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Abstract

The ideal gas is a theoretical idealisation that is valid for gases at low
pressure and density. In this exercise you will do experiments to probe the
range of validity of the ideal gas model and the degrees of freedom
of the gases. You have two types of instruments at your disposal to do
experiments,

• Kundt’s tube that measures the speed of sound in three physical
gases:

– air

– CO2

– argon

• Lammps MD simulator that can be used to measure the com-
pressibility and the heat capacity in three model gases:

– atomic LJ

– diatomic LJ with spring bond

– diatomic LJ with stiff bond

The objective of this lab is to find answers to the following
questions:

• When can we consider a real gas to be ideal?

• In what range of pressures, densities and temperatures are the devi-
ations from ideality negligible? (What is ”negligible”?)

• In which sense can molecular gases be considered ideal gases?

• Can we model the deviation from ideal behaviour?

• Do the MD model predictions agree with experiments?

You can explore this “unstructured problem formulation” in the way you
want to. If you find this too difficult, we have formulated some more
structured “tasks”. In both cases: in order to answer the questions well
you will have to analyse your results as you go and refine your physical
and numerical experiments.
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Practicalities

• You need to read this document and prepare yourself before the lab

• You need to bring your own laptop with the following programs installed
and working:

– Lammps

– Ovito

– Matlab or Python

– scripts/pieces of code to do linear regression and analysis of accuracy
on data

• The lab lasts a whole day from 08:15-16:00. During this time you will

– do physical experiments

– do Lammps simulations

– analyse, interpret and discuss data

– discuss physics

– write a report

• The report should be handed in by Sun 23:59

About the report

Document your work and what you learn in one single report including both
experiments and simulations. We suggest that while you work you will document
in you report: your planning, why you do the experiments you do, your reasoning
when obtaining the results, change of plans, new results and final conclusions.
This will make the document something between a lab notebook and a report.

We suggest writing the report in LATEXusing Overleaf, but you may also use
Jupyter notebook, Matlab livescript or a word processing system like Word. The
report you deliver on Canvas should be a single PDF file. Students working in a
group may deliver identical reports. Students working together should identify
their partners on the front page of their report.

Before you leave the lab you have to show your report to a supervisor.
The supervisor will decide if your report is close enough to be finished. The
report must be handed in no later than 1 day after the lab is finished.
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1 The ideal gas and degrees of freedom

The simplest model of an atom is an indivisible mathematical point (rigid ball)
without “personality” (i.e., no other physically measurable attributes). The
simplest model of a molecule is rigid ball atoms which are connected by “sticks”
with no structure. This ball&stick molecule can move and rotate in space, but
that is all. A better model is to replace the sticks with springs, so that the
molecular bond also can vibrate (ball&spring model). These two molecular
models come in variants: quantum mechanical (QM) and classical. The QM
models have discrete energy levels of rotation and vibration. These discrete
levels, εi, are occupied according to the Boltzmann probability Pi =

1
Z
e−εi/kT ,

where Z is the partition function. This means that at temperatures T ≪ εi/k
there will be no rotation/vibration. In the classical model there will always be
some rotation and vibration.

1.1 Heat capacity of ideal gases

For ideal gases we have a very direct bridge between micro- and macro-physics,
via the heat capacity :

CV = (
∂U

∂T
)
V

(1)

Cp = (
∂U

∂T
)
P
+ P (

∂V

∂T
)
P

(2)

In the ideal gas model air molecules (ball, ball&stick, ball&spring) do not in-
teract and the only contributions to the heat capacity is from each molecule
separately. Therefore, the only information that thermodynamics retains about
this “mathematical” gas is how many thermodynamic degrees of freedom f the
molecules have, and how heavy they are. The more degrees of freedom the
molecules have, the more heat they can store.

The heat the molecules can store is measured by the molar heat capacities
cp = Cp/nmol (constant pressure; isobaric process) and cV = CV /nmol (constant
volume; isochoric process), where nmol is the number of moles used to measure
the extensive heat capacity Cp and CV . nmol is the amount of matter measured
in the SI unit mol. The number of moles of gas molecules is nmol = m/Mmol =

N/NA, where m is the mass of the gas, Mmol is the mass of one mole of the
gas (the molar mass), N is the number of molecules in the gas, and NA is
Avogadro’s number.

In an ideal gas at normal temperature every degree of freedom contributes
R/2 to cV :

cV = f
R

2
, cp = (f + 2)

R

2
,

where R is the molar gas constant (a.k.a. the universal or ideal gas constant)

cp − cV = R = 8.3144598(48) J/(K ⋅mol).

3



Figure 1: Idealised behaviour of heat capacity of simple molecular gases as

function of temperature, ĉV =
CV (T )
nmolR

=
cV (T )

R
. The temperatures Trot and Tvib

is where the quantized rotational and vibrational states are excited. Which type
of molecules can be assumed to follow such an idealised behaviour?

The adiabatic index (a.k.a. the heat capacity ratio, the ratio of specific heats,
Laplace’s coefficient, or the isentropic expansion factor) for an ideal gas is

γ =
cp

cV
=
f + 2

f
. (3)

This ratio determines the macroscopic adiabatic equations for an ideal gas, which
assert that pV γ , T V γ−1, and T p1/γ−1 are constants.

1.2 Speed of sound of ideal gases

From wave mechanics we know that the speed of sound c depends on the density
ρ of the material (gas) and the adiabatic compression modulus K:[5]

K = −V
dp

dV
= γp Ô⇒

c =

√
K

ρ
=

√
γp

ρ
=

√
(f + 2)p

fρ
,

where we have used that K = γp follows from the adiabatic equation p ∝ V −γ

and Eq. (3).

Example: The density of air is ρ0 ≈ 1.29kg/m
3
at T0 = 0○C at sea level,

where the air pressure is p0 = 1 atmosphere ≈ 1.0125 × 105Pa. If air is an ideal
gas, then f = from = 3 + 3 − 1 = 5 gives the speed of sound c0 ≈ 331.5m/s, which
is in good agreement with the experimental value.[2]

4



From ρ =m/V = nMmol/V and pV = nRT we get a thermodynamic equation
for c in an ideal gas:

cid(T ) =

√
(f + 2)RT

fMmol
, (4)

where T is the absolute temperature (measured in K).

