Exercise week 39: FYS2160, Thermodynamics and statistical physics, Fall
2022

Problems from Schroeder: 5.1, 5.6, 5.10, 5.21, 5.22, 5.32, 5.43, 5.76

Solution:

Problem 5.1. The energy of a mole of argon is given by the equipartition theorem:

3 3 3
U = SNKT = 5nRT = 5(1)(8:31 J/K)(300 K) = 3.74 kJ,

The entropy is given by the Sackur-Tetrode equation:
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where I've used the ideal gas law and equipartition in the last expression. Since an argon
atom has a mass of about 40 times the proton mass, the argument of the logarithm is

[(1.38 > 102 1/K)(300 K)]*/ ((%)(40)(1.67 % 1077 kg)

3/2
—1.02 % 107
1.01 % 105 N/m? (6.63 x 1031 J - 5) ) :

Therefore
S =Nk {ln(l.OQ % 107) + g] = NE(18.6) = (18.6)R = 155 J/K.
The enthalpy is
H=U+PV =U+nRT = g-nRT = 2(8‘31 J/K)(300 K) = 6.23 kJ.
The Helmholtz free energy is
F=U-TS8=(3.74kJ) — (300 K)(155 J/K) = —42.6 kJ,
while the Gibbs free energy is
G=F+PV =F+ Rl =(—426 kJ) + (8.31 J/K)(300 K) = —40.1 kJ.
Since the term 7S is much larger in magnitude than UV or PV, both of the free energies
turn out to be negative. But the sign of I’ or G isn’t any more significant than the sign
of U: it’s differences that matter, not actual values. (If we planned on tapping the rest

energies, mc2, of the argon atoms, then we would want to include this energy in U, and
then U, H, F, and G would all be increased by an enormous amount.)



Problem 5.6. (Muscle as a fuel cell.)

(a) The data as tabulated on pages 404 and 405 are (for one mole of each substance under
standard conditions):

AT (K1) AG (KT) S (I/K)

Glucose —1273 —910 212
0O: (g) 0 0 205
CO, (g) —393.5 —394.4 214
H,0 (1) —285.8 —237.1 70

To obtain AH or AG for the reaction glucose + 602 — 6CO2 + 6Hy0, we subtract
A of the reactants from Ay of the products. Therefore, in kilojoules,

AH =6-(—393.5) +6 - (—285.8) — (—1273) = —2803
(as computed in Problem 1.51), and

AG =6-(—394.4) + 6 (—237.1) — (—910) = —2879.

(b) The maximum “other” work performed is just the amount by which G decreases for
the system: 2879 kJ for each mole of glucose consumed.

(c) Under ideal conditions, the amount of work output, 2879 kJ, is more than the amount
by which the system’s enthalpy decreases (2803 kJ). To make up for the net loss of
enthalpy, 76 kJ of heat must flow into the system.

(d) The total entropy of the reactants is (in J/K)

21246 - 205 = 1442,

while the total entropy of the products is (in J/K)
6-21446-70 =1704.

Therefore the system gains 262 J/K of entropy during this reaction. Because the
entropy increases, heat can flow into the system. In the ideal case, the amount of heat
entering is the maximum allowed for this entropy increase, namely (262 J/K)(298 K) =
78 kJ. (This number agrees reasonably well with the result of part (c¢), 76 kJ; the small
difference gives some indication of the uncertainties in the data.)

(e) Under nonideal operation, new entropy would be created in the system during the
reaction, allowing less heat to enter (or even requiring that heat be expelled, if the
entropy created exceeds 262 J/K). Therefore less energy would leave the system as
“other” work. The values of AH and AG, however, are the same whether the operation
is “ideal” or not.



Problem 5.10. From the relation (9G/8T)p = —S, we can write the change in G as
OG = —S5dT. The table on page 405 lists the entropy of a mole of water under standard
conditions as 69.91 J/K, so the change in G from 25°C to 30°C is

dG = —(69.91 J/K)(5 K) = —349.6 J.

In other words, the Gibbs free energy is about 350 J lower at 30°C than at 25°C. If we
now imagine increasing the pressure at fixed temperature, the relation (G /9P)r = V tells
us that dG = V dP, where V' is the volume of a mole of water, 18.07 x 10~% m®. Raising
the pressure therefore increases GG. To produce an increase of 349.6 J, we would need to
increase the pressure by

dG 349.6 J
7= 1.93 x 107 Pa = 193 bars.

P = =BT <10 m

The moral of the story is that temperature changes tend to have much larger effects on &
than pressure changes, at least within the realm of conditions familiar to us in everyday
life.

Problem 5.21. Heat capacity (C) is extensive, since the heat required to raise the tem-
perature of an object by a given amount is directly proportional to the size of the object.
For Cy = (0U/0T)y, we can also see this from the fact that U is extensive and T' is
intensive: Dividing an extensive quantity by an intensive quantity results in an extensive
quantity. Specific heat capacity, ¢ = C/m, is intensive, because it is the ratio of two
extensive quantities. It doesn’t depend on how much of the stuff you have.

Problem 5.22. In Section 3.5 I showed that the chemical potential of a monatomic ideal

gas is
V' r2mmkT~\3/2 kT ¢ 2mmET \3/2
(Y i)
In the last expression I've substituted V/N = kT /P, since equation 5.40 is written in terms

of pressure rather than volume. To bring in the reference pressure P°, multiply and divide
by it inside the logarithm:
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This expression is now in the form of equation 5.40, with the first term equal to p°(7'), a
function of temperature but not pressure. (The reference pressure, P°, is just a constant,
conventionally taken to be 1 bar.)



