### Lecture 18

#### Stretching polymers and proteins





Chain molecules tangled up



Chain molecules untangling



Chain molecules completely untangled







## Rubber band thermodynamics with IR camera





## Rubber band thermodynamics with IR camera



Observations:

- when stretched: the rubber band heats above ambient temp.
- when kept stretched: the rubber band goes to ambient temp.
- when "unstretched": the rubber band cools below ambient temp.
- 4. when left relaxed: the rubber band goes to ambient temp.

Thermodynamics:

- What is the system?
- What variables are of interest?
- Can we make a graph?

# Rubber band thermodynamics with IR camera

Observations:

- when stretched: the rubber band heats above ambient temp.
- when kept stretched: the rubber band goes to ambient temp.
- when "unstretched": the rubber band cools below ambient temp.
- 4. when left relaxed: the rubber band goes to ambient temp.



Question: What kind of processes occur during 1, 2, 3 & 4?

### Rubber band thermodynamics with IR camera

Observations:

- 1. when stretched: the rubber band heats above ambient temp.
- 2. when kept stretched: the rubber band goes to ambient temp.
- when "unstretched": the rubber band cools below ambient temp.
- 4. when left relaxed: the rubber band goes to ambient temp.







Question: What kind of processes occur during 1, 2, 3 & 4?

1,3:

- $\Delta f \neq 0 \Rightarrow \text{work } W \neq 0$
- Fast => no time for heat, adiabatic: Q = 0

2,4:

- $\Delta f = 0 \Rightarrow \text{work } W = 0$
- Heating or cooling only:  $Q \neq 0$

Do we know some equations for this?

- 1. W = -PdV = fdl > 0
  - f changes  $\rightarrow W = \int_{l_1}^{l_2} f dl$
  - 1st law:  $\Delta U = Q + W$
  - Q = 0

• 
$$\Rightarrow \Delta U = \int_{l_1}^{l_2} f dl > 0$$

•  $\rightarrow \Delta T \propto \Delta U > 0$  (as observed!)



#### First analysis:

- 1. W = -PdV = fdl > 0
  - f changes  $\rightarrow W = \int_{l_1}^{l_2} f dl$
  - 1st law:  $\Delta U = Q + W$
  - Q = 0

• 
$$\Rightarrow \Delta U = \int_{l_1}^{l_2} f dl > 0$$

•  $\rightarrow \Delta T \propto \Delta U > 0$  (as observed)

• 
$$Q = \int_{S_1}^{S_2} T dS = 0 \Rightarrow S_2 < S_1$$

2. Cooling: Q = TdS < 0

First analysis:

- 3. Let go of rubber band: W = 0
  - Q = 0, but  $Q \neq T dS$
  - $\rightarrow \Delta U = Q + W = 0$
  - $\rightarrow \Delta T \propto \Delta U = 0$  (NOT as observed)
  - Oops!
- 4. Heating: Q = TdS > 0

#### Let's try again!





 $dS = \left(\frac{\partial S}{\partial U}\right)_{l} dU + \left(\frac{\partial S}{\partial l}\right)_{U} dl$  dU = TdS + fdl  $dS = \frac{1}{T} dU - \frac{f}{T} dl$   $\left(\frac{\partial S}{\partial l}\right)_{U} = -\frac{f}{T}$  $\frac{f}{T} > 0 !!$ 

C-D: Adiabatic, Q = 0D-A: Quasistatic,  $Q = T\Delta S > 0$ =>A-C: Quasistatic,  $Q = T\Delta S < 0$ 

$$\Rightarrow A-C: \Rightarrow \Delta S < 0 \Rightarrow stretching reduces entropy \Rightarrow  $\frac{\partial S}{\partial l} < 0$$$

Why does entropy decrease when rubber is stretched? Answer outside thermodynamics => go microscopic!

Next: microscopic model of rubber band.

**Observation:** 

### Microscopic model of rubber band



Describe an experiment.