Notice that the molar mass Mmol determines the speed of sound: the lighter
the gas, the faster sound waves move through it. Compare for example the
speed of sound in helium, which at room temperature (20○C) is more than 1000
m/s (cf. inset in Fig. 13), with the speed of sound in air. An exception from
this rule is neon, which is a bit heavier than ammonia and water: Mmol(NH3) =

17.03g/mol <Mmol(H2O) = 18.02g/mol <Mmol(Ne) = 20.12g/mol. The reason
is that neon has fewer degrees of freedom, which in this case is enough to
overcome the small difference in molecular masses.

2 Real gases

For an ideal gas the equation of state is

pV = NkT = nmolRT.

The fact that most substances can change phase from gas to liquid and solid
shows that the ideal gas model is very limited in it’s applicability. We are
interested in how applicable the ideal gas model is for substances we know as
gases in our daily lives: air (mainly N2 and O2), CO2 and argon.

2.1 Virial expansion

Rearranging the ideal gas equation of state in terms of the compressibility factor,
Z = pV

NkT
= 1, we can express deviations from the ideal gas model in terms of

the virial expansion.

Z =
pV

NkT
= 1 +Bρ +Cρ2 + ..., (5)

where ρ = N/V and B and C are the virial coefficients. This virial expansion is a
macroscopic model equation of state that takes into account that the molecules
have finite size and interact. A positive second virial coefficient signifies that
the final size of the molecules and repulsive interactions between them dominate
(see Figure 2), a negative B signifies that the attractive interactions between
the molecules dominate.

2.2 Heat capacity

In real gases the internal energy has contribution from both kinetic energy of the
molecules, Uk (as for ideal gases) and potential energy from interaction between
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Figure 2: Non-ideal gases have compressibility factors that deviate from 1. The
second virial coefficient B is a measure of positive or negative deviation from
ideality.

molecules Up, U = Uk + Up. The Lennard-Jones interaction energy, Uij(rij), in
equation (8) is a model of such interaction energies with a positive energy for
distances rij < σ and negative energies for distances rij > σ. From the definition
of the heat capacities (1) and (2) it is clear that the addition of Up will change
the heat capacities. An estimate of the correction to the heat capacity is:

ĉV =
CV

ρnmol
≈ ĉV,idealgas − 2ρT

∂B

∂T
(6)
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3 Experiments using sound waves

Figure 3: Original illustration from the article by August Kundt in Annalen der
Physik in 1866, which shows standing waves inside Kundt’s tube.[1] We shall
here repeat his experiment with modern equipment, with one of the objectives
being to test thermodynamic gas theory.

Sound is a longitudinal pressure wave, and the speed of this wave depends
on temperature, pressure, and other thermodynamic quantities. We are here
going to use Kundt’s tube to measure the speed of sound (cf. Fig. 3), use this to
investigate how the heat capacity c∗(s,Mmol, T ) depends on molecular structure
and temperature, and compare and contrast this with the theory of ideal gases.

3.1 Experimental determination of the speed of sound by
finding resonances in the tube

We can determine the speed of sound in a gas by identifying the resonance
frequencies of standing waves inside a tube, since we know that the velocity c of a
wave always is given by c = λν, where λ is the wavelength. From wave mechanics
we know that a standing wave in a closed tube with resonance frequency νn has
wavelength λn = 2L/n, where L is the length of the tube and n is an integer
(n = 1,2,3, . . . ). Combining these results we obtain the linear function

νn = an + b, a =
c

2L
, (7)

where the speed of sound is determined by the slope a. To get a better linear
fit for the slope we leave the value of b undetermined.[3]
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Figure 4: Sketch of the device used to measure the speed of sound in a gas
(air, argon, or CO2, in this lab). The temperature inside the tube is monitored
by a tiny thermistor (not shown here) that does not obstruct the sound waves.
Two of the tubes are wrapped with a heating cable and and one of these with
insulation (not shown here) so that the gas can be heated (to at most 70○C).
OBS: The recommend heating voltage (or current) is shown on the stand holding
the tube.

The uncertainty δc of your best estimate c̄ = 2L̄ā of the speed of sound is
obtained by using the “Pythagorean method” (described in the appendix) for
calculating how the uncertainties of a and L propagate through the function
c(a,L) = 2La. The value of L and δL is given on each tube (they are not all the
same).

3.2 How to carry out the experiments

How the temperature is measured and how to calculate the temperature is
described in section C

We are going to use standing waves to measure the speed of sound, with an
apparatus sketched in the diagram shown in Fig. 4.

The gas is contained inside a long tube (with a specified internal length L
with uncertainty δL = ±1.5mm, measured with a laser), which is plugged at
both ends with massive metal disks. One of the plugs has a small hole in the
center that emits sound waves from a loudspeaker attached to the outside of
the plug. The speaker is driven by an alternating harmonic current delivered by
a signal generator, which has a number of knobs on the right hand side where
the amplitude (signal strength) can be adjusted so that the sound detector does
not “clip” the signal. An input signal of ≈ 35mV (RMS, measured by the
oscilloscope) has been found to give robust results.

The plug at the other end of the tube is equipped with a miniature micro-
phone, which is connected to a battery driven amplifier attached to the outside
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Figure 5: Photograph of the circuit board with on/off switch for the microphone
amplifier, which runs on a small battery (round disk on the right hand side) that
should have a nominal voltage of at least 2.3V.

of the plug (cf. Fig. 5). The signal from this amplifier, which is proportional
to the pressure in the gas at the microphone, is sent to an oscilloscope. The
oscilloscope, a PicoScope, is controlled from a lab-PC via USB. Double-click on
the desktop icon PicoScope-Kundts-K%.pssettings (with %=1, 2, 3, or 4) to
start the PicoScope with settings that are tuned to a 35mV input signal. Make
sure that both the input and output signals are unclipped harmonics (sines)
before you proceed. If there is no harmonic output signal (the ”B” or red trace
on the PicoScope), then use a multimeter to check the health of the battery for
the amplifier (cf. Fig. 5).

