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Diffusive equilibrium and chemical potential
When two systems are in thermal equilibrium, their temperatures are the same. When they’re in

mechanical equilibrium, their pressures are the same. What quantity is the same when they’re

in diffusive equilibrium?

An example of two systems that can exchange both energy

and particles with total energy and number of particles

fixed. At equilibrium, the total entropy is at a maximum.

𝜕𝑆𝑡𝑜𝑡𝑎𝑙

𝜕𝑈𝐴 𝑁𝐴,𝑁𝐵

= 0
𝜕𝑆𝑡𝑜𝑡𝑎𝑙

𝜕𝑁𝐴 𝑈𝐴,𝑈𝐵

= 0

At equilibrium:

𝜕𝑆𝐴

𝜕𝑈𝐴
=

𝜕𝑆𝐵

𝜕𝑈𝐵

𝜕𝑆𝐴

𝜕𝑁𝐴
=

𝜕𝑆𝐵

𝜕𝑁𝐵

Constant T What parameter is 

constant here?

𝜕𝑆𝑡𝑜𝑡𝑎𝑙

𝜕𝑈𝐴
=

𝜕𝑆𝐴

𝜕𝑈𝐴
+

𝜕𝑆𝐵

𝜕𝑈𝐴
= 0

𝜕𝑆𝐴

𝜕𝑈𝐴
= −

𝜕𝑆𝐵

𝜕𝑈𝐴
=

𝜕𝑆𝐵

𝜕𝑈𝐵

𝜕𝑆

𝜕𝑈
𝑁,𝑉

≡
1

𝑇

DVS

 Chemical potential is a key for understanding behavior of electron gas.



Diffusive equilibrium and chemical potential

 is chemical potential. In diffusive equilibrium, A = B .

𝜕𝑆𝐴

𝜕𝑁𝐴
=

𝜕𝑆𝐵

𝜕𝑁𝐵

−𝑇
𝜕𝑆𝐴

𝜕𝑁𝐴
= −𝑇

𝜕𝑆𝐵

𝜕𝑁𝐵

𝜇 ≡ −𝑇
𝜕𝑆

𝜕𝑁
𝑈,𝑉

 is a parameter which is constant in diffusive equilibrium.

If two systems are not in diffusive equilibrium, then the one with the larger

value of S/N will tend to gain particles, since it will thereby gain more

entropy than the other loses. Because of the minus sign, this system has

the smaller value of μ. Therefore, particles tend to flow from the system

with higher μ into the system with lower μ .



Types of interactions

Type of 

interaction

Exchanged 

quantity

Governing 

variable

Formula

thermal energy temperature 1

𝑇
=

𝜕𝑆

𝜕𝑈
𝑉,𝑁

mechanical volume pressure 𝑃

𝑇
=

𝜕𝑆

𝜕𝑉
𝑈,𝑁

diffusive particles chemical 

potential

𝜇

𝑇
= −

𝜕𝑆

𝜕𝑁
𝑈,𝑉



Generalized thermodynamic identity

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

Let us change U  by dU, V  by dV , and N  by dN
and see what will happen with S :

𝑑𝑆 =
𝜕𝑆

𝜕𝑈
𝑉,𝑁

𝑑𝑈 +
𝜕𝑆

𝜕𝑉
𝑈,𝑁

𝑑𝑉 +
𝜕𝑆

𝜕𝑁
𝑉,𝑈

𝑑𝑁

𝑑𝑆 =
𝑑𝑈

𝑇
+

𝑃𝑑𝑉

𝑇
−

𝜇𝑑𝑁

𝑇

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑃𝑑𝑉 − 𝜇𝑑𝑁

𝜇 ≡ −𝑇
𝜕𝑆

𝜕𝑁
𝑈,𝑉

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉

𝜕𝑆

𝜕𝑈
𝑁,𝑉

≡
1

𝑇



Link to Gibbs free energy  

𝜇 =
𝜕𝐺

𝜕𝑁
𝑇,𝑃

𝒅𝑮 = 𝑑𝑈 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉 = 𝝁𝒅𝑵

𝒅𝑼 = 𝑻𝒅𝑺 − 𝑷𝒅𝑽 + 𝝁𝒅𝑵

Generalized thermodynamic identity



Chemical potential: different formulas

Chemical potential is the amount by which a system’s energy changes when one adds 

one particle and keeps the entropy and volume fixed. μ has units of energy. 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝜇 = −𝑇
𝜕𝑆

