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Diffusive equilibrium and chemical potential

When two systems are in thermal equilibrium, their temperatures are the same. When they're in
mechanical equilibrium, their pressures are the same. What quantity is the same when they're

In diffusive equilibrium?

Uy, Na, Sa -~

.- Ug, Ng, Sp .

An example of two systems that can exchange both energy
and particles with total energy and number of particles
fixed. At equilibrium, the total entropy is at a maximum.

Chemical potential is a key for understanding behavior of electron gas.
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At equilibrium:
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What parameter is
constant here?

Constant T
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Diffusive equilibrium and chemical potential

0S, Sy 054 _ 05

0NA B aNB a]VA a]VB

T(GS)
u=-T|=
oN),,

1 1s chemical potential. In diffusive equilibrium, w1, = 1.
1S a parameter which is constant in diffusive equilibrium.

If two systems are not in diffusive equilibrium, then the one with the larger
value of 2S/0N will tend to gain particles, since it will thereby gain more
entropy than the other loses. Because of the minus sign, this system has
the smaller value of x. Therefore, particles tend to flow from the system

with higher u into the system with lower x .
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Type of
Interaction

thermal

mechanical

diffusive

Types of interactions

Exchanged
guantity

energy

volume

particles

Governing Formula
variable
temperature 1 ([0S
T \oU
V.N
pressure P <35>
T av UN
chemical uo oS
potential T~ " \3N
uyv
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Generalized thermodynamic identity

Let us change U by dU, V by dV,and N by dN
and see what will happen with S':

() we(2) we(®) av (2) 2ol
=\ 377 7 ANT oU T B oN
aUu VN aVv UN oN VU NV A%

dU =TdS — PdV

dU PdV  udN
= + —_

as T T T

TdS = dU + PdV — udN

dU = TdS — PdV + udN
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Link to Gibbs free energy

dU = TdS — PdV + udN

Generalized thermodynamic identity

dG = dU — TdS + PdV = pudN u=<
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Chemical potential: different formulas
dU = TdS — PdV + udN

| _ (38
Fixed Uand V: U = N
uyv
Fixed Uand S P v
IX ; — S
. ON
U,S
Fixed Vand §: U=\==
oN sV

Chemical potential is the amount by which a system’s energy changes when one adds
one particle and keeps the entropy and volume fixed. # has units of energy.
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Chemical potential: an example

au
u= (5 Joo ] — [+
aN SV N=3g¢g=30Q=10 N=4,q=20=10

Small Einstein solid with three oscillators and three units of
energy &, adding 4t oscillator: k In 10 — k In 20. One unit of
energy is necessary to remove U= —€/1=—c€.
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Chemical potential of ideal gas

Sackur-Tetrod tion: S = Nk|In V(“mU)S/Q 42
aCKur-i1etroae eguation: — N \3N72 5

aS |V 2rmETN3/2 M
M:_T<_>UV U ——kThl[N( e ) ] .

_2__ Quantum behaviour,

v h 3 positive p :
i el I =( ) . -_
H N19Q Q Q 2mtmkT 4 11

0 1 2 3 4 5 6 78 9 10 11 12 13 14 15
X

N

w
1 L

Classical behaviour, 1
negative p |

e The sign of chemical potential depends on the ratio of the volume per one particle and the quantum
volume 9,. u is negative for % > 1y, or for a non-dense system. A large mass of particles or large T
results in a small 9.

. . . . vV .y
e Reduction in mass and decrease in temperature results in 5 < 1 and positive L.
Q
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Quantum volume and length

3
V' 2mmkTN\3/2 h
U = —k’Tln[ : ] 9, =3 = ( )
v () ° 0 \VZmmkT
p? # h 2_7T =1
h h ‘" om h o P9 2m R

»
- —

V2mmkT \ 2mme p\m AT

e For the air we breathe, the average distance between molecules 3.
Is about 3 nm while the average de Broglie wavelength is less

than 0.02 nm, so condition > 1is satisfied. ] Classical behaviour, |
JoN _ negative p
e For an electron at room temperature, because of low mass, the >o
quantum volume is Y9,= (4.3 nm)>, while the volume per 4] 1
conduction electron is roughly the volume of an atom, (0.2 nm)3. | Quantum behaviour, ]
Therefore, electron gas in metals at ambient conditions is 1| positive p

quantum gas with L «1.