Our task is to identify resonance frequencies where the signal is much stronger
than neighboring frequencies. The advanced signal generator can deliver fre-
quencies with a precision of 10−3 Hz, but we cannot determine the maximum
peaks on the oscilloscope with anything like this precision. Estimate the uncer-
tainty in your readings.

There will be four groups analysing the speed of sound in four different tubes:
[ATTENTION: You are not allowed to fill any gas other than air by yourself!]

K1: contains argon or CO2 at T = Troom

K2: contains air at T = Troom

K3: contains air at T ≃ 70○C

K4: contains air at T ≃ 50○C

All results from K1 - K4 will be shared, so that you can compare and contrast
them. After completing the next exercise you will compare these experimental
results with theoretical expectations for ideal gases.
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Structured formulation of tasks

1. Find all resonance frequencies in K1 - K4 in the frequency interval from
about 200 Hz up to about 2 kHz. You may find a resonance below 200
Hz, but that one is so uncertain that it is better to use higher frequencies.
Each reading should be as accurate as you can manage with about 30
seconds of “fine-tuning” for each resonance.

2. Estimate (roughly) the uncertainty in each frequency measurement. Since
it is difficult to find the longest wave (how long?) it is better to plot
differences. This eliminates any systematic mislabeling of the data, i.e.,
use ∆νk from the previous exercise.

3. Find the best linear fit to the data, and use Eq. (7) to find the speed of
sound.

4. What is the most important contribution to the uncertainty? You may
find the PYTHON code in the appendix useful. It will return the least
squares fit to the data, including the uncertainty in the slope. Verify that
including more points shrinks this uncertainty.

5. Determine the thermodynamic degrees of freedom of the gases from the
experiments and compare to your theoretical prediction.

6. Compare experiments to simulation and theory. Remember to use the
uncertainties of your measurements when comparing!

7. Extra: Use the principle of corresponding states to determine which T ∗

and ρ∗ your experimental conditions of CO2 correspond to. Using Lammps,
determine the compressibility factor Z at this state. Use the compress-
ibility factor to correct the theoretical estimate of the speed of sound cs.
Does this improve the agreement between experiment and theory?
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4 Molecular dynamics simulations

In order to better understand the relation between microscopic, molecular pa-
rameters and macroscopic properties like compressibility and heat capacity we
can use Molecular Dynamics (MD) to study molecular models. The simplest
model is to represent the molecule as a spherical particle with a finite diameter
σ and attractive energy ε.

4.1 Lennard-Jones

The atomic pair interactions in both the atomic and N2 simulations are defined
by the Lennard-Jones/cut potential:

U(r < rc) = 4ϵ((
σ

r
)
12

− (
σ

r
)
6

) (8)

U(r ≥ rc) = 0,

that has a characteristic energy, ϵ, diameter σ and cutoff distance rc. The cutoff
distance is set to rc/σ = 2.5 in this pair interaction definition for Lammps:

pair_style lj/cut 2.5

4.2 Molecular models with atoms and bonds

Since the LJ model does not have any internal degrees of freedom we have to
use a molecular model to get a better representation of the heat capacity. The
diatomic Lennard-Jones molecule consists of two identical atoms connected by
a bond. A bond can be modelled as quantum mechanical harmonic oscillator,
but since the MD simulations are classical we will use either a spring or a rigid
bond connecting the two atoms. In Lammps the bond defined by

bond_style class2

bond_coeff 1 r0 K2 K3 K4

is
E =K2(r − r0)

2
+K3(r − r0)

3
+K4(r − r0)

4.

The other option is to fix the distance between the two atoms with the command

fix shake all shake 0.0001 20 0 b 1

and the length of the bond is set to 0.7σ in the file diat.molecule.

4.3 Simple MD experiments

There is a range of MD experiments that you can do, but we will only mention
two simple experiments. Both experiments require that you use thermodynamic
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data from the file log.lammps, enter them into Python or Matlab and do linear
regression of some theoretical function to the data. You may yourself choose at
what temperature you will start the experiments:

variable T equal 1

Here kBT /ϵ = 1. And if your computer is fast you may want to increase the
number of atoms/molecules

variable N equal 100

You may have to increase the run length (for example run 100000) in order to
get stable measurements.

4.3.1 Compressibility

If you do a number of simulations at the same temperature, but vary the density,
you can record the pressure as function of density to calculate the compress-
ibility. You may vary the density by changing the variable rho from 0.002 to
something else in

variable rho equal 0.002

4.4 Heat capacity

Both the atomic (heatcapLJ.in) and molecular (heatcapLJdiat.in) input files
are prepared to do an experiment where a certain amount of energy, eFlux, is
added to the system in each time step.

fix heat all heat 1 ${eFlux} region simbox

From the temperature and energy measurement you may then calculate the heat
capacity of the system. Remember to set eFlux to zero when you do not want
to add energy during the simulation.

5 Structured formulation of tasks

Read the Lammps input scripts heatcaplj.in and heatcapljdiat.in provided
for running Lammps simulations. The scripts specify an experiment where the
model gas is thermalized for some timesteps and then in the last run some
energy is added to the system at each timestep. We are interested in how much
the system temperature rizes when heating. From this you can calculate the
heat capacity and compare to the experiments and ideal gas theory.

Try to understand what the input file specifies about the simulations: Num-
ber of particles N , density ρ, volume V , temperature, T , initial configuration,
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Figure 6: Phase diagram of the LJ model.

what is kept constant (NVE, NVT, NPT), heat flux, atom/molecule model,
dump output and thermodynamic output.

Do some test runs and open dump.lammpstrj with a visualizer like Ovito to
get an idea of what is going on. Try to vary the number of particles, density,
starting temperature and energy flux and note how these changes affect the
simulations. Find a density-temperature phase diagram for your system and
note where in the phase diagram all of your simulations are performed.

Write a simple analysis script in Matlab or Python that uses the thermody-
namic data in log.lammps and trajectory information in dump.lammpstrj.

