
Lecture 7
Large systems, multiplicity, entropy,

FYS2160 1



Recap: Two-state models

• System: N spins, particles or steps

• Independent (no interaction between spins/particles, no correlation between successive steps)

• Distinguishable (the order matters)

• Equal probability of states 𝑠! = ±1 (up/down, left/right)

• Microstates:

• All possible combinations of ordering the N particles/steps

• Fundamental assumption of statistical mechanics: In an isolated system in thermal equilibrium, all 
accessible microstates are equally probable.

• Total number = 2N

• Macrostates:
• 𝑘 = ∑!"#$ 𝑠! (net magnetization,	excess of particles on left side,	distance walked to	the left)

• multiplicity of macrostate Ω 𝑁, 𝑘 = $!
&! $'& !

• probability of macrostate P 𝑁, 𝑘 = (!"$!
&! $'& !
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paramagnet two-sided box

𝑗 + 1𝑗𝑗 − 1

random walk



Recap: Einstein crystal

• N independent and localized (distinguishable)  
quantum harmonic oscillators 

• Each quantum oscillator has a discrete spectrum of
energy levels, 𝑛 = 0,1,2...  (not two-state)

𝜖G = 𝑛 +
1
2
ℏ𝜔

• Microstates: {n1, n2, ... nN-1, nN}
• Macrostate = total energy: 

• 𝑈H = ∑IJKH 𝜖G! = ∑!"#$ 𝑛! ℏ𝜔 +
$
%
ℏ𝜔

• q =
&"'

"
#ℏ)

ℏ)
= ∑!"#$ 𝑛!

• defined by (N,q)
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Multiplicity Ω(𝑁, 𝑞) of a macrostate with 𝑁 oscillators and 𝑞 units of energy distributed
between them. Trick: map to two-state system.

Two-state model:

Ω 𝑁, 𝑘 =
𝑁!

𝑘! 𝑁 − 𝑘 !

Number of digits:  N’ = N-1+q (= wall + balls )

Number of states: k’ = q

N’ – k’ = N - 1 + q – q = N - 1 

Number of ways of combining (N-1)-walls and q 

balls:

𝛀 𝑵, 𝒒 =
𝑵− 𝟏 + 𝒒 !
𝒒! 𝑵 − 𝟏 !
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Recap: Einstein crystal

ni
3
2
1
0

0 0 2 | |oo
0 2 0 |oo |
2 0 2 oo | |
0 1 1 |  o |  o
1 0 1 o | |  o
1 1 0 o |  o |

𝑵 oscillators
𝒒 energy units
ni energy units in oscillator i

𝑵 boxes, N-1 walls
𝒒 balls
ni balls in box i



Sharpness of distribution
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What happens when 𝑞 → 10!"?
Ω 𝑁, 𝑛 = %!

'! %(' !
We need an approximation for N! when N>>1



Stirling’s approximation for 𝑁! when 𝑁 ≫ 1
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𝑁! = 1 + 2 + 3 + 4… 𝑁 − 1 + 𝑁

𝑁! ≈ 2𝜋𝑁 𝑁% 𝑒(%

ln𝑁! ≈ 𝑁 ln𝑁 − 𝑁 +
1
2
ln 2𝜋𝑁 ≈ 𝑁 ln𝑁 − 𝑁



Large Einstein crystal
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𝛺 𝑞, 𝑁 =
𝑁 − 1 + 𝑞 !
𝑞! 𝑁 − 1 !

≈
𝑁 + 𝑞 !
𝑞! 𝑁!

, 𝑁, 𝑞 ≫ 1

ln 𝑛! = 𝑛 ln 𝑛 − 𝑛
Low	T: 𝑞 ≪ 𝑁
High	T: 𝑞 ≫ 𝑁

lnΩ = 𝑁 + 𝑞 ln(𝑁 + 𝑞) − 𝑁 + 𝑞 − 𝑞 ln 𝑞 + 𝑞 − 𝑁 ln𝑁 + 𝑁

lnΩ = 𝑁 + 𝑞 ln 𝑁 1 + !
"

− 𝑞 ln 𝑞 − 𝑁 ln𝑁

ln Ω = 𝑁 ln𝑁 + 𝑞 ln𝑁 + 𝑁 + 𝑞 ln 1 + !
"
− 𝑞 ln 𝑞 − 𝑁 ln𝑁

ln Ω = 𝑞 ln "
!
+ 𝑁 + 𝑞 ln 1 + !