19QN i S e e L B

T T 1 T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15
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Electron gas

The Nobel Prize in Physics 1906
Joseph John Thomson

"in recognition of the great merits of his theoretical and htipsjen.wikipedia.orghwiil). . _Thomson
experimental investigations on the conduction of electricity by
gases"

'By carefully measuring how the cathode rays were deflected by
electric and magnetic fields, Thomson was able to determine
the ratio between the electric charge (e) and the mass (m) of
the rays. Thomson's result was

e/m = 1.8 10! coulombs/kg.

The particle that J.J.Thomson discovered in 1897, the electron,
is a constituent of all the matter we are surrounded by. All
atoms are made of a nucleus and electrons. He received the
Nobel Prize in 1906 for the discovery of the electron, the first
elementary particle.

http://www.nobelprize.org/educational/physics/vacuum/experiment-1.html
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Cavendish Laboratory
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Electron gas in vacuum

DVS

Quantum
electron gas

https://en.wikipedia.org/wiki/Vacuum_tube

‘ rf‘s ‘.F;! o J

EZ80

? ['ATE IN HOLLANf
Ll Sk
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“The simplest vacuum tube, the diode (i.e. Fleming valve),
invented in 1904 by John Ambrose Fleming, contains only
a heated electron-emitting cathode and an anode.
Electrons can only flow in one direction through the
device—from the cathode to the anode. Adding one or
more control grids within the tube allows the current
between the cathode and anode to be controlled by the
voltage on the grids.”
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Solid-state transistors

Metallic
gate

SI-MOSFET
gate; source
\ OC
N ©
OC
drain

Normal gas

p-doped Si

Ohmic contacts,
n-doped

Oxide, SiO,

http://en.wikipedia.org/wikiMOSFET

Quantum
electron
gas


http://en.wikipedia.org/wiki/File:MOSFET_Structure.png
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Progress in miniaturisation
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Semiconductor
manufacturing
processes

10 pum — 1871
G pym — 1974
Jpm-— 1977
1.5 ym — 19382
1 pm — 1985
2300 nm — 1935
600 nm — 1994
350 nm — 1995
250 nm — 1997
180 nm — 1998
130 nm — 2001
90 nm — 2004
65 nm — 2006
45 nm — 2003
32 nm— 2010
22nm-2012
14 nm - 2014
10 nm — 2017
inm —~2018
5nm— ~2020

Half-nodes




UiO ¢ University of Oslo

Moor’s law

“Moore's law is the observation that the number of transistors in a dense integrated circuit

(IC) doubles about every two years.”
Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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The observation is named after Gordon Moore, the co-founder Date of introduction

of Fairchild Semiconductor and Intel (and former CEO of the latter). http://en.wikipedia.org/wikilMoore's._law
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Moor’s law 2.0

BOSTON, March 4, 2019 /PRNewswire/ -- At the 2019 American Physical Society March Meeting,
IBM (NYSE: IBM) unveiled a new scientific milestone, announcing its highest quantum volume to date.

Exponential Forecast for Growth of Quantum Processing Power

Quantum volume

1BM Q System One

10:l

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

IBM has doubled the power of its quantum computers annually since 2017.

https://newsroom.ibm.com/2019-03-04-IBM-Achieves-Highest-Quantum-Volume-to-Date-Establishes-Roadmap-for-
Reaching-Quantum-Advantage#assets_all



7% UiO : University of Oslo

UiO ¢ University of Oslo

Superconductivity and quantum computing
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https://techcrunch.com/2017/11/10/ib
m-passes-major-milestone-with-20-
and-50-qubit-quantum-computers-
as-a-service/

https://www.youtube.com/watch
?2v=yy6 TVIDntlw




UiO ¢ University of Oslo

Bosons and fermions

Normal gas Quantum gas

DVS

e For a dense system, particles that try to occupy the same state can be divided in
two groups.

e Particles that can share a state with another are called bosons. Examples: photons and
helium-4 atoms.

e Particles that cannot share a state with another are called fermions. Examples: electrons,
protons, neutrons and helium-3 atoms.

e Particles with integer spin (0, 1, 2, etc., in units of h/2n) are bosons.
e Particles with half-integer spin (1/2, 3/2, etc.) are fermions.