Task 1

Run simulations on the Lennard-Jones system. From the data in the logfile and
trajectory files determine CV and Z with uncertainties. Compare the values to
the ideal gas values and comment. Determine the number of degrees of freedom
of the gas particles.

Solution:
I would like my system to be in the gas phase for all temperatures, thus I choos
half the triple point gas density, ρ∗ = 0.001 and I start the simulation slightly
below the triple point temperature, T ∗ = 0.6. First time I run the simulation I

13



Figure 7: First simulations yielded a slope of 3/2, thus number of degrees of
freedon f = 3/2.

just use the ”eFlux=1” that was in the input file. The first run I try 100000
timesteps. Observing the output to screen I see that the temperature only changed
by 0.68. First simulation yielded a slope of almost 3/2, thus number of degrees
of freedon f = 3/2. The very small standard deviation only says that the line is
very straight. The value of the slope is 1 % too high compared to an ideal gas.
Is this because the gas is too dense? I ran the simulation again with ρ∗ = 0.0001
and then the deviation was only 0.3%

I used a simple Matlab script to do this:

fs=20;

logdata = readlog(’log.lammps’);

lastarray=str2num(logdata.data{4});

%Step Temp E_pair E_mol TotEng Press

T=lastarray(:,2);

E=lastarray(:,5);

figure(1)

X=[ones(size(T)) T];

[ b,stdb ] = linregr( X,E );

Ehat=X*b;

plot(T,E,’.k’,T,Ehat,’--r’)

text(0.7,1.6,[num2str(b(2)),’ +/- ’,num2str(stdb(2))],’FontSize’,fs)

%%%%% pretty plotting

ax2=gca;

ax2.FontSize=fs;

ax2.FontName=’TimesRoman’;

xlabel(’T^*’)

ylabel(’E^*/N’)

title(’Heating of LJ gas with \rho^*=0.0001’)

Now I got curious about what it will be in the liquid phase. So I started a
simulation at the triple point density ρ∗ = 0.85 and a temperature slightly above
the triple point temperature, T ∗ = 0.8. I ran the simulation for 500000 timesteps
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Figure 8: The liquid phase is clearly not an ideal gas!!

Figure 9: From triple point temperature to very high supercritical.

to be sure to get above the critical temperature. The simulation is now much
slower because forces need to be calculated between many more atoms at each
timestep. Figure 8 shows that it is clearly not an ideal gas since the slope is now
2.4!

Task 2

For a gas density try temperatures from the triple point temperature to 10 times
the critical temperature. Do CV and Z change with temperature?

Solution:
Figure 9 shows that the slope does not change at all, even going to very high
temperatures. This is not surprising because there are no extra degrees of freedom
that get excited.
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Figure 10: Density dependence of the compressibility factor and the heat ca-
pacity divided by the ideal gas value 3/2.

Task 3

For a temperature above the critical temperature try densities from a dilute gas
to the triple point. Do CV and Z change with density?

Solution:
Now I need to do many short simulations. I have already done one at triple
point density which was very different from the gas. I will start all simulations
at T ∗ = 1.4 and try logarithmic change in density: ρ =0.0001, 0.001, 0.0016,
0.0032, 0.0064, 0.0128 0.0256, 0.0512, 0.1024, 0.2048, 0.32, 0.4096, 0.5, 0.6,
0.7, 0.85.

In figure 10 one observes that both the curves have local extrema at the
critical density!In addition, the compressibility curve shows that at intermediate
densities the supercritical fluid is dominated by attractive interactions, whereas
above ρ = 0.5 the repulsive interactions dominate.

Task 4

Now perform a simulation to determine CV for the two N2 models. Comparing
CV to ideal gas CV : how many degrees of freedom do these N2 models have?
How does this compare to the number of degrees of freedom that you derived
from sound velocity measurements in the lab?

Solution:
Figure 11 shows that the slope is 1.74 and does not change with temperature.
Since it is classical I expected all degrees of freedom to be excited all the time.
Then I expected Cv = 7/2 = 3.5. Visualization in Ovito shows that the molecules
are spinning like crazy from the start. Then they are moving faster and faster
in their translational trajectories. Maybe they do not collide enough to exchange
energy between the degrees of freedom? Maybe the heating rate (eFlux=10) is
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Figure 11: Heat capacity experiment for N2 model with spring and eFlux=10
on the left side and eFlux=0.1 on the right side

Figure 12: 2 million timestep run with stiff N2 molecule and eFlux=0.05. Slope
is 1.25.

way too fast? I’m trying again with eFlux=0.1. The slope is still 1.75.

To end off I started a run with rigid N2 molecules, eFlux=0.05 and 2 million
timesteps. The very strange result is that the slope is 1.25, not 2.5. Ahh, one
needs to multiply by 2 for the N2 models, because the energy is per atom, not
per molecule!!So that means C∗v /N = f/2 = 5/2 as expected. Then the slope 1.75
gives C∗v /N = f/2 = 7/2 for the flexible N2.
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A Models and experiments

Real materials consist of atoms, which are made of electrons, protons and neu-
trons, which are made of quarks and gluons, which are .... How can we do
physics when matter is so complicated? The answer is that we can model the
“cosmic onion” one layer at a time. Physics is the art of simplification, i.e., of
ignoring those details that are irrelevant for what one has chosen to model.

This is possible because most of the details that are important (relevant) for
microphysics are unimportant (irrelevant) for macrophysics. Consider the Solar
system. Compared to a planet you are microscopic, and completely irrelevant
for the planet’s trajectory through space and time. Planetary trajectories can
be determined to very good accuracy by modelling the Sun and planets as points
obeying Newtonian mechanics.

It is not unusual that macroscopic concepts have no microscopic meaning.
An atom has neither pressure nor temperature. This phenomenon, that the
whole (collective behaviour) is more than (or at least different from) the sum
of its parts, is called emergence. That the “collective” (the gas) forgets the
“personality of its individuals” (microscopic details of the molecules) is called
universality. Without these concepts we cannot understand physics or any other
natural science. The prime example of this is thermodynamics and statistical
mechanics.