𝜕𝑁
𝑈,𝑉

Fixed U and V :

Fixed U and S : 𝜇 = 𝑃
𝜕𝑉

𝜕𝑁
𝑈,𝑆

Fixed V and S : 𝜇 =
𝜕𝑈

𝜕𝑁
𝑆,𝑉



Chemical potential: an example

𝜇 =
𝜕𝑈

𝜕𝑁
𝑆,𝑉

Small Einstein solid with three oscillators and three units of 

energy , adding 4th oscillator: k ln 10        k ln 20. One unit of 

energy is necessary to remove       𝜇 = − 𝜖 /1 = − 𝜖 .

DVS



Chemical potential of ideal gas

Sackur-Tetrode equation:

μ 𝜇 ≡ −𝑇
𝜕𝑆

𝜕𝑁
𝑈,𝑉
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 The sign of chemical potential depends on the ratio of the volume per one particle and the quantum

volume 𝜗𝑄. 𝜇 is negative for
𝑉

𝑁
> 𝜗𝑄, or for a non-dense system. A large mass of particles or large 𝑇

results in a small 𝜗𝑄.

𝜗𝑄 = 𝑙𝑄
3 =

ℎ

2𝜋𝑚𝑘𝑇

3

Classical behaviour, 

negative 

Quantum behaviour, 

positive 

μ = −𝑘𝑇𝑙𝑛
𝑉

𝑁𝜗𝑄

 Reduction in mass and decrease in temperature results in
𝑉

𝜗𝑄𝑁
< 1 and positive 𝜇.



Quantum volume and length

𝜗𝑄 = 𝑙𝑄
3 =

ℎ

2𝜋𝑚𝑘𝑇

3

 For the air we breathe, the average distance between molecules

is about 3 nm while the average de Broglie wavelength is less

than 0.02 nm, so condition
𝑉

𝜗𝑄𝑁
≫ 1 is satisfied.

ℎ

2𝜋𝑚𝑘𝑇

ℎ

2𝜋𝑚𝜖

𝜖 =
𝑝2

2𝑚 ℎ

𝑝 𝜋

𝑝 =
𝓀 ℎ

2𝜋 2𝜋

𝓀 𝜋

2𝜋

𝓀
= 𝜆𝑑𝐵 𝜆𝑑𝐵

𝜋
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Classical behaviour, 

negative 

Quantum behaviour, 

positive 

μ 

 For an electron at room temperature, because of low mass, the

quantum volume is 𝜗𝑄= 4.3 nm 3 , while the volume per

conduction electron is roughly the volume of an atom, 0.2 nm 3.

Therefore, electron gas in metals at ambient conditions is

quantum gas with
𝑉

𝜗𝑄𝑁
≪ 1.



‘By carefully measuring how the cathode rays were deflected by
electric and magnetic fields, Thomson was able to determine
the ratio between the electric charge (e) and the mass (m) of
the rays. Thomson's result was
e/m = 1.8 1011 coulombs/kg.
The particle that J.J.Thomson discovered in 1897, the electron,
is a constituent of all the matter we are surrounded by. All
atoms are made of a nucleus and electrons. He received the
Nobel Prize in 1906 for the discovery of the electron, the first
elementary particle.’

The Nobel Prize in Physics 1906
Joseph John Thomson
"in recognition of the great merits of his theoretical and 
experimental investigations on the conduction of electricity by 
gases"

Electron gas

https://en.wikipedia.org/wiki/J._J._Thomson



Cavendish Laboratory



Electron gas in vacuum

Quantum 

electron gas

Normal gas DVS

https://en.wikipedia.org/wiki/Vacuum_tube

“The simplest vacuum tube, the diode (i.e. Fleming valve),

invented in 1904 by John Ambrose Fleming, contains only

a heated electron-emitting cathode and an anode.

