals? [Hint: What is the statis-
tical distribution of charge carriers (electrons and holes)
between the valence band and the conduction band?

APPENDIX: HOW TO TREAT YOUR DATA

In physics an experimental number without units and
error bars is worthless.

This is an informal introduction to “linear regression”,
which is the most important and widely used method
for analysing experimental data. It is essential for any
physicist to quickly develop a relationship to experimen-
tal data, whether this is obtained from own work, or is
being peddled by others.

A number derived from a measurement has no value
unless we have some idea of how uncertain it is. The
quickest and most robust method for fitting a model to
data is to find a linear relationship, perhaps by changing
variables and plotting the data so that hey populate the
vicinity of a straight line, and then formally fitting this
line to the data.

A. Linear models

In this lab the objective is to use a little knowledge
from wave mechanics and a few measurements to con-
struct a data list consisting of pairs of numbers, which
can be thought of as points in a plane. Your task is to
use this list to find the most probable value (the best
estimate) ¢ of the speed of sound in a gas, and the un-
certainty dc of this estimate.

The simplest way to estimate ¢ is to use a ruler. This
is a slightly vague but very graphic way to illustrate how
a line is fitted to a set of data. After plotting the data
points on a plane a transparent ruler is placed on top of
the paper in such a way that the data points a pread out
“as evenly as possible” on both sides of the edge of the
ruler. Intuition dictates that this is the “best fit”. Linear
regression is one way to make this intuition precise. All
we need is a simple way to measure how “evenly” the
points are spread out.

Notice that you are using the whole data set, and there-
fore all available information, when you shift and twist
the ruler, and this is clearly a necessary requirement for
a good fit. Notice also that only in rare cases does a data
point sit right on the line, and it is usually not a good
idea to “connect the dots”, since this may be mislead-
ing as it does not combine the data set in a physically
meaningful way.



A ruler is a good way to get a rough idea of the fit-
ted line, but in reality we also use a computer to make
this procedure quantitative. It tries out “all possible”
lines y = ax + b by changing the slope a and intercept b
(constrained to a finite number by some built in numer-
ical resolution). For each choice of line the sum of the
squares of the (vertical) distances of the data points to
the line is calculated. By definition, the winner (i.e., the
“best fit”) is the line with the smallest sum of squares.
The slope a of this line contains the information about
the best estimate of the speed of sound. (In other exper-
iments we may also be interested in the best estimate b
of the intercept, but not here.)

The spread of the data points around the line gives
us the standard deviation. If you do not already have
a favourite application that fits a line and calculates the
uncertainty of this estimate automatically, you may wish
to use the two lines of PYTHON code appended to this
section. It does not get any simpler than that.

Without a universal line-fitting tool you cannot do
physics, so if this is not already hardwired into your brain
you should have that done now!

In the final part of this lab you are going to compare
your experimental results with the theory of ideal gases,
which asserts that ¢ oc v/T. You must therefore also
estimate the most probable value T of the average tem-
perature inside the tube when you obtained the data.
This comparison is meaningless unless you can estimate
the uncertainty dc of the estimate ¢, and the uncertainty
0T of your estimate T.

It has no meaning to say that two numbers are “near”
each other unless you have a “measuring stick” to mea-
sure the distance between these numbers.

Is the estimated value 7 = 3.1415 of the circumference
to diameter ratio of any circle (obtained by wrapping
wires around circles of many different sizes, say) “near”
the exact value 7 = 3.1415926535897932. .. (exact if you
knew all the dots), even if there are infinitely many num-
bers between these two (always!) distinct numbers? The
measuring stick is the variance (standard deviation) of
the estimated value, so if you misplace this stick you
have nothing! If the uncertainty in the estimate of 7
is 7 = £0.001, then 7 and 7 must be treated as the same
number in physics, because we have no empirical infor-
mation that allows us to say otherwise. If the uncertainty
in the estimate 7 is 7 = £0.0001, then @ and 7 should
be treated as different numbers in physics, because we
do have empirical evidence allowing us to say that it is
very improbable that they actually are the same number.
This conclusion is not absolutely certain, but absolutes
have no place in science. Our ambition is to know how
uncertain our knowledge is, not to find “absolute truth”.