"

𝑞 ≪ 𝑁, ln(1 + 𝜖) ≈ 𝜖 ln Ω ≈ 𝑞 ln "
!
+ 𝑁 + 𝑞 !

"
, 𝑞 = ln 𝑒!

ln Ω ≈ 𝑞 ln "
!
+ 𝑞 + !!

"
≈ ln "#

!

!

Low T: 𝑞 ≪ 𝑁 𝛺)*+ , 𝑞,𝑁 ≈ -.
/

/

High T: 𝑞 ≫ 𝑁 𝛺0120 , 𝑞,𝑁 ≈ /.
-

-
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Ω$ = Ω% ⋅ Ω&≈
""'!" !
!"!""!

⋅ "#'!# !
!# !"# !

, 𝑁) , 𝑞) , 𝑁* , 𝑞* ≫ 1

High	T:	 𝑞 ≫ 𝑁 Ω)*+) , 𝑞,𝑁 ≈ -.
$

$

𝑁) = 𝑁* = 𝑁
𝑞) + 𝑞* = 𝑞

Ω+ ≈
!"#
"

" !##
"

"
= #

"

,"
𝑞)𝑞* "

Ω+ is	max:	 𝑞) = 𝑞* =
!
,

Ω+-./ =
#
"

," !
,

,"

Expand	around
the peak:	 𝑞) =

!
,
+ 𝑥, 𝑞* =

!
,
− 𝑥

Ω+ ≈
#
"

," !
,

,
− 𝑥,

"

lnΩ$ ≈ 2𝑁 𝑙𝑛 #
"
+ 𝑁 𝑙𝑛 !

,

,
− 𝑥, = 2𝑁 𝑙𝑛 #

"
+ 2𝑁 𝑙𝑛 !

,
+ 𝑁 𝑙𝑛 1 − ,/

!

,

ln(1 + 𝜖) ≈ 𝜖 lnΩ$ ≈ 𝑙𝑛 #!
,"

,"
− 𝑁 ,/

!

,

lnΩ$ ≈ 𝑙𝑛 Ω+012 − 𝑁 ,/
!

,
, Ω+-./ =

#!
,"

,"

Ω+ = Ω+-./ ⋅ 𝑒
3" !$

%

!

Crystal	A
𝑁) , 𝑞)

Crystal	B
𝑁* , 𝑞*

Two large Einstein crystals
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High	T:	 𝑞 ≫ 𝑁 Ω)*+) , 𝑞,𝑁 ≈ -.
$

$

𝑁) = 𝑁* = 𝑁 ≫≫ 1
𝑞) + 𝑞* = 𝑞 ≫ 1
𝑞) =

!
,
+ 𝑥, 𝑞* =

!
,
− 𝑥

Ω+ = Ω+-./ ⋅ 𝑒
3" !$

%

!

, Ω+-./ =
#!
,"

,"

Ω+ falls	off to	𝑒34/, of its maximum when

𝑁 ,/
!

,
= 4

,
⟹ 𝑥 = !

, ,"
⟹ 𝜎 = !

,"
≈ !

"

Fluctuations around the mean
6
!
= !/ ,"

!/,
≈ 4

"
→ 0

Normalization: ∫37
'7Ω+ = Ω+-./ ∫37

'7 𝑑𝑥 𝑒
3 &'
%!

/!
= Ω+-./

!
,

8
"

𝑥 = 𝑞( −
)
* Ω+ 𝑞) = Ω+-./ ⋅ 𝑒

3&'
%!

!" 3
%
!

!