One of the purposes of this lab is to encourage you to reflect on what is
important, and what is not, in thermodynamic gas theory. Our first task is find
out how to model the molecules in a gas: what is relevant, and what is not?
We wish to find out how thermodynamic variables like pressure and tempera-
ture capture the collective macroscopic behaviour of the myriad of microscopic
constituents (atoms or molecules).

A.1 Comparing theoretical models with experiments

A comparison of experimental data and theoretical results is meaningless unless
you have a “stick” to measure the distance between them. This measuring stick
is the “error” or “uncertainty” of your measurement!

It makes no difference whether the theoretical model is analytical or nu-
merical. You may be able to solve a sufficiently simple model analytically and
thereby obtain exact theoretical values of observables, but this has no value
unless you have experimental data with error bars that can be used measure
how well the model simulates reality.

In the absence of “the untimely intrusion of reality” (experiments), no matter
how hard you work on your model this will only teach you something about the
model, nothing at all about the real world.

Furthermore, since all models have limited validity, it is not sufficient to
only rely on the experimental data that led to the construction of the model in
the first place: it may break down at any time, so you must keep checking the
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model with new experiments adapted to your needs.

In other words, in physics an experimental number without units and error
bars is worthless, and a theoretical number detached from reality is equally
worthless.

B Counting degrees of freedom

We must distinguish between the number of mechanical degrees of freedom (fmech)
and the number of thermodynamic degrees of freedom (f), because they usually
do not coincide at high temperature.

If the temperature T is significantly lower than the characteristic temper-
ature Θ ≃ 1000K where the atoms in a molecule start to vibrate, then the
molecule will behave like a rigid body. Three numbers are needed to specify the
location of the center of mass (3 translational degrees of freedom). In addition
there are at most three rotations of the molecule that can store energy, but if
the molecule has one or more axes of rotational symmetry (s > 0), then these
rotations cannot store energy, and the number of rotational degrees of freedom
relevant for thermodynamics is frot = 3 − s. For T << Θ the number of “rigid”
degrees of freedom is therefore given by

frig = 3 + frot = 6 − s , (9)

where s is the number of rotational symmetries of the molecule. Every rigid
degree of freedom contributes R/2 to the heat capacity. So, for rigid molecules
(i.e., at low temperature[4]) the number of atoms does not matter, only which
shape the molecule has (and its total mass).

Confusing vibes

This section is not relevant for this lab, but is intended to clarify a topic of
much confusion that you may encounter elsewhere.

If T ≳ Θ ≃ 1000K we must include other degrees of freedom. The total
number of mechanical degrees of freedom for n atoms is always fmech = frig +
fvib = 3n, because we need three coordinates to determine the position of each of
the n points, no matter how they move. The number of mechanical vibrational
degrees of freedom is therefore fvib = 3n − 6 + s. Each of these can be modelled
by replacing the rigid rods between pairs of atoms with springs, i.e., harmonic
oscillators.

Each vibration mode contributes an amount R to the heat capacity, so we
can write the total heat capacity as cV = fR/2, where we will call f = frig +
2fvib = 6(n − 1) + s the number of thermodynamic degrees of freedom. At high
temperature the number of thermodynamic degrees of freedom does not equal
the number of mechanical degrees of freedom if n ≥ 2: f = fmech = 3 for n = 1,
but f > fmech = 3n ≥ 6 for n ≥ 2.
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If these concepts are confused, as sometimes happens even in textbooks, then
the counting of relevant degrees of freedom will be wrong. Since a vibrational
mode can not be excited at room temperature, in this lab there will be no
confusion: f = frig = 6 − s for Troom << Θ ≃ 1000K.

The reason that we have to double the counting of vibrational modes is that
an oscillator has both kinetic and potential energy. If we model the bond be-
tween two atoms with a spring of a given stiffness νk (which is determined by
how strong the bond is), then the molecule can store potential energy propor-
tional to νk in the spring when it is stretched or compressed. At sufficiently
high temperature each spring can store equal amounts of kinetic and potential
energy (the equipartition theorem), so each vibration contributes twice as much
as translations and rotations to the capacity of the gas to store energy (the heat
capacity cV ).

We define Θk (k = 1,2, . . . , fvib) to be the characteristic temperature that
must be exceeded in order to excite the vibration mode labeled by k. The value
of Θk ∝ νk/kB is determined by the spring constant νk. For normal molecules
Θk is over a thousand degrees, and by “room temperature” we mean Troom << Θk

(for all k).

C Thermistor physics

The purpose of this part of the lab is to emphasize that the apparatus (sensors)
we use for measurements also are physical systems. They are therefore only
useful to the extent that we understand their physics. Often we use tables
and graphs to convert the independent variable we actually measure to the
dependent variable we need.

A good example that we have encountered before is the Hall effect, which
appears when an electrical current in a solid encounters a magnetic field. This
is an interesting phenomenon that we studied in FYS1120: Electro-magnetism
to get a better understanding of both electromagnetism and the (quantum me-
chanical) band structure of semiconductors. Having understood the physics of
this phenomenon, we can then use it to make devices that measure magnetic
fields with great precision, by measuring the Hall potential transverse to the
current. Such Hall probes are now widely used, and so cheap and tiny that you
probably have a handful in your phone.

To give a quantitative comparison of our sound data with thermodynamic
gas theory we must be able to measure the temperature accurately. We do this
by measuring the electrical resistance Rt of a particular type of semiconductor
called a thermistor. The “thermistor function”, the basic form of which can be
derived from thermodynamics,

TC(r) ≈ 25 − 24 ln r , (10)

where r = Rt/(10
5Ω) and Rt is the Ohmic resistance of the thermistor,[6] is
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Figure 13: By measuring the electrical resistance Rt[Ω] in a thermistor, we
can read off the temperature TC [

○C] from this diagram. Bottom: The red
graph is our approximate (empirical) thermistor function TC(r) ≈ 25 − 24 ln r
[r = Rt/(10

5Ω)], which has been fitted to the manufacturer’s table (blue dots).
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plotted in Fig. 13. Notice that it gives the temperature in Celsius (○C), not in
Kelvin (K)!