The “uncertainty” in data that comes from unavoid-
able statistical variations (often called “errors”, unfor-
tunately) can be made as small as you can afford, by
collecting more data. How big must the deviation be be-
fore we can say that the data do not support the model?
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Figure 6. This “Pythagorean uncertainty triangle” is a

mnemonic for addition of uncertainties.

There is no right answer to this question, but at least in
particle physics the convention is that if the discrepancy
is more than 5 standard deviations (“sigma”) (the prob-
ability that this is a random statistical fluctuation is less
than 1 in 3.5 million), then there is a real problem, and
usually the model (theory) is in big trouble. However,
sometimes the lack of agreement is caused by unknown
systematic errors that often derive from an inadequate
understanding of the measuring apparatus. If this is the
case, then an improved experiment (rather than an im-
proved theory), which actually measures what we think
it is measuring, is what is needed. Systematic errors is
the Achilles’ heel of any experiment, because there is no
systematic way of identifying their sources.

B. Pythagorean error propagation

When the best line has been found we can calculate the
“spread” da (variance, standard deviation) of the slope
a of this line.

The standard deviation is defined in such a way that
if you repeated the exact same experiment many times,
then you would find

a € (@ —da,a+ da) in ca. 68.27% of the experiments,
a € (a—20a,a + 2da) in ca. 95.45% of the experiments,
a € (a—3d0a,a + 3da) in ca. 99.73% of the experiments,
a € (a-4da,a+4da) in ca. 99.994% of the experiments,
a € (@—5d0a,a+50a) in ca. 99.9999% of the experiments,
etc.

The best estimate of the speed of sound is é = 2La,
but what is the uncertainty dc of this estimate? More
generally: what is the uncertainty in the value of a func-
tion f(x1,x2,...) of one or more independent stochastic
variables x1, x2,..., which each has an uncertainty dx1,
(5372, L2

Each uncertain variable xj contributes to the uncer-
tainty df of f, but less than you might naively think.
Heuristically, if all the measured values are independent,
then they “pull in orthogonal directions”, and should
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Figure 7. Relative uncertainty when f = x-y and ry < 75.
Notice that if r, is 20 % of 7, then it contributes only 2 % to
the relative uncertainty of f. If ry er 10 % of r, it contributes
less 0.5 %.

therefore not be added linearly, which is the naive guess.
That would give an excessively large etsimate of J f.

If there is only one variable, then the uncertainty in f
if found by derivation, §f = |df /dx|ox. If there are two
or more variables each one contributes via partial deriva-
tives, but these should be added “in quadrature”. For
two variables a useful mnemonic is the “Pythogorean un-
certainty triangle” shown in Fig. 6. The uncertainty 6 f of
the best estimate f = f(Z,¢) is given by the hypothenuse,
which is smaller than the sum of the legs,

(62)% + (64 f)? < b f + 0y f.

(More variables may be accomodated by an obvious gen-
eralization of this formula.) Ezample:

fa)=oy — L - (?)2+(?)2

We see that it is the relative uncertainties r, = dx/x, etc.
that are relevant.

Since they are squared, a relative uncertainty that is
significantly smaller than the others will not contribute
much to the relative uncertainty of f. In this case we
can drop one variable, and the equation simplfies to a
much used form, f ~ ydx. Fig.7 shows how fast the
contribution from the least significant variable, here r, =
dy/y, “dies” compared to 7y > ry.

So, if you decide to use dc » 2Lda to calculate the
uncertainty in the speed of sound, then you must justify
this by verifying that the relative uncertainty in a is much
larger than the relative uncertainty in L.

C. Nonlinear models

The analytic process we have used here to estimate
the speed of sound in a gas is typical. The method is
the same for all linear functions, f(x) = ax +b. This is

more general than it looks, because we can often swap a
nonlinear function for linear one by a change of variables.
Some examples are:

e f(x) = a/zr +b: define z = 1/2 and study instead
g(z) =az +b.

o f(z) = cexp(az +b): take the logarithm on both
sides and study instead g(z) = Inf(x) = az +b,
where the new constant is b=b+1Inc.

e f(x) = cln(ax + b): exponentiate both sides and
study instead g(x) = exp f(z)/c=ax +b.

f(z) = (ax +b)°: take the root on both sides and
/f(x) =ax+b.