Electrons can only flow in one direction through the

device—from the cathode to the anode. Adding one or

more control grids within the tube allows the current

between the cathode and anode to be controlled by the

voltage on the grids.”



Si-MOSFET

p-doped Si

Ohmic contacts, 
n-doped

Oxide, SiO2

Metallic 
gate

Solid-state transistors

Quantum 

electron 

gas

Normal gas
DVS

http://en.wikipedia.org/wiki/File:MOSFET_Structure.png


Progress in miniaturisation

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16991155



http://en.wikipedia.org/wiki/Moore's_law

Moor’s law 
“Moore's law is the observation that the number of transistors in a dense integrated circuit 

(IC) doubles about every two years.”

The observation is named after Gordon Moore, the co-founder 

of Fairchild Semiconductor and Intel (and former CEO of the latter).



Moor’s law 2.0

https://newsroom.ibm.com/2019-03-04-IBM-Achieves-Highest-Quantum-Volume-to-Date-Establishes-Roadmap-for-

Reaching-Quantum-Advantage#assets_all

BOSTON, March 4, 2019 /PRNewswire/ -- At the 2019 American Physical Society March Meeting, 

IBM (NYSE: IBM) unveiled a new scientific milestone, announcing its highest quantum volume to date.

IBM has doubled the power of its quantum computers annually since 2017. 



Superconductivity and quantum computing

https://techcrunch.com/2017/11/10/ib

m-passes-major-milestone-with-20-

and-50-qubit-quantum-computers-

as-a-service/

https://www.youtube.com/watch

?v=yy6TV9Dntlw



Bosons and fermions

 For a dense system, particles that try to occupy the same state can be divided in 

two groups.

Is electron gas composed 

of fermions or bosons?

Quantum gasNormal gas

DVS

 Particles that can share a state with another are called bosons. Examples: photons and 

helium-4 atoms.

 Particles that cannot share a state with another are called fermions. Examples: electrons, 

protons, neutrons and helium-3 atoms.

 Particles with integer spin (0, 1, 2, etc., in units of h/2) are bosons.

 Particles with half-integer spin (1/2, 3/2, etc.) are fermions.



Microcanonical, canonical, and grand canonical ensembles

In isolated systems or microcanonical ensemble, all allowed microstates had the same probability, which

is “trivial” probability distribution. In canonical ensemble, members are assigned to states according to the

Boltzmann probability distribution. It considers system in thermal contact with a much larger “reservoir” at

some well-defined temperature allowing exchange of energy. Grand canonical ensemble allows exchange

of particles too.

Grand canonical ensemble Canonical ensemble 

Boltzmann and Maxwell distributions Fermi-Dirac and Bose-Einstein distributions

DVS
DVS

 Chemical potential is a key for understanding behavior of electron gas.



Boltzmann statistics

𝐴 is Boltzmann factor 𝑒−
𝐸

𝑘𝑇

Boltzmann statistics calculates probability of the system in the

contact with reservoir having energy 𝐸 . This probability is

proportional to multiplicity of reservoir:

DVS

𝑅 𝐸 = 𝐴𝑅 0 𝑆𝑅 𝐸 = 𝑘 ln𝑅(0) + 𝑘𝑙𝑛𝐴

∆𝑈 = 𝑇∆𝑆 − 𝑃∆𝑉 + 𝜇∆𝑁

𝐸 = −∆𝑈𝑅 = −𝑇∆𝑆𝑅

𝐴 = 𝑒−𝐸/𝑘𝑇

∆𝑆𝑅 = 𝑘𝑙𝑛𝐴

∆𝑆𝑅 = −
𝐸

𝑇

𝑃 𝐸 = 𝐴𝐶𝑅 0

𝑃 𝐸 = 𝑒−𝐸/𝑘𝑇𝐶𝑅 0 =
1

𝑍
𝑒−𝐸/𝑘𝑇.