We see that this empirical formula (best fit to manufacturer’s data over a
small range of temperatures) deviates slightly from tabulated values at high
temperatures, but since it fits very well (with the uncertainties of our measure-
ments) in the temperature range we are going to study, it is sufficient for our
purposes.[6]

C.1 Linear models

In this lab the objective is to use a little knowledge from wave mechanics and a
few measurements to construct a data list consisting of pairs of numbers, which
can be thought of as points in a plane. Your task is to use this list to find the
most probable value (the best estimate) c̄ of the speed of sound in a gas, and
the uncertainty δc of this estimate.

The simplest way to estimate c̄ is to use a ruler. This is a slightly vague
but very graphic way to illustrate how a line is fitted to a set of data. After
plotting the data points on a plane a transparent ruler is placed on top of the
paper in such a way that the data points are spread out “as evenly as possible”
on both sides of the edge of the ruler. Intuition dictates that this is the “best
fit”. Linear regression is one way to make this intuition precise. All we need is
a simple way to measure how “evenly” the points are spread out.

Notice that you are using the whole data set, and therefore all available
information, when you shift and twist the ruler, and this is clearly a necessary
requirement for a good fit. Notice also that only in rare cases does a data point
sit right on the line, and it is usually not a good idea to “connect the dots”,
since this may be misleading as it does not combine the data set in a physically
meaningful way.

A ruler is a good way to get a rough idea of the fitted line, but in reality
we also use a computer to make this procedure quantitative. It tries out “all
possible” lines y = ax + b by changing the slope a and intercept b (constrained
to a finite number by some built in numerical resolution). For each choice of
line the sum of the squares of the (vertical) distances of the data points to the
line is calculated. By definition, the winner (i.e., the “best fit”) is the line with
the smallest sum of squares. The slope ā of this line contains the information
about the best estimate of the speed of sound. (In other experiments we may
also be interested in the best estimate b̄ of the intercept, but not here.)

The spread of the data points around the line gives us the standard deviation.
If you do not already have a favourite application that fits a line and calculates
the uncertainty of this estimate automatically, you may wish to use these two
lines of PYTHON.

x=[1,2,3...,n]

y=[f1,f2,f3,...,fn]
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from scipy import stats

stats.linregress(x,y)

It does not get any simpler than that.

Without a universal line-fitting tool you cannot do physics, so if this is not
already hardwired into your brain you should have that done now!

In the final part of this lab you are going to compare your experimental
results with the theory of ideal gases, which asserts that c ∝

√
T . You must

therefore also estimate the most probable value T of the average temperature
inside the tube when you obtained the data. This comparison is meaningless
unless you can estimate the uncertainty δc of the estimate c̄, and the uncertainty
δT of your estimate T .

It has no meaning to say that two numbers are “near” each other unless you
have a “measuring stick” to measure the distance between these numbers.

Is the estimated value π̄ = 3.1415 of the circumference to diameter ratio of
any circle (obtained by wrapping wires around circles of many different sizes,
say) “near” the exact value π = 3.1415926535897932 . . . (exact if you knew all
the dots), even if there are infinitely many numbers between these two (always!)
distinct numbers? The measuring stick is the variance (standard deviation) of
the estimated value, so if you misplace this stick you have nothing! If the
uncertainty in the estimate of π̄ is δπ = ±0.001, then π̄ and π must be treated
as the same number in physics, because we have no empirical information that
allows us to say otherwise. If the uncertainty in the estimate π̄ is δπ = ±0.0001,
then π̄ and π should be treated as different numbers in physics, because we do
have empirical evidence allowing us to say that it is very improbable that they
actually are the same number. This conclusion is not absolutely certain, but
absolutes have no place in science. Our ambition is to know how uncertain our
knowledge is, not to find “absolute truth”.

The “uncertainty” in data that comes from unavoidable statistical variations
(often called “errors”, unfortunately) can be made as small as you can afford,
by collecting more data. How big must the deviation be before we can say that
the data do not support the model? There is no right answer to this question,
but at least in particle physics the convention is that if the discrepancy is more
than 5 standard deviations (“sigma”) (the probability that this is a random
statistical fluctuation is less than 1 in 3.5 million), then there is a real problem,
and usually the model (theory) is in big trouble. However, sometimes the lack
of agreement is caused by unknown systematic errors that often derive from
an inadequate understanding of the measuring apparatus. If this is the case,
then an improved experiment (rather than an improved theory), which actually
measures what we think it is measuring, is what is needed. Systematic errors
is the Achilles’ heel of any experiment, because there is no systematic way of
identifying their sources.
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C.2 Pythagorean error propagation

When the best line has been found we can calculate the “spread” δa (variance,
standard deviation) of the slope ā of this line.

The standard deviation is defined in such a way that if you repeated the
exact same experiment many times, then you would find

a ∈ ⟨ā−δa, ā+δa⟩ in ca. 68.27% of the experiments, a ∈ ⟨ā−2δa, ā+2δa⟩ in ca.
95.45% of the experiments, a ∈ ⟨ā−3δa, ā+3δa⟩ in ca. 99.73% of the experiments,
a ∈ ⟨ā − 4δa, ā + 4δa⟩ in ca. 99.994% of the experiments, a ∈ ⟨ā − 5δa, ā + 5δa⟩ in
ca. 99.9999% of the experiments, etc.

The best estimate of the speed of sound is c̄ = 2L̄ā, but what is the uncer-
tainty δc of this estimate? More generally: what is the uncertainty in the value
of a function f(x1, x2, . . . ) of one or more independent stochastic variables x1,
x2, . . . , which each has an uncertainty δx1, δx2, . . .?

Each uncertain variable xk contributes to the uncertainty δf of f , but less
than you might naively think. Heuristically, if all the measured values are
independent, then they “pull in orthogonal directions”, and should therefore
not be added linearly, which is the naive guess. That would give an excessively
large estimate of δf .

If there is only one variable, then the uncertainty in f is found by differen-
tiation, δf = ∣df/dx∣δx. If there are two or more variables each one contributes
via partial derivatives, but these should be added “in quadrature”. For two
variables a useful mnemonic is the “Pythagorean uncertainty triangle” shown
in Fig. 14. The uncertainty δf of the best estimate f̄ = f(x̄, ȳ) is given by the
hypotenuse, which is smaller than the sum of the legs,

δf =
√
(δxf)2 + (δyf)2 < δxf + δyf.

