Lecture /

Large systems, multiplicity, entropy,



Recap: Two-state models

paramagnet two-sided box random walk
| ® hn
% ° I ®
I j-1 j j+1
1

* System: N spins, particles or steps
* Independent (no interaction between spins/particles, no correlation between successive steps)
* Distinguishable (the order matters)

* Equal probability of states s; = +1 (up/down, left/right)

* Microstates:
* All possible combinations of ordering the N particles/steps

* Fundamental assumption of statistical mechanics: In an isolated system in thermal equilibrium, all
accessible microstates are equally probable.

e Total number = 2N

* Macrostates:
« k=YN,s; (net magnetization, excess of particles on left side, distance walked to the left)

* multiplicity of macrostate Q(N, k) = 7 1’\;’ . 5
-N
* probability of macrostate P(N, k) = k?(N_’\;!y
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Recap: Einstein crystal

N independent and localized (distinguishable)
guantum harmonic oscillators

Each quantum oscillator has a discrete spectrum of
energy levels, n = 0,1,2... (not two-state)

1
_ _ y V(X)
€y = (n + 2) hw )

Microstates: {n;, n,, ... Ny.1, Nx} A AN
Macrostate = total energy: i Wy it

_ VN _ VN N B Ay

* Uy = Li=16n; = Lj=1 1 hw +;hw 2 B e
[/pq-gghtu N x

* defined by (N,q)
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Recap: Einstein crystal

Multiplicity Q(N, q) of a macrostate with N oscillators and g units of energy distributed
between them. Trick: map to two-state system.

N oscillators N boxes, N-1 walls Two-state model:
q energy units q balls
n; energy units in oscillator i n; balls in box i |
n; QN k) = ————
3%/ S B W — (N, F) k! (N — k)!
5 .
: / 1
0 . . Number of digits: N’=N-1+g (= wall + balls)
\VAVAV/ O 0 2 00 ;
Number of states: k” =
\VAVAV, O 2 O 00 - K
Et//t// 2 0 2 00 N —k'=N-1+g-g=N-1
v 0 1 1 O O Number of ways of combining (N-1)-walls and q
\ WA 1 0 1 0 0
balls:
IVASAY, 1 1 0 o] o
(N—1+q)!
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Sharpness of distribution

n=[5 10 30 100 300 1000];

1=1;
%107 —
10 300 15 for i=1:2
for j=1:3
250 nk=1;
8 for k=1:n(1)
- _. 200 — 10 g nk(k)=nchoosek(n(1),k);
X 6 % i
= < 150 = subplot(2,3,1)
= = = plot(nk, 'k','LineWidth",2)
= 4 = — xlabel('k', 'FontSize',20)
100 5 ] ] 1 : 1
ylabel('n!/(n!(n-k)!",'FontSize',20)
2 axl = gca; % current axes
50 axl.FontSize = 20;
1=1+1;
0 0 0 end
0 2 4 0 5 10 0 10 20 30 | eang
k k k
28 88 299
12 x10 10 x10 3 x10
10 8 ﬂ 25
= 8 = = 2
X X 6 2
5 & 5
z 6 = =15
< S 4 =
C 4 C C 1
2 z 0.5 J k
0 0 0
0 50 100 0 100 200 300 0 500 1000
k k k
N! . . /
Q(N,n) = ——— We need an approximation for N/ when N>>1
n!(N—-n)!
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Stirling’s approximation for N when N > 1

Nl=1-2-3-4..(N—-1)-N

N! = \V2rN NN =N

1
In N! lenN—N+§ln2nNlenN—N



Large Einstein crystal

Inn!=nlnn—n
LowT:q K N
HighT:q > N

q <N, In(l+e)=~e¢€

LowT:q K N

HighT: g > N

(N—1+q)!~(N+q)!