Problem 5.32. (The water-ice phase boundary.)

(a)

(b)

(c

~

(d)

As ice melts into water the change in entropy (or the latent heat) is positive, while the
change in volume is negative (since ice is less dense), so the slope of the phase boundary,
AS/AV, must be negative. In more fundamental terms, converting ice to water lets
the entropy of the environment increase (by making more volume available), and this
effect is more important at high pressure since P = T(8S/0V). So high pressures
tend to push the equilibrium in the direction of the phase that takes up less volume.

Instead of considering a mole of ice/water, let’s just consider one gram. Then the
latent heat is 333 J, the volume of the ice is (917,000)"* m® = 1.091 x 1075 m3, and
the volume of the water is 1.000 x 10~ m3. Therefore the slope of the phase boundary
is

dP L 333 J

dr ~ = = - 7 e
iT ~ TAV ~ @ K)(—.091 x 105 my) — 30 x 10" Pa/K = —135 bar/K.

So if the temperature decreases by one degree (from 0 to —1°C), the pressure must
increase by 135 bars to remain on the phase boundary. In other words, ice will melt
at —1°C if the pressure is above 135 bars (or 133 atmospheres).

Treating the glacier ice as a fluid, the increase in pressure at depth z is simply pgz,
where p is the density. (To derive this formula, consider a column of ice extending
down to depth z. The weight of the column per unit area is pgz, and this must be
balanced by the pressure from below.) In our case, to reach a pressure of 135 bars,

P 135 x 10° N/m?

R =1 .
by~ 1T kg/m?)@8 NJkg) 20T

That’s pretty deep, just to lower the melting temperature by one degree. Apparently
the flow of glaciers is not caused primarily by lowering of the melting point under
pressure.

The blade of an ice skate measures a few millimeters across by perhaps 25 cm long,
so the total area is perhaps 10 cm?. Even if you're leaning on the “corner” of the
blade, the total area in contact with the ice is probably more than 1 cm? = 107* m?.
If your mass is 50 kg, then your weight is about 500 N so the pressure on the blade is
roughly (500 N)/(10~* m?) = 5 x 10 Pa = 50 bars. Under this pressure the melting
temperature drops by only 50/135 ~ .4°C. This mechanism of friction reduction would
work only if the ice temperature is already within less than half a degree of melting,
and even then, only when you’re minimizing the area of the blade in contact with the
ice. In practice, the ability to glide doesn’t depend so critically on the ice temperature
or on how the blade touches the ice, so I don’t think this mechanism can be very
important.



Problem 5.43. On the diagram below (the same one plotted in the previous problem),
T've plotted the composition of the exhaled air (35°C, 90% relative humidity) and also
one possible composition of the outdoor air (10°C) as dots. Consider, now, the mixing of
parcels of air with these two initial temperatures and initial H,O partial pressures. If the
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parcels have equal mass, then the mixture will end up at a temperature halfway between
them (since the heat capacity of air is independent of its temperature), and also at an H,O
partial pressure that is halfway between the partial pressures of the initial parcels. More
generally, for any value of the ratio of the initial masses, the mixture will have a temperature
and H,O partial pressure that lie somewhere on a straight line on the diagram, connecting
the dots representing the two initial states. (As the exhaled air mixes with larger and
larger amounts of environmental air, the state of the mixture will move downward along
this straight line.) To get cloud droplets, the state of the mixture must lie above the curve
representing the equilibrium vapor pressure; since this curve is concave-upward, this is
possible even when both initial states lie below the curve. By moving the dot representing
the outdoor air state vertically, we see that if it goes too low, the line will no longer cross
the vapor pressure curve. The minimum H,O partial pressure of the outdoor air in this
case is about 0.0032 bar, corresponding to a relative humidity of about 25%. If we do get
cloud droplets, therefore, we can conclude that the relative humidity is at least 25%.

Therefore, by van’t Hoff’s formula, the osmotic pressure is
T 1.12 mol)(8.31 1K K
P — p, = "eBT_ (112 mo)(@.315 J/mol K)BWOK) _ 5 106 py » 30 atm.
\4 103 m3
(b) If you apply an excess pressure just barely greater than the osmotic pressure to the
seawater, and force 1 liter of it through an osmotic membrane, the work performed is

PAV = (3.0 x 10° Pa)(10~% m*®) = 3000 J.
This isn’t much work—Iless than 1/1000 of a kilowatt-hour. As usual, though, this
number represents the absolute minimum, and in practice the work required will be
greater. First, to get the water to go through the membrane at an acceptable rate,
you’ll need to apply more than the minimum pressure. Second, the membrane probably
won’t be perfect, so some salt will get through and you’ll need to repeat the process
several times to reduce the salinity to an acceptable level.




(b)

Therefore, by van’t Hoff’s formula, the osmotic pressure is
npRT  (1.12 mol)(8.315 J/mol-K) (300 K)
v 10-3 m3
If you apply an excess pressure just barely greater than the osmotic pressure to the
seawater, and force 1 liter of it through an osmotic membrane, the work performed is
PAV = (3.0 x 10° Pa)(10~% m®) = 3000 J.

This isn’t much work—less than 1/1000 of a kilowatt-hour. As usual, though, this
number represents the absolute minimum, and in practice the work required will be
greater. First, to get the water to go through the membrane at an acceptable rate,
you’ll need to apply more than the minimum pressure. Second, the membrane probably
won’t be perfect, so some salt will get through and you’ll need to repeat the process
several times to reduce the salinity to an acceptable level.

P,— P = = 3.0 x 10° Pa =~ 30 atm.