(More variables may be accommodated by an obvious generalization of this
formula.) Example:

f(x, y) = xy Ô⇒
δf

f
=

¿
Á
ÁÀ
(
δx

x
)

2

+ (
δy

y
)

2

.

We see that it is the relative uncertainties rx = δx/x, etc. that are relevant.

Since they are squared, a relative uncertainty that is significantly smaller
than the others will not contribute much to the relative uncertainty of f . In
this case we can drop one variable, and the equation simplifies to a much used
form, δf ≈ yδx. Fig. 15 shows how fast the contribution from the least significant
variable, here ry = δy/y, “dies” compared to rx > ry.

So, if you decide to use δc ≈ 2Lδa to calculate the uncertainty in the speed
of sound, then you must justify this by verifying that the relative uncertainty
in a is much larger than the relative uncertainty in L.
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C.3 Nonlinear models

The analytic process we have used here to estimate the speed of sound in a gas
is typical. The method is the same for all linear functions, f(x) = ax + b. This
is more general than it looks, because we can often swap a nonlinear function
for a linear one by a change of variables. Some examples are:

• f(x) = a/x + b: define z = 1/x and study instead g(z) = az + b.

• f(x) = c exp(ax + b): take the logarithm on both sides and study instead
g(x) = ln f(x) = ax + b̃, where the new constant is b̃ = b + ln c.

• f(x) = c ln(ax + b): exponentiate both sides and study instead g(x) =
exp f(x)/c = ax + b.

• f(x) = (ax + b)c: take the root on both sides and study instead g(x) =
c
√
f(x) = ax + b.

If it is the uncertainty δx of a variable x that is known (usually determined
by a separate fitting) then you have to use the Pythagorean method, even if
there is only one independent variable x, to find the uncertainty of any quantify
that is a function of x. For example,

f(x) = ax + b Ô⇒ δf = ∣
∂f

∂x
δx∣ = a δx,

while (see above list),

f(x) = a/x + b Ô⇒ δz = ∣
∂z

∂x
δx∣ =

δx

x2

Ô⇒ δg = ∣
∂g

∂z
δz∣ =

a

x2
δx.

If it is the uncertainty δz of a transformed variable z = z(x) that is known,
usually by fitting a linear function g(z) = az + b, then you should use the
Pythagorean method on g(z), not g(x): δg = aδz. The uncertainty in x is
then δx = ∣dz/dx∣δz. For example, if z = 1/x then δz = δx/x2 and δx = δz/z2.
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D Information and tips on using Lammps in
Lab1

This appendix contains some practical information about the molecular dy-
namics simulations of Lab 1, with particular focus on LAMMPS. You will find
practical information about how you should change the input files in order to
run the experiments appropriately, and why these changes are made. In addi-
tion to that, you will find info on how to properly keep track of all the data,
and how to analyze the output of LAMMPS using python.

• Important: Before doing anything at the lab, download the latest files
from the website. This is crucial, as material may be updated frequently.

D.1 Notation and operating systems

Since I’m using Linux, most of this document is written according to this oper-
ating system’s commands. If you use Windows or Mac, that’s fine, but please
modify your commands accordingly. Use the appropriate command for your
software, e.g. lmp or lmp_serial.

D.1.1 Necessary software

Make sure LAMMPS is working on your computer. If you haven’t tested
LAMMPS already, you may use the script myfirstmd.in from the course web
page. Move to the same directory as the file you downloaded and run the fol-
lowing from the terminal: lmp_serial > myfirstmd.in. If it runs without any
warnings, and the two files log.lammps and dump.lammpstrj appear in your
directory, everything should be working fine. If not, please notify the teaching
assistant.

D.1.2 Keeping track of files

Every year there are several students who lose data by overwriting already exist-
ing output, and they lose track of what they have done in previous simulations
by using a single input file for all tasks.

• Input files: Before modifying and running any simulations in LAMMPS,
always make a copy of the .in file. This allows you to revisit and modify
simulations easily. By not modifying a single .in file for each simulation,
you prevent potential errors from propagating through your previous work
unknowingly. Additionally, maintaining control over input files ensures
greater reproducibility in your scientific work. If you ever doubt your re-
sults, having the old .in file allows you to rerun any simulation with ease.
For example, in Task 2, we will create a file named heatcaplj_task2.in,
which we use for that Task 2 only.
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• Output files: Whenever you run a LAMMPS simulation, it generates
two files, log.lammps and dump.lammpstrj. Subsequent simulations will
overwrite these files if they have the same names. Given that you’ll re-
quire outputs from various simulations in this lab, it’s vital to prevent
overwriting. To achieve this, always rename the output files after
each simulation. For instance, after running the simulation for Task
2 with lmp_serial > heatcaplj_task2.in, rename the log.lammps file
to log.lammps_task2. Explicitly naming both input and output files ac-
cording to the task name makes tracking of which input corresponds to
which output very easy.

D.1.3 Reading the logfiles

To read the logfile, and analyze the outputs, we will use the lammps-logfile

package in Python. You can see basic examples of its usage here: https:

//github.com/henriasv/lammps-logfile. To install the package, simply run

pip install lammps-logfile

In section D.2 we provide an example for how to use this package.

D.1.4 Plotting

When plotting, remember that your data are discrete sets. If you’re using
matplotlib to plot e.g. x and y with plt.plot(x,y), matplotlib will in-
terpolate the data and draw connected lines between each point. This can be
extremely misleading, and in worst case you may end up with a wrong interpre-
tation and conclusion. In these labs you will be dealing with simulation outputs,
and you should always plot the true data points explicitly. As long as you’re
doing this, you can also draw lines connecting these points. For the tasks where
there are many data points, you can adjust the individual dots and connecting
lines easily to avoid clutter. Here are three examples using matplotlib:

plt.plot(x,y, ’o’, ms=1)

plt.plot(x,y, ’o-’, ms=1)

plt.plot(x,y, ’o-’, ms=1, lw=0.7)

In the first example we only draw single circles at the data points with ’o’.
With ms=1 (markersize), we reduce the size of the circles (I don’t know the
default value, but it’s larger than 1). In the second and third examples we draw
lines connecting each point. The connecting lines in the latter example have a
reduced line width (lw). The default is lw=1.