Boltzmann distribution 

𝑃 𝑠 =
1

𝑍
𝑒−

𝐸 𝑠
𝑘𝑇

𝑍 = ෍

𝑠

𝑒−
𝐸 𝑠
𝑘𝑇

𝑃 𝐸 = 𝐶𝑅 𝐸



Transition to Gibbs statistics

𝐴 is Gibbs factor 𝑒−
𝐸−𝜇𝑁

𝑘𝑇

Boltzmann statistics calculates probability of the system in the

contact with reservoir having energy 𝐸 . This probability is

proportional to multiplicity of reservoir:

 𝐸 = 𝐴𝑅 0 𝑆𝑅 𝐸 = 𝑘 ln𝑅(0) + 𝑘𝑙𝑛𝐴

∆𝑈 = 𝑇∆𝑆 − 𝑃∆𝑉 + 𝜇∆𝑁

𝐸 = −∆𝑈𝑅 = −𝑇∆𝑆𝑅 − 𝜇∆𝑁𝑅

𝐴 = 𝑒−(𝐸−𝜇𝑁)/𝑘𝑇

∆𝑆𝑅 = 𝑘𝑙𝑛𝐴

∆𝑆𝑅 = −
𝐸 − 𝜇𝑁

𝑇

𝒫 𝐸 = 𝐴𝐶𝑅 0

𝒫 𝐸 = 𝑒−(𝐸−𝜇𝑁)/𝑘𝑇𝐶𝑅 0 =
1

𝒵
𝑒−(𝐸−𝜇𝑁)/𝑘𝑇

Gibbs distribution 

𝑃 𝐸 = 𝐶𝑅 𝐸

DVS



Fermi-Dirac distribution

Main idea is to consider a system as combination of states

for single-particles and find average number of particles in

these states. The energy when a state is occupied by a

single particle is  . When the state is unoccupied, its

energy is 0. If it is occupied by n particles, the energy is 𝑛.
The probability of the state being occupied by n particles is:

𝒫 𝑛 =
1

𝒵
𝑒−

𝑛𝜖−𝜇𝑛
𝑘𝑇 =

1

𝒵
𝑒−

𝑛 𝜖−𝜇
𝑘𝑇

If the particles are fermions, then 𝑛 can only be 0 or 1, so the grand partition function is: 𝒵 = 1 + 𝑒−
𝜖−𝜇

𝑘𝑇 .

The average number of particles in the state or the occupancy of 

the state is then:

ത𝑛 = ෍

𝑛

𝑛𝒫 𝑛 = 0 ∙ 𝒫 0 + 1 ∙ 𝒫 1 =
𝑒−

𝜖−𝜇
𝑘𝑇

1 + 𝑒−
𝜖−𝜇
𝑘𝑇

=
1

𝑒
𝜖−𝜇
𝑘𝑇 + 1

.

It is the Fermi-Dirac distribution:    ത𝑛𝐹𝐷 =
1

𝑒
𝜖−𝜇
𝑘𝑇 +1

.

DVS

DVS



Bose-Einstein distribution

If the particles are bosons, then 𝑛 can be any

nonnegative integer, so the grand partition function is:

𝒫 𝑛 =
1

𝒵
𝑒−

𝑛𝜖−𝜇𝑛
𝑘𝑇 =

1

𝒵
𝑒−

𝑛 𝜖−𝜇
𝑘𝑇

𝒵 = 1 + 𝑒−
𝜖−𝜇
𝑘𝑇 + 𝑒−

2 𝜖−𝜇
𝑘𝑇 + ⋯ = 1 + 𝑒−

𝜖−𝜇
𝑘𝑇 + 𝑒−

𝜖−𝜇
𝑘𝑇

2

+ ⋯ =
1

1 − 𝑒−
𝜖−𝜇
𝑘𝑇

The average number of particles in the state or the occupancy of the state is then:

ത𝑛 = ෍

𝑛

𝑛𝒫 𝑛 = 0 ∙ 𝒫 0 + 1 ∙ 𝒫 1 + 2 ∙ 𝒫 2 + ⋯ =
1

𝑒
𝜖−𝜇
𝑘𝑇 − 1

This is Bose-Einstein distribution:    ത𝑛𝐵𝐸 =
1

𝑒
𝜖−𝜇
𝑘𝑇 −1

Like the Fermi-Dirac distribution, the Bose-Einstein distribution goes to zero when 𝜀 ≫ 𝜇. 

Unlike the Fermi-Dirac distribution, it goes to infinity as 𝜀 approaches 𝜇 from above.

DVS



Comparison of distributions

For the Boltzmann distribution:

ത𝑛𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 =
1

𝑍1
𝑁𝑒−

𝜖
𝑘𝑇 = 𝑒−

𝜖
𝑘𝑇 𝑒

𝜇
𝑘𝑇 = 𝑒−

𝜖−𝜇
𝑘𝑇

ത𝑛𝐵𝐸 =
1

𝑒
𝜖−𝜇
𝑘𝑇 − 1

When 𝜀 ≫ 𝜇, the exponent is very large, one

can neglect the 1 in the denominator of

Fermi-Dirac and Bose-Einstein distributions,

and both are reduced to the Boltzmann

distribution. The precise condition for the

three distributions to agree is: 𝜖 − 𝜇 ≫ 𝑘𝑇.

𝑃 𝑠 =
1

𝑍1
𝑒−

𝜖
𝑘𝑇 𝜇 = −𝑘𝑇𝑙𝑛

𝑍1

𝑁

ത𝑛𝐹𝐷 =
1

𝑒
𝜖−𝜇
𝑘𝑇 + 1

ത𝑛𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 = 𝑒−
𝜖−𝜇
𝑘𝑇

DVS

𝐹 = −𝑘𝑇𝑙𝑛 𝑍

𝑍 =
𝑍1

𝑁

𝑁!
=

𝑍1
𝑁

𝑁!

𝑙𝑛𝑁! ≈ 𝑁 𝑙𝑛𝑁 − 1



Degenerate Fermi gas

 Gas of fermions is degenerate when nearly all states below 𝜇 are occupied and nearly all states 

above 𝜇 are unoccupied, which typically happens at a low temperatures 𝑘𝑇 < 𝜖 − 𝜇.

𝜖𝐹 ≡ 𝜇 𝑇 = 0𝜇 =
𝜕𝑈

𝜕𝑁
𝑆,𝑉

𝜖𝐹 =
ℎ2

8𝑚

3𝑁

𝜋𝑉

2
3

Counting quantized states in 3D:

DVS

ത𝑛𝐹𝐷 =
1

𝑒
𝜖−𝜇
𝑘𝑇 + 1

 At zero temperature, Fermi-Dirac distribution function is a step function. It equals 1 for all states 

with ϵ < 𝜇 and equals 0 for all states with ϵ > 𝜇.

 As a boundary of filled state at 𝑇 = 0, 𝜇 is also called Fermi energy: ϵ𝐹.

 The value of 𝜖𝐹 is determined by the total number of electrons.

 All  electron states are filled from the lowest available state to ϵ𝐹.

 𝜖𝐹 is change in total energy at zero temperature when one particle is added to the system.



Properties of degenerate Fermi gas

 The average energy of the electrons is 3/5 the Fermi energy: 𝑈 = 3/5𝜖𝐹. Fermi

energy for conduction electrons in a typical metal is a few electron-volts. This is

much larger than the average thermal energy of a particle at room temperature,

𝑘𝑇 ≈ 1/40 𝑒𝑉, which means electron gas in metals is a degenerate Fermi gas.

 The condition 𝜖𝐹 ≫ 𝑘𝑇 comes from the condition 𝑉/𝜗𝑄 ≪ 𝑁, which means that

quantum statistics is important for the electron gas.