If it is the uncertainty dx of a variable x that is known
(usually determined by a separate fitting) then you have
to use the Pythagorean method, even if there is only one
independent variable x, to find the uncertainty of any
quantify that is a function of x. For example,

af&c‘ =adx,
o

study instead g(x) =

fx)=azx+b = 6f =
while (see above list),

f@)=alx+b = bz =

a

= §g = s

‘agéz oz,

If it is the uncertainty §z of a transformed variable
z = z(x) that is known, usually by fitting a linear func-
tion g(2) = az + b, then you should use the Pythagorean
method on ¢(z), not g(z): dg = adz. The uncertainty in
x is then éx = |dz/dz|dz. For example, if z = 1/x then
§z =6x/r? and 6z = §z/2>.

D. PYTHON

We find the best estimate a for the slope, as well as the
uncertainty da of this estimate, by fitting a straight line
y = ax + b to the list [(1,21),(2,12),(3,11),...,(n, V)]
of n experimental data points.

The simplest way to do this in PYTHON is to down-
load the statistics package stats from scipy, and then
feed the two vectors (lists) X =[1,2,3,...,n] and YV =
[v1,v0,v3,...,v,] to linregress:

> from scipy import stats
> stats.linregress(X,Y)

The function linregress returns a list [a,b,r,t,da],
where the first and last element gives the result we need,
a=az+da.

Since the lists X ogY can be any type of data, you now
have a very simple and useful tool (two lines of code!) for
doing linear regression, on anything, at any time.
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Rather than acquiescing to the theoretical bias b = 0. This is
actually the least biased thing to do, because we have made
many assumptions about the geometry of the apparatus to
arrive at Eq. (3). Since it is the longest wavelengths that
are most sensitive to global (geometric) features, we should
expect low frequency data to deviate somewhat from the
simple linear relation in Eq. (3), and they do, so b is a
legitimate and necessary fitting parameter.

By “low” temperature we mean here 1K << 7T << 1000 K. In
this case phase transitions are determined by classical ther-
mal fluctuations. At really low temperatrues (T << 1K)

quantum phase trasnitions are possible that are driven by
quantum fluctuations. These are of interest in future elec-
tronics, including quantum computers.

K is also called the bulk modulus, or Young’s elasticity mod-
ulus in three dimensions, since it parametrizes volumetric
elasticity.

A log-linear fit of Tc(r) = 25 — blnr to the factory table
gives a slope b ~ 23.9548. We will here use b ~ 24, since this
gives temperatures that deviate from the table by less than
+0.05°C. The much more complicated standard empirical
(Steinhart-Hart) equation Tk (R) = 1/(a + bln R + cIn® R)
usually found in the literature requires three fitting param-
eters (a, b, and c), and the fit is no better over the small
range of temperatures we are probing here.

This is not a purely academic excercise. To avoid a climate
catastrophe we wish to store the greenhouse gas COxz inside
the planetary crust. The thermodynamics of CO> and mix-
tures of CO2 with other gases is therefore of considerable
interest.
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Analog computer to visualize: TRAVELING SOUND WAVE
(longitudinal compression wave)
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Figure 8. analog pressure wave simulator #1: visualizing plane sound waves. Glue together two stiff sheets of cardboard
separated by a slit between the sheets of at most one millimeter. By pulling the slit (the “tube”) in the time direction you will
see a propagating pressure wave which compresses and dilutes the “gas” of black dots.

Analog computer to visualizee STANDING SOUND WAVE
(longitudinal compressi on wave)
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Figure 9. analog pressure wave simulator #2: visualizing standing sound waves. Glue together two stiff sheets of cardboard
separated by a slit between the sheets of at most one millimeter. By pulling the slit (the “tube”) in the time direction you will
see a standing pressure wave which compresses and dilutes the “gas” of black dots.



