
Micro- and Macrostates in the Einstein Crystals
In this project we will address the micro- and macro-states of an Einstein

crystal. You will learn how to represent and count microstates in a simple
model of a crystal consisting of a set of independent oscillators, you will learn
how to find the probability of a macrostate for two Einstein crystals in thermal
contact, and to find the time evolution of the Einstein crystal using a Monte
Carlo simulation technique.

A simple model for a crystal that still captures surprisingly many of the
important features of the statistical physics of a crystal is the Einstein crystal.
A real crystal consists of a set of atoms in a periodic configurations interact-
ing through interatomic interactions that include both short range and longer
ranged forces. As a result, individual atoms will oscillate around an equilibrium
position while interacting mostly with its nearest neighbors. As a simplified
model for this system we consider each atom, i, to behave like an independent
harmonic oscillator with a potential energy Ui:

Ui(r⃗i) =
1

2
kx(xi − xi,eq)

2 +
1

2
ky(yi − yi,eq)

2 +
1

2
kz(zi − zi,eq)

2 ,

From quantum mechanics, we know that the energy of a harmoic oscillator i is

ϵi = ni∆ϵ ,

where ni is an integer describing the state of oscillator i. We can therefore
describe the state of a crystal with N independent (meaning non-interacting)
oscillators by the states ni for i = 1, . . . , N . The total energy of the crystal in
this simplified model is then:

U =

N∑
i=1

ϵ ni .

For simplicity we will measure energy in units of ϵ:

q =
U

ϵ
=

N∑
i=1

ni ,

For a system with a given total energy, the sum of all the ni is constant, but we
can still change how the energy is distributed in the system. We can think of
the energy a given number of energy units that we are free to distribute between
the oscillators. Any distribution is allowed as long as we do not change the total
energy.

We describe a microstate of this system by the numbers ni for each oscillator:

{n1, n2, . . . , nN}

For example, for a system with N = 4 and q = 4, a possible microstate is
{1, 0, 2, 1}, that is n1 = 1, n2 = 0, n3 = 2, and n4 = 1.

We will now find the various microstates of this system:
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(a) For a system with N = 2 oscillators and q = 3, list all the possible mi-
crostates.

Solution:
The sum of the energy of the permissible microstates is q = 2. We therefore
have two units of energy that we can distribute between two oscillators. This
can be done in the following ways:

{2, 0}
{1, 1}
{0, 2}

(b) For a system with N = 3 oscillators and q = 3, list all the possible mi-
crostates.

Solution:
The sum of the energy of the permissible microstates is q = 3. We therefore
have three units of energy that we can distribute between three oscillators. This
can be done in the following ways:

{3, 0, 0}
{0, 3, 0}
{0, 0, 3}
{2, 1, 0}
{2, 0, 1}
{0, 2, 1}
{1, 2, 0}
{0, 1, 2}
{1, 0, 2}
{1, 1, 1}

The general formula for the number of microstates for N oscillators with q
units of energy is:

Ω(N, q) =

(
q +N − 1

q

)
=

(q +N − 1)!

q!(N − 1)!
.

(c) Check that the results you found above are consistent with this formula.

We can now list and count the number of microstates for an Einstein crystal,
and we are ready to address what happens if two Einstein crystals come in
contact. First, we start by looking at a system consisting of two isolated Einstein
crystals, system A with NA oscillators and energy qA and system B with NB

oscillators and energy qB . Each system is surrounded by an insulating, rigid
and impermeable outer wall so that its energy, volume and number of oscillators
(particles) is constant. The total system consists of system A and system B, so
that N = NA+NB and q = qA+qB . However, the systems are initially isolated
– meaning that they are independent systems with constant energy, volume and
number of particles.
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(d) For a system consisting of subsystem A with NA = 2 and qA = 5 and
subsystem B with NB = 2 and qB = 1 list all possible microstates of the
system.

