
Exercise week 37: FYS2160, Thermodynamics and statistical physics

Problems from Schroeder: 2.28, 2.30, 2.32, 2.38, 2.42, 3.5, 3.7, 3.13

Solution:
Problem 2.28:
There are 52 cards that could be on top, and for each of these choices there
are 51 possibilities for the next card, then 50 for the next and so forth down
to the 1 choice for the bottom card. The total number of card configurations
is the permutation of 52 cards: Ω = 52!. If all states are accessible, then the
configurational entropy is

S = k lnΩ = k ln 52! = 2.16× 10−21J/K

in SI units and
S

k
= lnΩ = ln 52! = 156

Solution:
Problem 2.30:
(a) From problem 2.22b we know that the total number of microstates is

Ωtotal =
24N√
8πN

thus giving the entropy

S

k
= ln

24N√
8πN

= 4N ln 2− 1

2
ln 8πN = 2.77× 1023 − 28.1

for N = 1023.
(b) From problem 2.22c we know that the multiplicity of the most probable
macrostate is

Ωtotal =
24N

4πN

thus giving the entropy

S

k
= ln

24N

4πN
= 4N ln 2− ln 4πN2.77× 1023 − 55.5

for N = 1023.
(c) The difference in the two entropies is only 55.5− 28.1 = 27.4 in units of the
Boltzmann’s constant, k. This is negligible compared to the main contribution
4N ln 2.

(b) Inserting the partition causes the entropy to decrease by about 27 units
out of 4N ln 2 units, which again is a negligible effect.
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Solution:
Problem 2.32:
Taking the logarithm of the result of problem 2.26 and using Stirling’s approx-
imation:

S

k
= ln

(
1

(N !)2

(
2πmUA

h2

)N
)

= N ln

(
2πmUA

h2

)
− 2(N lnN −N)

Solution:
Problem 2.38:
Multiplicity due to mixing:

Ωmixing =
N !

NA!NB !

hence the change in entropy of mixing is ∆Smixing = k lnΩmixing. Assuming
that both NA and NB are large so we can use Stirling’s approximation

Smixing ≈ k[N lnN −NA lnNA −NB lnNB ]

Expressing NA and NB in terms of the concentration x = NB/N of component
B: NA = (1− x)N and NB = xN ,

Smixing = −Nk[x lnx+ (1− x) ln(1− x)]

Solution:
Problem 2.42:
(a) In the SI system, the units of G are N ·m2/kg2. 1N = 1kg ·m/s2, so the
units of G can also be written as m3/kg · s2. Mass M has units of kg and the
speed of light c has units of m/s. We can get meters by combining G or c to
cancel seconds, as G/c2, which has units of m2/kg. Hence the typical radius is
∼ MG/c2 .
(b) The entropy of a system is of the same order as the number of particles in
the system, N . If we compress it to form a black hole, the 2nd law requires
that the entropy of the black hole is still at least of order N . But since the
end state is the same whether we start with a lot of particles or a few, the
final entropy must in fact be of the same order as the maximum N , the largest
possible number of particles that it could have been formed from.
(c) Suppose we have N photons, each with wavelength equal to the size of the
black hole: λ = GM/c2. The photon’s energy is ϵ = hc/λ, and the total energy
of the photon gas equals Mc2

Mc2 = Nϵ =
Nhc3

GM
→ N =

GM2

hc

2



and the entropy is of the same order as N

S ∼ k
GM2

hc

(d) For a one solar mass black hole

S

k
=

8π2(6.67× 10−11N ·m2/kg2)2(2× 1030kg)2

(6.63× 10−34J · s)(3× 108m/s)
= 1.06× 1077

For comparison, an ordinary star has a number of particles of the order of
1057 particles. Thus implying an entropy of order 1057k, giving the solar mass
black hole an entropy of 20 orders of magnitude greater than a comparable sun.
In other words, black holes has an enormous entropy compared to comparable
ordinary stellar objects.

Solution:
Problem 3.5:
From problem 2.17 we know that the multiplicity of an Einstein solid in the low
T limit, q ≪ N is

Ω(q,N) =

(
eN

q

)q

thus giving the corresponding entropy

S(q,N) = k ln

(
eN

q

)q

= kq[lnN − ln q + 1]

The internal energy is U = qϵ, where ϵ is the size of the each energy unit. This
allows us to express the entropy as function of internal energy:

S(U,N) =
kU

ϵ
[lnN − lnU + ln ϵ+ 1]

The inverse of temperature is then

1

T
=

(
∂S

∂U

)
N

=
kU

ϵ
ln

Nϵ

U

By reordering the expression and exponentiating both sides, we find the internal
energy of the Einstein solid as a function of temperature for a given N :

U = Nϵe−ϵ/(kT )

Solution:
Problem 3.7:
From problem 2.24 we know that the entropy of a black hole is

S(U) =
8π2GM2k

hc
=

8π2GU2k

hc5
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where U = Mc2 is its internal energy. Hence, the temperature of the black hole
is

T =

(
∂S

∂U

)−1

=
hc3

16π2GMk

for M = 2× 1030kg, the temperature is evaluated to

T = 6.1× 10−8K

giving the back hole a very low observable temperature. Figure 1 shows a sketch
of the entropy of the system.

U

S

Entropy of black hole

Figure 1: A sketch of the entropy of a black hole as a function of temperature.

Solution:
Problem 3.13:
(a) Assuming an average of 8 hours of sunlight per day, then 1 m2 of Earth’s
surface receives in 1 year a total energy of

(1000J/s)(3600s/hr)(8 hrs/day )(365 days) = 1.05× 1010J

The entropy gained by the Earth upon receiving this heat:

∆SEarth =
Q

T
= 3.5× 107J/K

The entropy lost by the Sun is 20 times smaller than this, since the sun’s surface
is 20 times hotter than the Earth’s,

∆SSun = −0.175× 107J/K

The total change in entropy (rounded off):
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∆SSun +∆SEarth ≈ 3× 107J/K

(b) The net reduction in entropy is

Nk = nR ≈ (1000 moles )(8.3J/mol ·K) ∼ 104J/K,

about 3000 times less than the entropy created by sunlight warming the ground.
The growth of the grass merely reduces the increase in entropy by a tiny fraction
of a percent and is thus negligible.
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