Lecture 7

Large systems, multiplicity, entropy,

Recap: Two-state models

- System: N spins, particles or steps
- Independent (no interaction between spins/particles, no correlation between successive steps)
- Distinguishable (the order matters)
- Equal probability of states $s_{i}= \pm 1$ (up/down, left/right)
- Microstates:
- All possible combinations of ordering the N particles/steps
- Fundamental assumption of statistical mechanics: In an isolated system in thermal equilibrium, all accessible microstates are equally probable.
- Total number $=2^{N}$
- Macrostates:
- $k=\sum_{i=1}^{N} s_{i}$ (net magnetization, excess of particles on left side, distance walked to the left)
- multiplicity of macrostate $\Omega(N, k)=\frac{N!}{k!(N-k)!}$
- probability of macrostate $\mathrm{P}(N, k)=\frac{2^{-N} N!}{k!(N-k)!}$

Recap: Einstein crystal

- N independent and localized (distinguishable) quantum harmonic oscillators
- Each quantum oscillator has a discrete spectrum of energy levels, $n=0,1,2 \ldots$ (not two-state)

$$
\epsilon_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

- Microstates: $\left\{n_{1}, n_{2}, \ldots n_{N-1}, n_{N}\right\}$
- Macrostate = total energy:
- $U_{N}=\sum_{i=1}^{N} \epsilon_{n_{i}}=\sum_{i=1}^{N} n_{i} \hbar \omega+\frac{N}{2} \hbar \omega$
- $\mathrm{q}=\frac{U_{N}-\frac{N}{2} \hbar \omega}{\hbar \omega}=\sum_{i=1}^{N} n_{i}$
- defined by (N, q)

Recap: Einstein crystal

Multiplicity $\Omega(N, q)$ of a macrostate with N oscillators and q units of energy distributed between them. Trick: map to two-state system.

N boxes, $N-1$ walls q balls
 n_{i} balls in box i

Number of digits: $N^{\prime}=N-1+q \quad$ (= wall + balls)

Number of states: $k^{\prime}=q$

$$
N^{\prime}-k^{\prime}=N-1+q-q=N-1
$$

Number of ways of combining ($\mathbf{N}-1$)-walls and q balls:

$$
\Omega(N, q)=\frac{(N-1+q)!}{q!(N-1)!}
$$

Sharpness of distribution

$\mathrm{n}=\left[\begin{array}{llllll}5 & 10 & 30 & 100 & 300 & 1000\end{array}\right] ;$

l=1;

for i=1:2
for $j=1: 3$
nk=1;
for $k=1: n(l)$
$\operatorname{nk}(k)=\operatorname{nchoosek}(n(l), k)$;
end
subplot (2,3,l)
plot(nk,'k','LineWidth',2)
xlabel('k','FontSize', 20)
ylabel('n!/(n!(n-k)!','FontSize',20)
ax1 = gca; \% current axes
ax1. FontSize $=20$;
$l=l+1$;
end
end

What happens when $q \rightarrow 10^{23}$?

$$
\Omega(N, n)=\frac{N!}{n!(N-n)!} \quad \text { We need an approximation for } N!\text { when } N \gg 1
$$

Stirling's approximation for N ! when $N \gg 1$

$$
\begin{aligned}
& N!=1 \cdot 2 \cdot 3 \cdot 4 \ldots(N-1) \cdot N \\
& N!\approx \sqrt{2 \pi N} N^{N} e^{-N} \\
& \ln N!\approx N \ln N-N+\frac{1}{2} \ln 2 \pi N \approx N \ln N-N
\end{aligned}
$$

Large Einstein crystal

$$
\Omega(q, N)=\frac{(N-1+q)!}{q!(N-1)!} \approx \frac{(N+q)!}{q!N!}, \quad N, q \gg 1
$$

$\ln n!=n \ln n-n$ Low T: $q \ll N$ High T: $q \gg N$

$$
\begin{aligned}
& \ln \Omega=(N+q) \ln (N+q)-(N+q)-q \ln q+q-N \ln N+N \\
& \ln \Omega=(N+q) \ln N\left(1+\frac{q}{N}\right) \quad-q \ln q-N \ln N \\
& \ln \Omega=N \ln N+q \ln N+(N+q) \ln \left(1+\frac{q}{N}\right)-q \ln q-N \ln N \\
& \ln \Omega=q \ln \frac{N}{q}+(N+q) \ln \left(1+\frac{q}{N}\right)
\end{aligned}
$$