Solution:
For each microstate in system A there are two possible microstates in system
B, all energy in oscillator b1 or all energy in oscillator b2. We therefore only list
the microstates of system A

a1 a2 b1 b2
5 0 1 0
4 1 1 0
3 2 1 0
2 3 1 0
1 4 1 0
0 5 1 0
5 0 0 1
4 1 0 1
3 2 0 1
2 3 0 1
1 4 0 1
0 5 0 1

The two systems are put in thermal contact, so that they can exchange
energy, but the number of particles and the volume of each subsystem does not
change. The total energy q = qA + qB = 6 is constant, but the energy can now
be freely distributed between the two systems. Let us now count the number of
possible microstates for each possible value of qA and qB .

(e) For NA = 2, NB = 2, and q = 6 what are the possible values of qA and qB?
We call a state with a given qA (and therefore also a given qB = q − qA)
a macrostate for the system.

Solution:
We know that q = qA + qB = 6, hence qA = 0, 1, 2, 3, 4, 5, 6 and qB = q − qA =
6− qA.

(f) For each possible macrostate qA find the number of compatible microstates.

Solution:
For each of the possible macrostates qA we use the formula

Ω = ΩA(NA, qA)ΩB(NB , qB)

to find the number of microstates. This is done in the following program:
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% Calculate number of microstates for two

% Einstein -crystals in contact

NA = 2;

NB = 2;

q = 6;

multA = zeros(q,1);

multB = multA;

mult = multA;

N = NA + NB;

qvalue = (0:q);

for ik = 1: length(qvalue)

qA = qvalue(ik);

qB = q - qA;

multA(ik) = nchoosek(qA+NA -1,qA);

multB(ik) = nchoosek(qB+NB -1,qB);

mult(ik) = multA(ik)*multB(ik);

end

summult = sum(mult);

prob = mult./ summult;

plot(qvalue ,prob)

arr = [qvalue ’ multA multB mult]

arr2 = [qvalue ’ prob]

The output is:
qA ΩA ΩB ΩAΩB

0 1 7 7
1 2 6 12
2 3 5 15
3 4 4 16
4 5 3 15
5 6 2 12
6 7 1 7

(g) Compare the total number of microstates available to the system before
and after the systems came in thermal contact. Comment on the result.
What aspects of this result do you think is general?

Solution:
Before: Number of microstates is ΩA(NA, qA)ΩB(NA, qB) for given values of qA
and qB .

After: Number of microstates is Ω =
∑

qA
ΩA(NA, qA)ΩB(NB , qB).

General: More states after than before.

(h) If all microstates have the same probability, what are the probability of
each of the macrostates?
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Solution:
Calculated in the program above. Values are:

qA P (qA)
0 0.0833

1.0000 0.1429
2.0000 0.1786
3.0000 0.1905
4.0000 0.1786
5.0000 0.1429
6.0000 0.0833

(i) What is the probability of the initial macrostate before the two systems
came in contact?

Solution:
This corresponds to qA = 5, and the prob is 0.1429.

(j) What is the probability of finding all the energy in system A?

Solution:
This corresponds to qA = 6, P = 0.0833.

(k) What is the probability of finding exactly half the energy in system A?

Solution:
Half the energy is qA = 3, prob P = 0.1905. The maximal value.

We will now address larger systems numerically. You therefore need to write
a script/program to find the number of macrostates and the probability of the
macrostates. We start from the system we had above, but you will need to write
a general program you can use for any value of NA, NB , q, and qA.

(l) For NA = NB = 2 and q = 6 write a program to find the number of mi-
crostates for each macrostate qA and the probability P (qA) = Ω(NA, qA)Ω(NB , qB)/ΩTOT

for each macrostate. Compare with your results from above. Plot the
probabilty P (qA) as a function of qA.

Solution:
The program is listed above.

We will now address a larger system with NA = 50, NB = 50 and q =
qA + qB = 100.

(m) Plot the probability P (qA) as a function of qA for all possible values of qA.

Solution:
The program is listed above.
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Figure 1: Plot of the probability P (qA) for NA = NB = 50 and q = 100.

