
Weekly exercise W44: FYS2160, Thermodynamics and statistical physics, Fall 2022

1 Problems from Schroeder

Schroeder 7.11 Solution:
The probability of a state being occupied is given by the Fermi-Dirac dis- tribution function: 1/(e(ϵ−µ)/kT+
1) . At room temperature, kT = .026 eV, so the probabilities are:

(a)
ϵ− µ = -1 eV in this case, giving P = 1/(e−1/0.026 + 1) = (1+2x10−17)−1 = 1-2x10−17 ≈ 1
(b)
ϵ− µ = -0.01 eV in this case, giving P = 1/(e−0.01/0.026 + 1) = 1/1.68 = 0.59
(c)
ϵ− µ = 0 eV in this case, giving P = 1/(e0 + 1) = 1/2 = 0.5
(d)
ϵ− µ = 0.01 eV in this case, giving P = 1/(e0.01/0.026 + 1) = 1/2.47 = 0.41
(e)
ϵ− µ = 1 eV in this case, giving P = 1/(e1/0.026 + 1) = (5x1016)−1 = 2x10−17

Schroeder 7.15 Solution:

For a system of particles obeying the Boltzmann distribution, the total number of particles should
be:

N=
∑
s
n̄Boltzmann =

∑
s
e−(ϵs−µ)/kT = eµ/kT

∑
s
e−ϵs/kT

But the sum in the last expression is just the single-particle partition function, therefore,
N
Z1

= eµ/kT ,

µ = kT ln N
Z1

= −kT lnZ1

N .

Schroeder 7.23 Solution:

(a)
We want to get dimensions of U(Nm), using G(Nm2/kg2):
Nm = (Nm2/kg2)· (kg2/m)
corresponding to:
U = -GM2/R
We put in a minus sign since gravity is attractive: We would have to add energy to disassemble

the sphere, moving the parts infinitely far apart where they have zero potential energy.
(b)
The total energy of the degenerate electron gas is:

Ukinetic = 3
5NϵF = 3

5N · h2

8me

(
3N
πV

)2/3
where N is the number of electrons. If the star contains one proton (mass mp) and one neutron

(mass ≈ mp) for each electron, then N = M/2mp. Plugging in 4πR3/3 for the volume then gives:

Ukinetic = 3h2

40me

(
M
2mp

)5/3 (
9

4π2R3

)2/3
= 0.0088 h2M5/3

mem
5/3
p R2

(c)
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The gravitational energy of the star is proportional to -1/R, while the kinetic energy of the
electrons is proportional to 1/R2 from the equations found above. Here’s a sketch of these functions
and their sum:

To find the minimum in the total energy, set the derivative equal to zero:
0 = d

dR (−α/R+ β/R2) = α/R2 − β/R3 = 1
R2 (α− 2β/R

The equilibrium radius is therefore at

R = 2β/α = 0.029 h2

Gmem
5/3
p

1
M1/3

A white dwarf star with a larger mass has a smaller equilibrium radius. This does make sense, be-
cause adding mass creates more gravitational attraction, allowing the gravitational energy to decrease
more than the kinetic energy increases as the star contracts

(d)
Using the above equation for one solar mass gives R = 7.2 x 106 m = 7200 km, which is just

sligthly larger than the earth. The density is:

ρ = M
4πR3/3 = 2·1030kg

(4/3)π(7.2·106m)3 = 1.3 · 109kg/m3

Which is 1.3 million times the density of water.
(e)
The fermi energy is:

ϵF = h2

8me

(
3N
πV

)2/3
= h2

8me

(
3N
πV

)2/3 1
R2 = 3.1 · 10−14J = 1.9 · 105eV

Giving the Fermi temperature:
TF = ϵF /k = 2.3 · 109K
This is more than a hundred times hotter than the center of the sun. It seems unlikely that

the actual temperature of a white dwarf star would be anywhere near this high. In other words,
the thermal energy of the electrons is almost certainly much smaller than the kinetic energy they
have even at T = 0. For the purposes of the energy calculations in this problem, therefore, simply
neglecting the thermal energy and setting T = 0 is probably an excellent approximation.

(f)
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If the electrons are ultra-relativistic, we can use the formulas derived in the previous problem for
the Fermi energy and the total kinetic energy:

Ukinetic = 3
4NϵF = 3

4N · hc
2

(
3N
πV

)1/3
= 0.091hc

(
M
mp

)4/3
1
R

The important feature of this formula is that it is proportional to 1/R, not 1/R2. When we add
the gravitational potential energy, which is proportional to -1/R, we get a total energy function with
no stable minimum. Instead, depending on which coefficient is larger, the total energy is simply
proportional to either +1/R or -1/R. Therefore the “star” will either expand to infinite radius or
collapse to zero radius.

(g)
First note that the coe cient of the gravitational energy is proportional to M2, while that of the

kinetic energy is proportional to only M4/3, so the star will collapse rather than expand if its mass
is sufficiently large. The crossover from expansion to collapse occurs when the coefficients are equal,
that is, when

0.091hc
(

M
mp

)4/3

= 3
5GM2

giving M = 3.4 · 1030kg
that is, a little under twice the sun’s mass. However, the star won’t be relativistic to begin with

unless the average kinetic energy of the electrons is comparable to their rest energy, mc2 = 5 · 105
eV. For the sun’s mass, the average electron energy (0.6ϵF ) is only 1.2·105 eV, too low by a factor
of about 4.4. This indicates that a one-solar- mass white dwarf is probably stable, but it’s still
close enough to being relativistic that we shouldn’t expect the nonrelativistic approximation to be
terribly accurate. Meanwhile, looking back at part (e), we see that the Fermi energy is proportional
to (M/R3)2/3 ∝ (M2)2/3 = M4/3. Therefore, to increase the Fermi energy by a factor of 4.4, we’d
have to increase the mass by only a factor of about 3. Conclusion: A white dwarf star with a mass
greater than about three times the sun’s mass will be relativistic and hence unstable, collapsing to
zero radius (unless it first converts into some other form of matter).
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