$q \ll N, \ln (1+\epsilon) \approx \epsilon$
$\ln \Omega \approx q \ln \frac{N}{q}+(N+q) \frac{q}{N}, q=\ln e^{q}$
$\ln \Omega \approx q \ln \frac{N}{q}+q+\frac{q^{2}}{N} \approx \ln \left(\frac{N e}{q}\right)^{q}$
Low T: $q \ll N$
$\Omega_{\text {low } T}(q, N) \approx\left(\frac{N e}{q}\right)^{q}$

High T: $q \gg N$
$\Omega_{\text {high } T}(q, N) \approx\left(\frac{q e}{N}\right)^{N}$

Two large Einstein crystals

$$
\Omega_{t}=\Omega_{\mathrm{A}} \cdot \Omega_{\mathrm{B}} \approx \frac{\left(N_{A}+q_{A}\right)!}{q_{A}!N_{A}!} \cdot \frac{\left(N_{B}+q_{B}\right)!}{q_{B}!N_{B}!}, \quad N_{A}, q_{A}, N_{B}, q_{B} \gg 1
$$

High T:
$q \gg N \quad \Omega_{\text {high T }}(q, N) \approx\left(\frac{q e}{N}\right)^{N}$
$N_{A}=N_{B}=N$
$q_{A}+q_{B}=q$
$\Omega_{\mathrm{t}} \approx\left(\frac{q_{A} e}{N}\right)^{N}\left(\frac{q_{B} e}{N}\right)^{N}=\left(\frac{e}{N}\right)^{2 N}\left(q_{A} q_{B}\right)^{N}$
Ω_{t} is max:
$q_{A}=q_{B}=\frac{q}{2}$
$\Omega_{\mathrm{t}}^{\max }=\left(\frac{e}{N}\right)^{2 N}\left(\frac{q}{2}\right)^{2 N}$
Expand around
the peak:
$q_{A}=\frac{q}{2}+x, \quad q_{B}=\frac{q}{2}-x$
$\Omega_{\mathrm{t}} \approx\left(\frac{e}{N}\right)^{2 N}\left[\left(\frac{q}{2}\right)^{2}-x^{2}\right]^{N}$
$\ln \Omega_{t} \approx 2 N \ln \frac{e}{N}+N \ln \left[\left(\frac{q}{2}\right)^{2}-x^{2}\right]=2 N \ln \frac{e}{N}+2 N \ln \frac{q}{2}+N \ln \left[1-\left(\frac{2 x}{q}\right)^{2}\right]$
$\ln (1+\epsilon) \approx \epsilon \quad \ln \Omega_{t} \approx \ln \left(\frac{e q}{2 N}\right)^{2 N}-N\left(\frac{2 x}{q}\right)^{2}$
$\ln \Omega_{t} \approx \ln \Omega_{\mathrm{t}}^{\max }-N\left(\frac{2 x}{q}\right)^{2}, \quad \Omega_{\mathrm{t}}^{\max }=\left(\frac{e q}{2 N}\right)^{2 N}$
$\Omega_{\mathrm{t}}=\Omega_{\mathrm{t}}^{\max } \cdot e^{-N\left(\frac{2 x}{q}\right)^{2}}$

Two large Einstein crystals

High T: $\quad q \gg N$

$$
\begin{array}{ll}
q \gg N & \Omega_{\text {high } \mathrm{T}}(q, N) \approx\left(\frac{q e}{N}\right)^{N} \\
N_{A}=N_{B}=N \ggg 1 & \\
q_{A}+q_{B}=q \gg 1 \\
q_{A}=\frac{q}{2}+x, \quad q_{B}=\frac{q}{2}-x & \\
\Omega_{\mathrm{t}}=\Omega_{\mathrm{t}}^{\max } \cdot e^{-N\left(\frac{2 x}{q}\right)^{2}}, \quad \Omega_{\mathrm{t}}^{\max }=\left(\frac{e q}{2 N}\right)^{2 N}
\end{array}
$$

Ω_{t} falls off to $e^{-1 / 2}$ of its maximum when

$$
N\left(\frac{2 x}{q}\right)^{2}=\frac{1}{2} \quad \Rightarrow \quad x=\frac{q}{2 \sqrt{2 N}} \quad \Rightarrow \quad \sigma=\frac{q}{\sqrt{2 N}} \approx \frac{q}{\sqrt{N}}
$$

Fluctuations around the mean

$$
\frac{\sigma}{\langle q\rangle}=\frac{q / \sqrt{2 N}}{q / 2} \approx \frac{1}{\sqrt{N}} \rightarrow 0
$$