 The large, comparable with 𝑘𝑇, Fermi energy justifies approximation of 𝑇 ≈ 0.

 Using the formula 𝑃 = − 𝜕𝑈/𝜕𝑉 𝑆,𝑁, the degeneracy pressure 𝑃 =
2𝑈

3𝑉
is found to

be few billion 𝑁/𝑚2, sufficient to withstand electrostatic forces. This pressure does

not come from the electrostatic repulsion between the electrons. It arises purely

from the quantum exclusion principle.

 All electron states are filled from the lowest available state to ϵ𝐹.



Fermi gas at small nonzero temperatures

 At finite temperature 𝑇, normal particles would get energy about 𝑘𝑇. However, degenerate

electron gas is special. Most of the electrons cannot acquire such energy, because all the

states that they might jump in are already occupied.

𝑈 =
3

5
𝑁ϵ𝐹 + 𝐴

𝑁𝑘𝑇 ∙ 𝑘𝑇

𝜖𝐹
𝐴 =

𝜋2

4
𝐶𝑉 =

𝜕𝑈

𝜕𝑇
𝑉

=
𝜋2𝑁𝑘2𝑇

2𝜖𝐹

 The only electrons that can acquire some energy (thermal) are those that are already

within 𝑘𝑇 of the Fermi energy. Only they can jump up into unoccupied states above ϵ𝐹.

 The number of electrons that can be affected by the increase in 𝑇 is proportional to 𝑇. This

number must also be proportional to 𝑁. Thus, the additional energy at finite 𝑇 is doubly

proportional to 𝑇: ∆𝑈 𝑇 ∝ 𝑁𝑘𝑇 ∙ 𝑘𝑇.

 Coefficient proportionality can be guessed from dimensionality units. It must have unit of

one over energy, and the only energy available in this model is ϵ𝐹.

 Knowing this, allows to calculate heat capacity of electron gas. It is going to zero as 𝑇 → 0.



Chemical potential of degenerate Fermi gas
 The chemical potential, 𝜇, is the point where the probability of a state being occupied is exactly 1/2.

Chemical potential of a non-interacting, 

nonrelativistic Fermi gas in a three-

dimensional box.

Chemical potential of ideal gas:

𝜇 = −𝑘𝑇𝑙𝑛
𝑉

𝑁

2𝜋𝑚𝑘𝑇

ℎ2

3/2

DVS

 At 𝑇 = 0, 𝜇 = ϵ𝐹.

 The chemical potential decreases with increase of 𝑇.

 At high temperatures, 𝜇 becomes negative and approaches the form for an ordinary gas obeying

Boltzmann statistics.



Bose-Einstein condensation and superconductivity

𝐶𝑉 =
𝜕𝑈

𝜕𝑇
𝑉

=
𝜋2𝑁𝑘2𝑇

2𝜖𝐹
Fermi gas:

Superconductor:

 Superconductivity is the

result of Bose-Einstein

condensation taking place

when fermions form bosons

being united into Cooper

pairs.
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 As a result, electron gas

acquires property of

superfluidity dropping

resistance to absolute zero.

 Superconductors have

unique quantum properties

allowing multiple uses in

modern technology.



Summary
 Chemical potential is a key for understanding behavior of electron gas.

 Chemical potential changes from negative to positive at a transition from classical 

to quantum behavior.

 Electrons in a metal behave quantum mechanically with positive chemical 

potential.

 Quantum behavior results in quantum statistics: Bose-Einstein and Fermi-Dirac.

 Electrons in a metal at room temperature are well described by a model of 

degenerate Fermi-Dirac gas. In this gas, all states are filled at energies below the 

Fermi energy ϵF and empty above.

 Chemical potential of degenerate Fermi-Dirac gas changes from positive to 

negative when 𝑘𝑇 becomes higher than ϵF.

 Electrons can be Bose-Einstein particles when they are united into Cooper pairs, 

which leads to phenomenon of superconductivity.