Probability of having 𝑞) energy units	

𝑃 𝑞) = 9+

9+
,-$%

!
.
'

= ,
!

"
8
𝑒
3 &'
%!

!"3
%
!

!

Crystal	A
𝑁) , 𝑞)

Crystal	B
𝑁* , 𝑞*

𝑞(

Two large Einstein crystals



• Stirling approximation for large systems 𝑁! ≈ 𝑁&𝑒'& 2𝜋𝑁 ≈ 𝑁&𝑒'& , for 𝑁 ≫ 1

• Interacting Einstein crystals: Multiplicity near its maximum

𝛺( 𝑞) ≈ Ω*,,-. 𝑒
' /&0; 0<'

0
1
;

• In the thermodynamic limit 𝑁 → ∞, any random fluctuation away from the most likely
states is extremely unlikely
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Crystal	A
𝑁, 𝑞)

Crystal	B
𝑁, 𝑞*

Large systems



Recap: Thermal conduction
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Recap: Thermal equilibrium
• N, q=qA+qB, (N,q) constant
• Most likely state = equilibrium state
• Multiplicity Ω898 = Ω:Ω; is maximum in 

equilibrium

𝜕Ωefe
𝜕𝑞g

= 0

𝜕(ΩgΩh)
𝜕𝑞g

= Ωg
𝜕Ωh
𝜕𝑞g

+ Ωh
𝜕Ωg
𝜕𝑞g

= 0

−1
Ωh

𝜕Ωh
𝜕𝑞h

+
1
Ωg

𝜕Ωg
𝜕𝑞g

= 0

𝜕 lnΩh
𝜕𝑞h

=
𝜕 lnΩg
𝜕𝑞g

Thermal equilibrium:
𝑞g
𝑁g

=
𝑞h
𝑁h

𝑇g = 𝑇h

Entropy: 𝑆 = 𝑘 lnΩ(𝑁, 𝑉, 𝑈)

𝜕𝑆g
𝜕𝑞g

=
𝜕𝑆h
𝜕𝑞h

,
1
𝑇g
≡ (

𝜕𝑆
𝜕𝑈g

)%

q/2 𝑞𝐴

dqe-1

1

Ω#$#%&
Ω'%(

3𝑑Ω#$#
𝑑𝑞 = 0



Equilibrium between two systems
• N=NA+NB, V=VA+VB, U=UA+UB, all (N,V,U) constant

• Can vary one of the three 𝛼 ∈ (𝑁, 𝑉, 𝑈), 
• keeping the other 2 constant
• keep total constant: 𝛼 = 𝛼g + 𝛼h = const.

• Multiplicity Ω898 = Ω:Ω; is maximum
• = most likely state
• = equilibrium state

maximum when kl=>=
km<

= 0

𝜕(ΩgΩh)
𝜕𝛼g

= Ωg
𝜕Ωh
𝜕𝛼g

+ Ωh
𝜕Ωg
𝜕𝛼g

= 0

−1
Ωh

𝜕Ωh
𝜕𝛼h

+
1
Ωg

𝜕Ωg
𝜕𝛼g

= 0

𝜕 lnΩh
𝜕𝛼h

=
𝜕 lnΩg
𝜕𝛼g

𝑈/2 𝑈𝐴

dUe-1

1

Ω#$#%&
Ω'%(

3𝑑Ω#$#
𝑑𝑈 = 0

A
NA

VA

UA

B
NB

VB

UB

System: can contain “anything”

𝑑𝛼g = −𝑑𝛼h

Equilibrium condition:



Equilibrium between two systems
• N=NA+NB, V=VA+VB, U=UA+UB, all (N,V,U) constant

• Can vary one of the three 𝛼 ∈ (𝑁, 𝑉, 𝑈), 
• keeping the other 2 constant
• keep total constant: 𝛼 = 𝛼: + 𝛼; = const.