Normalization:

$$
\int_{-\infty}^{+\infty} \Omega_{\mathrm{t}}=\Omega_{\mathrm{t}}^{\max } \int_{-\infty}^{+\infty} d x e^{-\frac{4 N}{q^{2}} x^{2}}=\Omega_{\mathrm{t}}^{\max } \frac{q}{2} \sqrt{\frac{\pi}{N}}
$$

$x=q_{A}-\frac{q}{2}$

$$
\Omega_{\mathrm{t}}\left(q_{A}\right)=\Omega_{\mathrm{t}}^{\max } \cdot e^{-\frac{4 N}{q^{2}}\left(q_{A}-\frac{q}{2}\right)^{2}}
$$

Probability of having q_{A} energy units

$$
P\left(q_{A}\right)=\frac{\Omega_{\mathrm{t}}}{\Omega_{\mathrm{t}}^{\max } \frac{q}{2} \sqrt{\frac{\pi}{N}}}=\frac{2}{q} \sqrt{\frac{N}{\pi}} e^{-\frac{4 N}{q^{2}}\left(q_{A}-\frac{q}{2}\right)^{2}}
$$

Large systems

- Stirling approximation for large systems $N!\approx N^{N} e^{-N} \sqrt{2 \pi N} \approx N^{N} e^{-N}$, for $N \gg 1$
- Interacting Einstein crystals: Multiplicity near its maximum

$$
\Omega_{\mathrm{t}}\left(q_{A}\right) \approx \Omega_{t, \max } e^{-\frac{4 N}{q^{2}}\left(q_{A}-\frac{q}{2}\right)^{2}}
$$

- In the thermodynamic limit $N \rightarrow \infty$, any random fluctuation away from the most likely states is extremely unlikely

Recap: Thermal conduction

Recap: Thermal equilibrium

- $N, q=q_{A}+q_{B},(N, q)$ constant
- Most likely state = equilibrium state
- Multiplicity $\Omega_{t o t}=\Omega_{A} \Omega_{B}$ is maximum in equilibrium

Thermal equilibrium:

$$
\begin{aligned}
\frac{q_{A}}{N_{A}} & =\frac{q_{B}}{N_{B}} \\
T_{A} & =T_{B}
\end{aligned}
$$

Entropy: $S=k \ln \Omega(N, V, U)$

$$
\frac{\partial S_{A}}{\partial q_{A}}=\frac{\partial S_{B}}{\partial q_{B}}, \quad \frac{1}{T_{A}} \equiv\left(\frac{\partial S}{\partial U_{A}}\right)_{N}
$$

Equilibrium between two systems

- $N=N_{A}+N_{B}, V=V_{A}+V_{B}, U=U_{A}+U_{B}$, all (N, V, U) constant
- Can vary one of the three $\alpha \in(N, V, U)$,
- keeping the other 2 constant
- keep total constant: $\alpha=\alpha_{A}+\alpha_{B}=$ const.

System: can contain "anything"

- Multiplicity $\Omega_{t o t}=\Omega_{A} \Omega_{B}$ is maximum
- = most likely state
- = equilibrium state

$$
\text { maximum when } \frac{\partial \Omega_{t o t}}{\partial \alpha_{A}}=0
$$

$$
\frac{\partial\left(\Omega_{A} \Omega_{B}\right)}{\partial \alpha_{A}}=\Omega_{A} \frac{\partial \Omega_{B}}{\partial \alpha_{A}}+\Omega_{B} \frac{\partial \Omega_{A}}{\partial \alpha_{A}}=0
$$

$d \alpha_{A}=-d \alpha_{B} \quad \frac{-1}{\Omega_{B}} \frac{\partial \Omega_{B}}{\partial \alpha_{B}}+\frac{1}{\Omega_{A}} \frac{\partial \Omega_{A}}{\partial \alpha_{A}}=0$
Equilibrium condition: $\quad \frac{\partial \ln \Omega_{B}}{\partial \alpha_{B}}=\frac{\partial \ln \Omega_{A}}{\partial \alpha_{A}}$

Equilibrium between two systems

- $N=N_{A}+N_{B}, V=V_{A}+V_{B}, U=U_{A}+U_{B}$, all (N, V, U) constant
- Can vary one of the three $\alpha \in(N, V, U)$,
- keeping the other 2 constant
- keep total constant: $\alpha=\alpha_{A}+\alpha_{B}=$ const.
- $S_{t o t}=S_{A}+S_{B}$ is maximum in equilibrium

Equilibrium criterium:

$$
\frac{\partial S_{B}}{\partial \alpha_{B}}=\frac{\partial S_{A}}{\partial \alpha_{A}}
$$