Is electron gas composed
of fermions or bosons?
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Microcanonical, canonical, and grand canonical ensembles

In isolated systems or microcanonical ensemble, all allowed microstates had the same probability, which
is “trivial” probability distribution. In canonical ensemble, members are assigned to states according to the
Boltzmann probability distribution. It considers system in thermal contact with a much larger “reservoir” at
some well-defined temperature allowing exchange of energy. Grand canonical ensemble allows exchange

of particles too.

Boltzmann and Maxwell distributions Fermi-Dirac and Bose-Einstein distributions

“Reservoir” . . “Reservoir” . o
° AN “System” Un. N | System
Energy = Up ' R; VR T BN
- - TAVAVANY. o Ellel-gy — E 11 I .
lemperature = 1 y
Canonical ensemble Grand canonical ensemble

e Chemical potential is a key for understanding behavior of electron gas.
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Boltzmann statistics

Boltzmann statistics calculates probability of the system in the
contact with reservoir having energy E . This probability is

proportional to multiplicity of reservoir: p ( E) — CO ( E) Eneg/v:ir-t}R ooor || Enerev — £
— R S

QR (E) = AQg (0) Sp(E) = kInQp(0) + kinA

AS, = klnA AU =TAS — PAV + /,LANE b % 5
E = _AUR — _TASR ASR — _T 7 = 8_%

A = e E/KT P(E) = ACQp (0)
Boltzmann distribution

E
A is Boltzmann factor e kT P(E) = e E/KT CQp (0) = %e—E/kT_
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Transition to Gibbs statistics T

Boltzmann statistics calculates probability of the system in the
contact with reservoir having energy E . This probability is

proportional to multiplicity of reservoir: p (E) = CO
= CQp (E)
“System”

Q(E) = AQp (0) Sg(E) = kInQx(0) + kinA r — EN
ASy = kinA AU =TAS — PAV + uAN

E — uN
E = _AUR — _TASR — ‘LlANR ASR — T

A = e E-RN)/KT — p(E) = ACQR (0)

Gibbs distribution
E—uN

- = 1
A is Gibbs factor ekt P(E) = e E-LNI/KT 0O (0) = Ee—(E—uN)/kT
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Fermi-Dirac distribution

Main idea is to consider a system as combination of states Reservoir

for single-particles and find average number of particles in \\

these states. The energy when a state is occupied by a

single particle is ¢. When the state is unoccupied, its

energy is 0. If it is occupied by n particles, the energy is ne.

The probability of the state being occupied by n particles is: \
1 _ne—un 1 _n(e=p)

P(n) =—e kT =—e kT
Z Z eu

If the particles are fermions, then n can only be 0 or 1, so the grand partition functionis: & = 1 4+ e kT .

System

The average number of particles in the state or the occupancy of
the state is then:

_EH A
e KT 1 1 oW
fi= ) nP() =0-P(0) +1-P(1) = ——e=; = = Lot
n 14+ e kT e kT + 1

1 LFD — occupancy

M
| -
|

_ 1
Itis the Fermi-Dirac distribution: NMgpp = —e=p—.
e kT +1 M -

]
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. . . . . Reservoir
Bose-Einstein distribution /\\
If the particles are bosons, then n can be any \/\/\
nonnegative integer, so the grand partition function is: \5
ystem
_E—u _Z(G—H) ( ) 1
£ =1+e kT +e kT =14+e kT e kT + - =T
1 — e kT
ne—un 1 n(e—u)
P(n)=—e kT = —e KT
(n) =~ >
The average number of particles in the state or the occupancy of the state is then:
1
7= zn?(n) =0-P(0)+1-P(1) +2-P(2) + - = —
m . e kT —1
This is Bose-Einstein distribution: Ngp = —==x
e kT —1

Like the Fermi-Dirac distribution, the Bose-Einstein distribution goes to zero when &€ > pu.
Unlike the Fermi-Dirac distribution, it goes to infinity as € approaches u from above.
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Comparison of distributions for
or the Boltzmann distribution (s) Z, e U N _ E _ E
_ 1 _e e op (ew A
Npoltzmann = Z_Ne KT = e KT ekT =e kT InN! ~ N(InN — 1)
1
B _(e=p) 3 1 N 1
NBoitzmann = € KT Ngp = —e=pu Npe = —e=p

|

Boltzmann

When € >> u, the exponent is very large, one
can neglect the 1 in the denominator of
Fermi-Dirac and Bose-Einstein distributions,
and both are reduced to the Boltzmann 1

distribution. The precise condition for the \
Fermi-Dirac

three distributions to agree is: € — u > kT.