• 𝑆898 = 𝑆: + 𝑆; is maximum in equilibrium

Equilibrium criterium:
𝜕𝑆2
𝜕𝛼2

=
𝜕𝑆3
𝜕𝛼3

Entropy: 𝑆 = 𝑘 lnΩ(𝑁, 𝑉, 𝑈)

Thermal equilibrium: ko<
kp<

= ko?
kp?

, q
r
≡ (ko

kp
)%,s, [o]

[p]
= v w@A

v

Mechanical equilibrium: ko<
ks<

= ko?
ks?

, 𝑃 ≡ 𝑇(ko
ks
)%,p,     [x]

[r]
= v

yBw

Chemical equilibrium: ko<
k%<

= ko?
k%?

, 𝜇 ≡ −𝑇(ko
k%
)p,s

[z]
[r]
= v

w

A
NA

VA

UA

B
NB

VB

UB



Boltzmann’s Entropy
𝑆 = 𝑘 ln Ω

Relates
• the number	of	microstates (multiplicity)	and
• the thermodynamic	(macroscopic)	state	of	the	system	
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Equilibrium condition: k {| l?
km?

= k {| l<
km<

ko<
km<

= ko?
km?

All systems move towards most probable states = 
equilibrium

Δ𝑆 = 𝑘 ln lCDEFG
lDEDHDFG

Second law of thermodynamics: ∆𝑆}~} ≥ 0
All real processes are irreversible 



Thermodynamic identity
• Change in entropy due to energy, volume, particle number 

has a total differential: 

𝑑𝑆 =
𝜕𝑆
𝜕𝑈 3,-

𝑑𝑈 +
𝜕𝑆
𝜕𝑉 5,-

𝑑𝑉 +
𝜕𝑆
𝜕𝑁 5,3

𝑑𝑁

• Use definitions: 6
,
≡ (78

75
)-,3 , 𝑃 ≡ 𝑇(78

73
)-,5 , 𝜇 ≡ −𝑇(78

7-
)5,3

𝑑𝑆 =
1
𝑇 𝑑𝑈 +

𝑃
𝑇 𝑑𝑉 −

𝜇
𝑇 𝑑𝑁

• => Thermodynamic identity for 𝑈(𝑆, 𝑉, 𝑁)

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

• The thermodynamic identity holds true for any infinitesimal change in a system
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N
V
U



Heat, work and the 1st & 3rd law

Heat,	Q:	Energy	transfer	to	a	system	that is	not	work or	matter:	
Conduction,	radiation,	friction,	Joule	heat.

Work,	W:	Energy	transfer	to	a	system	through	measurable	forces	and	
corresponding	changes	in	state	variables	of	the	system:	Pressure	–
volume;	magnetic	flux	density	– magnetization;	

First	law: ∆𝑈 = 𝑄 +𝑊

Thermodynamic identity for 𝑈 𝑆, 𝑉 : 𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 (N const)

ÞHeat: 𝑄 = 𝑇𝑑𝑆,    Work: 𝑊 = −𝑃𝑑𝑉

Third law: The entropy of a system approaches a constant as 
the temperature approaches zero.
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Second law before Boltzmann
• Original definition of entropy from heat: 𝑄 = 𝑇𝑑𝑆
• Entropy is the thing which increases by �

r
when heat Q enters the system at 

temperature T
• Solid (N, V constant): 𝑇 = ��

�o
( q
r<
≡ ( ko

kp<
)%)

• Thermodynamics is an axiomatic theory of heat and work.
• Axioms of thermodynamics: First and Second laws.
• Second law is a generalization of empirical observations:

• Clausius (1854): Heat can never pass from a colder to a warmer body without some other 
change, connected therewith, occurring at the same time.

• + many, many other formulations

• Boltzmann’s entropy gave a theoretical basis for the second law. 

Δ𝑆 = 𝑘 ln
Ω��|�{
Ω�'�e���

≥ 0

• For an isolated system, the entropy can never decrease, 𝛥𝑆 ≥ 0
• In all processes, the total entropy of system and surroundings increases.

∆𝑆}~} = ∆𝑆���}�� + ∆𝑆����~�|��|�� ≥ 0
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