(n) What is the most probable macrostate? What is the probability of the
system being in the most probable macrostate compared to all other
macrostates in the system? Comment on the result.

Solution:
The most probable macrostate occurs for qA/NA = qB/NB = q/N , that is for
qA = 50. The probability for this macrostate is 0.0562.

(o) We start from a system with qA = 0 and qB = 100 before the systems come
in thermal contact. What is the probability of being in this state after the
system has reached equilibrium?

Solution:
Calculated by the same program. The value is 1.4820 · 10−19.

The microstate of the system is given by the energy of each oscillator given
as ni for each of the oscillators. We start by studying a single system with
N oscillators and energy q. You can generate the initial state by placing each
energy unit in a random oscillator. (Some oscillators may receive more than
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one energy units and some may receive none). At each timestep we attempt a
transfer of energy from one oscillator to another oscillator using the following
algorithm. Select an oscillator n1 at random. If the oscillator has zero energy,
do nothing, if the oscillator has a positive energy, select another oscillator n2 at
random and transfer one unit of energy from n1 to n2. Repeat the process for
as many “timesteps” as you want.

(p) Write a program to generate the initial microstate and the “time” devel-
opment of the microstate. Plot the initial state and the state after 100
flips.

Solution:

% MC for a two part Einstein crystal

clear all;

NA = 100;

NB = 100;

qA = 300;

qB = 0;

q = qA + qB; % Total energy

N = NA + NB;

state = zeros(N,1);

% Generate initial , random state

placeA = randi(NA,qA ,1);

for ip = 1: length(placeA);

i = placeA(ip);

state(i) = state(i) + 1;

end

placeB = randi(NB,qB ,1);

for ip = 1: length(placeB);

i = placeB(ip);

state(i) = state(i) + 1;

end

plot(state)

% Simulate state development

nstep = 100000;

EA = zeros(nstep ,1);

EB = EA;

for istep = 1: nstep

% Select oscillator at random

i1 = randi(N,1,1);

% Check if it has energy

if (state(i1) >0)

% Then find other state

i2 = randi(N,1,1);

state(i2) = state(i2) + 1;

state(i1) = state(i1) - 1;

end
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% Plot

subplot (2,1,1)

plot(state),drawnow

xlabel(’i’);

ylabel(’n_i’);

subplot (2,1,2); % Avg energy in each system

EA(istep) = sum(state (1:NA))/NA;

EB(istep) = sum(state(NA+1: end))/NB;

plot ((1: istep),EA(1: istep),’-r’ ,(1:istep),EB(1: istep),’-

b’);

drawnow

xlabel(’t’);

ylabel(’q_A/N_A , q_B/N_B’)

end
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Figure 2: Plot of the initial and the final state after 100 flips. N=200, q=300.

(q) Divide your system into two parts, each part havingN/2 oscillators. We call
the first N/2 oscillators system A corresponding to oscillators i = 1, N/2,
and the second N/2 oscillators system B, corresponding to oscillators i =
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N/2 + 1, N . Plot qA/NA and qB/NB as a function of time. Comment on
the result.

Solution:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

t ime

e
n
e
r
g
y
p
e
r
o
s
c
il
la
t
o
r

Energy distr ibution between subsystems

l ef t half

r ight half

Figure 3: Time evolution of the energy distribution between the two subsys-
tems. N=200, q=300.

(r) Initialize the system with all the energy in the system A only. Plot the
average energy per oscillator (qA/NA and qB/NB) as a function of time
and and comment on the result.

Solution:

(s) Starting from an equilibrium configuration (either by starting from a ran-
dom configuration or by running a non-random configuration for a long
time before starting measurements) plot the probability of the macrostates.
Comment on the results.
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Figure 4: Time evolution of the energy distribution between the two subsys-
tems. Initially all energy is in the left subsystem. N=200, q=300.

Solution:
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Figure 5: Probability of the macrostates. N=200, q=300.
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Figure 6: Example state (top) and time development of the average energy per
oscillator for a system divided into two parts A and B.
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