Entropy: $S=k \ln \Omega(N, V, U)$
Thermal equilibrium: $\frac{\partial S_{A}}{\partial U_{A}}=\frac{\partial S_{B}}{\partial U_{B}}, \quad \frac{1}{T} \equiv\left(\frac{\partial S}{\partial U}\right)_{N, V}, \quad \frac{[S]}{[U]}=\frac{J K^{-1}}{J}$
Mechanical equilibrium: $\frac{\partial S_{A}}{\partial V_{A}}=\frac{\partial S_{B}}{\partial V_{B}}, \quad P \equiv T\left(\frac{\partial S}{\partial V}\right)_{N, U}, \quad \frac{[P]}{[T]}=\frac{J}{m^{3} K}$
Chemical equilibrium: $\frac{\partial S_{A}}{\partial N_{A}}=\frac{\partial S_{B}}{\partial N_{B}}, \quad \mu \equiv-T\left(\frac{\partial S}{\partial N}\right)_{U, V} \quad \frac{[\mu]}{[T]}=\frac{J}{K}$

Boltzmann's Entropy

$$
S=k \ln \Omega
$$

Relates

- the number of microstates (multiplicity) and
- the thermodynamic (macroscopic) state of the system

Equilibrium condition: $\quad \frac{\partial \ln \Omega_{B}}{\partial \alpha_{B}}=\frac{\partial \ln \Omega_{A}}{\partial \alpha_{A}}$

$$
\frac{\partial S_{A}}{\partial \alpha_{A}}=\frac{\partial S_{B}}{\partial \alpha_{B}}
$$

All systems move towards most probable states $=$ equilibrium

$$
\Delta S=k \ln \frac{\Omega_{\text {final }}}{\Omega_{\text {initial }}}
$$

Second law of thermodynamics:

$$
\Delta S_{\mathrm{tot}} \geq 0
$$

All real processes are irreversible

Thermodynamic identity

- Change in entropy due to energy, volume, particle number
has a total differential:

$$
d S=\left(\frac{\partial S}{\partial U}\right)_{V, N} d U+\left(\frac{\partial S}{\partial V}\right)_{U, N} d V+\left(\frac{\partial S}{\partial N}\right)_{U, V} d N
$$

- Use definitions: $\frac{1}{T} \equiv\left(\frac{\partial S}{\partial U}\right)_{N, V}, \quad P \equiv T\left(\frac{\partial S}{\partial V}\right)_{N, U}, \quad \mu \equiv-T\left(\frac{\partial S}{\partial N}\right)_{U, V}$

$$
d S=\frac{1}{T} d U+\frac{P}{T} d V-\frac{\mu}{T} d N
$$

- => Thermodynamic identity for $U(S, V, N)$

$$
d U=T d S-P d V+\mu d N
$$

- The thermodynamic identity holds true for any infinitesimal change in a system

Heat, work and the 1st \& 3rd law

Heat, Q: Energy transfer to a system that is not work or matter: Conduction, radiation, friction, Joule heat.

Work, W: Energy transfer to a system through measurable forces and corresponding changes in state variables of the system: Pressure volume; magnetic flux density - magnetization;

First law:

$$
\Delta U=Q+W
$$

Thermodynamic identity for $U(S, V): d U=T d S-P d V \quad$ (N const)
\Rightarrow Heat: $Q=T d S, \quad$ Work: $W=-P d V$

Third law: The entropy of a system approaches a constant as the temperature approaches zero.

Second law before Boltzmann

- Original definition of entropy from heat: $\quad Q=T d S$
- Entropy is the thing which increases by $\frac{Q}{T}$ when heat Q enters the system at temperature T
- Solid (N, V constant):

$$
T=\frac{d Q}{d S} \quad\left(\frac{1}{T_{A}} \equiv\left(\frac{\partial S}{\partial U_{A}}\right)_{N}\right)
$$

- Thermodynamics is an axiomatic theory of heat and work.
- Axioms of thermodynamics: First and Second laws.
- Second law is a generalization of empirical observations:
- Clausius (1854): Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.
- + many, many other formulations
- Boltzmann's entropy gave a theoretical basis for the second law.

$$
\Delta S=k \ln \frac{\Omega_{\text {final }}}{\Omega_{\text {initial }}} \geq 0
$$

- For an isolated system, the entropy can never decrease, $\Delta S \geq 0$
- In all processes, the total entropy of system and surroundings increases.

$$
\Delta S_{\text {tot }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \geq 0
$$