@) == ry =D~ qinr

N,g > 1

nQ=N+qg)In(N+q)—(N+q)—qlng+qg—NInN+ N

an:(N+q)1nN(1+%) —qlng —NInN
an:NlnN+qlnN+(N+q)ln(1 +%)—qlnq—NlnN
an:qlnﬂ+(N+q)ln(1+ﬂ)

q N

anqun%+(N+q)% ,q =1Ine

~ gl 2 1 (Me)?
an~q1nq+q+N~ln(q)

Ne

Qowr(q,N) = (7)(Z

Chigh (g, N) = (%e)N



Two large Einstein crystals crystala (M crystal

Ny, qa Ng, qp

0, = 0, - Qg FATIAE, Wetdn): N4, qa,Np,qp > 1

qA!NA! qB!NB!
. qe N

High T: q>N OQpigh T(q, N) = (W)

N,=Ng =N

da tqp =q

N N 2N
~ (44 (48¢) _ (£ N

QtN(N) (N) _(N) (9495)

Q; is max: da = Qg =%
2N ,_\2N
max _ (£ a

Q7 = N) (2)
Expand around
the peak: qA=%+X, qB=§—x

NN (2 _ o]
o~ () |@) -
InQ, ~ 2N In + N In [(%)2 _xz] =2NIn—+2Nn +Nln [1 - (Z—qx)z]

In(1+¢€)~e InQ; = In ( ) ( )2

InQ, ~ In QP> — N ( q )2 Qmax = (%)ZN

x 2
q, = amax . oM7)



Two large Einstein crystals crystala (M crystal

Ny, qa Ng, qp

. qe N
High T: q>N OQnigh (g, N) = (W)
N,=Ng=N>»>»1
da+qg=q>1

q q
==4x == —Xx
qa 2+ » 4p 2

x\ 2
oo aper s, e )

Q, falls off to e ~1/2 of its maximum when

2
N(E) = = ox=pE = o=jRs
Fluctuations around the mean
o _ q/\/ﬁ - i 0 Qmax
@ a/2 VN
+00 +00 - 28 x? T
Normalization: [ Q.= Q"% [“dxe " =qrexl \/: |
— 00 —o0 2 \|N »
_aN(o _a)? i
r=g,-1 Qu(qn) = Qpex ¢4 |
|
|
| »
Probability of having q, energy units /2 qa

4N q2
__ 9 _2 v -F(aa
p(qA)-Qmaxqf_q\[;e :
t 24N



Large systems

Stirling approximation for large systems N! ~ N¥e ™ Ny2nN =~ N¥e N, for N > 1

Interacting Einstein crystals: Multiplicity near its maximum

2
0 ~ — ‘;_1;’ (q A _%) Crystal A Crystal B
t(qa) = t,max € N,qq N, gz

In the thermodynamic limit N = oo, any random fluctuation away from the most likely
states is extremely unlikely




Recap: Thermal conduction

00:00,00

for 1 = 2:nstep
r = 4xrand(1,1)-2; % Random number between 2 and -2
DT=Tt(i-1)-Tb(i-1); % temperature difference top to bottom
if (r<DT)

Tt(i) = Tt(i-1) - 1/N; % Move heat quanta from top to bottom
Tb(i) = Tb(i-1) + Ctb/N;

else
Tt(i) = Tt(i-1) + 1/N; % Move heat quanta from bottom to top
Tb(i) = Tb(i-1) - Ctb/N;

end
if environment
% heat loss from top to environment
r = 4xrand(1,1)-2; % Random number between 2 and -2
DTt=Tt(i)-Tr; % temperature difference to room
if (r<DTt)
Tt(i) = Tt(i) - Closs/N; % Remove heat quanta from top
else
Tt(i) = Tt(i) + Closs/N; % Add heat quanta to top
end

Al &0 B At KA WL KK

2 (T—<T0>)/A To

kﬁxlq_oﬂyo

1 =
0.8+ i
0.6 - J
0.4+ b
0.2+ B

0r Rl —

-0.2+ b
-0.4+ b
-0.6 - b
— =Simulated temperature top
_0.8- = =Simulated temperature bottom i
) ——Measured temperature top
——Measured temperature bottom
_1 I T
0 5 10 15

t/7 or steps/N



Recap: Thermal equilibrium

* N, g=g,+q5p (N,q) constant

* Most likely state = equilibrium state

* Multiplicity Qo = Q405 is maximum in
equilibrium

Thermal equilibrium:

i _ s
Ny Np
TA:TB

Entropy: S =kInQ(N,V,U)

aanB _ aanA aSA _ aSB 1 ( )
dqgg  0qa 0qs 9qgp’ TA oU, "




Equilibrium between two systems

Na Ng
* Canvary one of the threea € (N,V, U), Va Vo
* keeping the other 2 constant & =

System: can contain “anything”
* keep total constant: « = a4 + ag = const.