Bose-Einstein

I o+ kT
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Degenerate Fermi gas

e Gas of fermions is degenerate when nearly all states below pare occupied and nearly all states
above u are unoccupied, which typically happens at a low temperatures kT < € — u.

e At zero temperature, Fermi-Dirac distribution function is a step function. It equals 1 for all states
with € < u and equals O for all states with € > .

e As a boundary of filled state at T = 0, u is also called Fermi energy: €r. = 1
Ngp = E—U
e The value of € is determined by the total number of electrons. e kT +1
o All electron states are filled from the lowest available state to €.
e ¢ is change in total energy at zero temperature when one particle is added to the system.
nEp
| A Counting quantized states in 3D:
oU 2
_ — _ 2 3
ON €r =
A% Sm\mV
0 -

M= EF
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Properties of degenerate Fermi gas

e The average energy of the electrons is 3/5 the Fermi energy: U = 3/5¢;. Fermi
energy for conduction electrons in a typical metal is a few electron-volts. This is
much larger than the average thermal energy of a particle at room temperature,
kT = 1/40 eV, which means electron gas in metals is a degenerate Fermi gas.

e The condition er > kT comes from the condition V /9, < N, which means that
guantum statistics is important for the electron gas.

e The large, comparable with kT, Fermi energy justifies approximation of ' = 0.

2U .
e Using the formula P = —(dU/dV); y, the degeneracy pressure P = prels found to

be few billion N/m?, sufficient to withstand electrostatic forces. This pressure does
not come from the electrostatic repulsion between the electrons. It arises purely
from the guantum exclusion principle.

e All electron states are filled from the lowest available state to €.
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Fermi gas at small nonzero temperatures

e At finite temperature T, normal particles would get energy about kT. However, degenerate
electron gas is special. Most of the electrons cannot acquire such energy, because all the
states that they might jump in are already occupied.

e The only electrons that can acquire some energy (thermal) are those that are already
within kT of the Fermi energy. Only they can jump up into unoccupied states above €.

e The number of electrons that can be affected by the increase in T is proportional to T. This
number must also be proportional to N. Thus, the additional energy at finite T is doubly
proportional to T: AU(T) «< NkT - kT.

e Coefficient proportionality can be guessed from dimensionality units. It must have unit of
one over energy, and the only energy available in this model is €.

¢ Knowing this, allows to calculate heat capacity of electron gas. Itis goingto zeroas T — 0.

U==Ne+ A A= P

5 €Er

3 NkT - kT 2 <0U) m?Nk?*T
Cy = L
v ZEF



UiO ¢ University of Oslo

Chemical potential of degenerate Fermi gas

e The chemical potential, u, is the point where the probability of a state being occupied is exactly 1/2.
° AtTZO,,LlZEF.
e The chemical potential decreases with increase of T.

e At high temperatures, u becomes negative and approaches the form for an ordinary gas obeying
Boltzmann statistics.

Chemical potential of ideal gas:

u=—kTIn

V (2nmkT\>"?
N\ R2

—2+ Chemical potential of a non-interacting,
nonrelativistic Fermi gas in a three-
dimensional box.
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Bose-Einstein condensation and superconductivity

Carm c <0U) n’Nk?*T
ermi gas: =|—] =

e Superconductivity is the J Voo\oT v 2€p
result of Bose-Einstein Superconductor:
condensation taking place . | . |

when fermions form bosons

being united into Cooper

pairs.

e As a result, electron gas
acquires property of
superfluidity dropping

resistance to absolute zero.

e Superconductors have
unique quantum properties
allowing multiple uses In
modern technology. 0

Specific heat c (arbitrary units)
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Summary

e Chemical potential is a key for understanding behavior of electron gas.

e Chemical potential changes from negative to positive at a transition from classical
to quantum behavior.

e Electrons in a metal behave quantum mechanically with positive chemical
potential.

e Quantum behavior results in quantum statistics: Bose-Einstein and Fermi-Dirac.

e Electrons in a metal at room temperature are well described by a model of
degenerate Fermi-Dirac gas. In this gas, all states are filled at energies below the
Fermi energy e- and empty above.

e Chemical potential of degenerate Fermi-Dirac gas changes from positive to
negative when kT becomes higher than e.

e Electrons can be Bose-Einstein particles when they are united into Cooper pairs,
which leads to phenomenon of superconductivity.