D.2 Tasks in MD part of lab

In each of the tasks below, you are given information on what to adjust before
each simulation. In your final report, you should include a brief explanation of
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what you modify for each experiment, and why you modify it. For most of the
tasks, you should be able to justify the modifications using the phase diagram
given in the problem text.

Task 1

In this part, we will run a Lennard-Jones system to compute the CV and the
compressibility, Z = P /(Tρ). Before doing anything, make a copy of the input
file heatcaplj.in -> heatcaplj_task2.in. Now make the following modifi-
cations to heatcaplj_task2.in:

1. We want to ensure a gaseous phase, so we will reduce the density from
0.01 to 0.001.
Line 7: variable rho equals 0.001

2. To get a smoother output we increase the number of iterations of the
simulation from 10000 to 100000.
Line 64: run 100000

Note: Don’t change the other run parameters

3. Run the simulation: lmp_serial > heatcaplj_task2.in

4. Change name of the output: log.lammps -> log.lammps_task2

To analyze the data, we first see which physical quantities are available,
using the lammps-logfile package.

import lammps_logfile

log = lammps_logfile.File("path/to/logfile/log.lammps_task2")

print(log.get_keywords())

The resulting output should be:

[’E_mol’, ’E_pair’, ’Press’, ’Step’, ’Temp’, ’TotEng’]

To get temperature and energy arrays from the log-file, we simply load them
with

T = log.get("Temp")

U = log.get("TotEng")

Note that in some simulations, LAMMPS may use a step to ”calibrate” the
system. It may therefore be a good idea to omit the first point of the data, by
simply adding a [1:] after the parentheses.

Since we are considering an ideal gas in this exercise, there is a simple rela-
tionship between the temperature and energy of the system. Hence, you should
be able to compute CV and estimate the number of degrees of freedom, f , using
only scipy.stats.linregress, i.e. without numerical differentiation.
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Task 2

In this task, we do not want to run multiple simulations with increasing tem-
perature. Instead, we will modify the input such that the temperature increases
sufficiently within a single run.

1. Make a copy of the in-file from task2
heatcaplj_task2.in -> heatcaplj_task4.in

2. Change initial temperature from 1.0 to T ∗t . See figure 6.
Line 3: variable T equal 0.????

3. Change eFlux from 1 to 10, i.e. add ten times as much heat heat each
timestep
Line 11: variable eFlux equal 10

4. Double the number of runs from last exercise to allow the temperature to
increase sufficiently
Line 64: run 200000

5. Run the simulation and change the name of the outputs
lmp_serial > heatcaplj_task4.in

log.lammps -> log.lammps_task4

Repeat the analysis from task 2. Use the phase diagram to explain what you
observe. How does the result change if you change the initial density?

Task 3

Now we are going to test increasing densities. For this, we will use the configu-
ration of Task 2 as our starting point. Since we set the density at the beginning
of the simulation, we have to perform one simulation per density we test. To
get reasonable results, you need at least test 10 different densities. Don’t use
ρ ≥ 0.85. (See figure 6, ρt,l = 0.85) You therefore need ten different in-files,
resulting in ten different out-files. To keep track of all the files, start by making
a directory named task5_infiles, and copy the in-file from Task 2 (not Task
4) into that directory. Additionally, you should indicate the density index in
the filename. For the first simulation, the setup is as follows:

1. heatcaplj_task2.in -> task5_infiles/hatcaplj_task5_rho1.in

2. Choose a temperature above the critical temperature
Line 3: variable T equal 1.4

3. Ensure dilute gas initially. Exact value not important
Line 7: variable rho equal 0.001

4. Line 64: run 100000 (Double check, otherwise it will take a while to run
everything.)
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For N different values of ρi, the recipe is as follows (cp is the command for
copying in Linux/Mac):

1. Run the first simulation
lmp_serial > heatcaplj_task5_rho1

2. Make a copy of the output file with appropriate name
log.lammps log.task5_rho1

3. Make a new input file for the second run
heatcaplj_task5_rho1 heatcaplj_task5_rho2

4. Change density of heatcaplj_task5_rho2 to the new value
Line7: variable rho equal ...

5. Run the new configuration
lmp_serial > heatcaplj_task5_rho2

6. Rename the new output file
cp log.lammps log.task5_task5_rho2

7. Repeat until you have N input and output files, one for every density.

Renaming the output log-files is crucial in this exercise, as we need all N to get
appropriate results. If your initial choice of ρ values don’t give desirable results,
you can update the existing .in files and repeat the simulations. Perhaps you
only have to change a few samples. But, make sure to rename the output files
if you redo any simulations.

Using the N output files, you can loop through them and compute CV and
Z as a function of ρ. Tips for easier comparison: Use your previous results to
normalize CV and Z such that both quantities start at 1.

Task 4

In this exercise, you will perform a similar simulation, but with N2 molecules,
rather than point particles. Download the heatcapljdiat.in file from the
course web pages. Now, we will make two copies.

• Modeling the bond between the two atoms as a rigid rod
Make a copy of the original file:
heatcapljdiat.in > heatcapljdiat_rod.in

Line 13: variable rigidbond equal 1

• Modeling the bond between the two atoms as a spring
Make a copy of the original file:
heatcapljdiat.in > heatcapljdiat_spring.in

Line 13: variable rigidbond equal 0
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The input files read information about the atoms from a separate file, diat.molecule.
Download the file from the course page and place it in the same directory as
the two .in files.

In order to determine the number of degrees of freedom for the molecule, it
will be sufficient to study the two molecules in a gaseous phase, i.e. at a low,
fixed density value (Why is that). Using what you’ve learned so far, you should
be able to perform an appropriate simulation of the two molecules to answer
the question. Does the value of f you compute coincide with what you expected
for the two molecules?

Hint: What units do LAMMPS use for the output?
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