* Multiplicity Qo = Q4Qp is maximum
* =most likely state
* =equilibrium state

) 2Q
maximum when —2£ = (

aCZA
'Qtotal
d(Q408) _q d0Qg a0, _ 0 0
aOfA - aaA B aaA B thOt/d =0
-10Q5 109,

= — +
daA daB ‘Q‘B aaB 'Q‘A 50(A

dInQp dInQy,

Equilibrium condition:
dag day




Equilibrium between two systems

* N=N,+Ng V=V,+Vy U=U,+Up, all (N,V,U) constant

* Canvary one of the threea € (N,V, U),
* keeping the other 2 constant
* keep total constant: a = a4 + ag = const.

* Sior = Sy + Sp is maximum in equilibrium

Equilibrium criterium:

dSg 0S5, A . B
—_— — Na Ng
Vi T Ve
dag Oday - N v
Entropy: S = kIn Q(N,V,U)
g .05, _ 0Sp 1_ [S] _ JK?!
Thermal equilibrium: 00, = au,’ - = Gny 0] ;
954 _ 958 Pl _ _J
Mechanical equilibrium: v, = av,’ P = T( )N U T] = miK
Chemical equilibrium: 054 _ 95p U= —T( )UV % ={—<

0Ny, ONg'’




Boltzmann’s Entropy

S=klnQ
Relates
* the number of microstates (multiplicity) and

* the thermodynamic (macroscopic) state of the system

et .. d0ln Q dln Q
Equilibrium condition: B — A
aaB aaA
dS, _ 0Sp

6aA - aCZB

All systems move towards most probable states =
equilibrium

Qe
AS = k In—tinal
Qinitial
Second law of thermodynamics: ASior = 0

| 1LVDWIG
BOLTZMANN [FREOETZ
| {6 ~ 1006 HeRly

All real processes are irreversible -




Thermodynamic identity

Change in entropy due to energy, volume, particle number

has a total differential:
ds = (65) dU+(aS) dv+(as) N
- \aU/yn WV/yn ON/yy
Use deflmtlons - = ( )NV, P = T( )N U U= —T( )UV
s =tau+Lav —*an
T T T

=> Thermodynamic identity for U(S,V,N)

dU = TdS — PdV + udN

The thermodynamic identity holds true for any infinitesimal change in a system




Heat, work and the 1st & 3rd law

Heat, Q: Energy transfer to a system that is not work or matter:
Conduction, radiation, friction, Joule heat.

Work, W: Energy transfer to a system through measurable forces and
corresponding changes in state variables of the system: Pressure -
volume; magnetic flux density — magnetization;

First law: AU=0+ W

Thermodynamic identity for U(S,V): dU = TdS — PdV (N const)
—>Heat: Q =TdS, Work: W = —PdV

Third law: The entropy of a system approaches a constant as
the temperature approaches zero.



Second law before Boltzmann

* Original definition of entropy from heat' Q =TdS

* Entropy is the thing which increases by when heat O enters the system at
temperature T

* Solid (N, V constant): T = Z—g (— = ( )N)

* Thermodynamics is an axiomatic theory of heat and work.
e Axioms of thermodynamics: First and Second laws.

* Second law is a generalization of empirical observations:

 Clausius (1854): Heat can never pass from a colder to a warmer body without some other
change, connected therewith, occurring at the same time.

* + many, many other formulations

* Boltzmann’s entropy gave a theoretical basis for the second law.
final

Q
AS=kln———=0
initial
* For an isolated system, the entropy can never decrease, A4S >0

* In all processes, the total entropy of system and surroundings increases.

AStot = ASsystem + ASsurroundings =0



