Symmetry and degeneracy!

Symmetry. Let us first define a symmetry. Consider a state at t = 0, [¢(0)),
and apply a unitary transformation 7' to this state. The result is a new state
|%'(0)),

[¥'(0)) = T14(0)). (1)
We will now consider the time-development of both states |¢(0)) and [¢/'(0)).
The time-development of each state is given by applying the operator U =

e~ "Ht/M which gives
[0/(1)) = e UM (0) and [y(1)) = e T |p(0)). (2)
The transformation 7' is a symmetry (transformation) if
[¥'()) = T (t)) (3)

for all |1(0)) and times ¢. Thus it makes no difference whether we study the
time-evolution of the symmetry-transformed state or the original state, they will
always (at any time t) be related by a symmetry transformation. Another way
of stating this is that we will get at the same state if we ’transform first and
wait a while’ or 'wait a while and then transform’. To see what this definition
implies we insert Egs. (2) and (1) into Eq. (3)

[W'(@) = TIv)

e—th/hTW(o» = Te_th/hW(O»
(e-#HmT — TR (o)) = 0
[e_th/h’ T] - 0 (4)

where in the last equality we have used that Eq. (3) must hold for all |¢(0)).
Expanding the exponential function and requiring that the Eq. (4) holds for
any value of t it follows that [H,T] = 0. Thus the requirement 7 must fulfill in
order to be a symmetry is

[H,T)=0=T'HT = H (5)

([H,T)= HT —TH =0 = HT = TH = T~ 'HT = H which for for unitary
operators TT = T~! becomes TTHT = H.

Conserved quantities. The fact that [H,T] = 0 implies a conserved quantity.
This is easiest to see by considering the Ehrenfest theorem for the time-change
of the expectation value (T').

d(T’)
Sdt
L Adapted from J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley 1993

w1, H) = 0. (6)




This means that (T') is a conserved quantity —it does not change in time. An-
other consequence is that eigenstates of T' will remain eigenstates of T as time
changes. This can be seen as follows. Let |x(0)) be an eigenstate of T at t = 0
with eigenvalue g,

T[x(0)) = g/x(0)). (7)

The time-evolved state |x(t)) = e *#*/"|x(0)) will also be an eigenstate of T
with the same eigenvalue g because

T|x(t)) = Te /M x(0)) = e /AT x(0)) = ge " F/"(x(0)) = glx(t)). (8)

Degeneracy. The existence of a symmetry implies also in certain cases the
existence of degeneracies in the energy spectrum. Consider an energy eigen-
function |n) so that H|n) = E,|n). Then if T is a symmetry, T'|n) is also an
energy eigenfunction with the same energy because

H(T|n)) = THn) = TEn|n) = E, (T|n)) (9)

The state T'|n) does not need to be equal to the state |n). In the case where
T|n) # |n) the energy spectrum is degenerate. In fact one can turn this around,
in most cases when there are degeneracies in the energy spectrum they are
consequences of symmetries.

Examples:

Translational symmetry. Let us consider a state represented by a function
¥ (x). Then the action of the translation operator T, which translates the func-
tion an amount a is

Totp(x) = p(x + a). (10)

We can express T, as a collection of differential operators with the help of the
Taylor-expansion

Ylata) =) +ag + Gy b= et () =P M@) (1)

where P = (h/i)d/dx is the momentum operator. Thus we can write
T, = e'of/m, (12)

Therefore translations are intimately related to the momentum operator, we say
that translations are generated by the momentum operator. If [P, H] = 0 the
Hamiltonian is translationally symmetric which implies the conservation of mo-
mentum. Similarly the generator of time-translations is the Hamiltonian which
follows from the form e~**/" of the time-development or time-translation op-
erator. Thus time-translational invariance implies the conservation of energy.



Rotational symmetry. Let us consider the case of a rotation R.(¢,) around
the z-axis by a finite amount ¢,. In analogy with the Taylor-expansion used in
the case of translational symmetry this rotation operator can be written

R.(¢g) = €' PeL=/n (13)

where L, is the angular momentum component in the z-direction which is rep-
resented by L, = (h/i)d/d$. Thus L, generates rotations about the z-axis.
Similarly rotations about the x and y-axis are generated by L, and L,. If R,
is a symmetry of the Hamiltonian, [R,, H] = 0, it follows that [L,, H] = 0 and
that one can choose eigenfunctions for H that are simultaneously also eigen-
functions for L,. Therefore we can label the eigenfunctions by the energy E,
and m, the eigenvalues of L,. If the Hamiltonian is also rotationally symmetric
about the z and y-axis then the action of R, (or R,) on a state with a definite
m will yield states with m+1, m and m — 1. This is because L, = (L++L_)/2.
Thus it will yield a state different from |E,,, m). Therefore the energy spectrum
is degenerate. This is the reason why energy-levels in rotationally symmetric
systems do not depend on the quantum number m.

Parity. The parity transformation II is a space-inversion transformation about
the origin. We define it in terms of its action on the position eigenkets

7 = | - ) (14)

Performing this transform twice results in the original state

2| = 1] = 7) = |7) (15)

Thus II? = I , the identity operator and therefore II = II-! = IIf. Tt follows
that the eigenvalues of II are +1. Eigenstates of Il are referred to as being of
even(odd) parity if they correspond to an eigenvalue +1(-1). It follows from
Eq. (14) that

(FIFIR) = (717 = 7) = —{7177) (16)

This should hold for any position eigenket, thus the following relation between
operators must hold
7 = —7 = 71 = —1I7 (17)

where we have used IIf = II. A similar relation holds for the momentum oper-
ators

MG = — = Il = — 1 (18)
One can use these relations to check whether or not [II, H] = 0. Take the ex-
ample of a free particle Hamiltonian with H = p?/2m. Then [II, H] o [II, p?] =
p? — p?II = —pllp + pIly = 0. It follows that H is parity-symmetric and that
IT and H are simultaneously diagonalizable. If the state of a given energy is
unique (not degenerate), it will also be an eigenstate of the parity operator (ei-

ther even or odd). The energy eigenfunctions of a free particle are proportional
ik-7

to plane waves: e*™ where E = hi2k2 /2m. These plane wave solutions are not
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Figure 1: a) A state of two particles with their momenta shown as arrows. b) A
time ¢ later the two particles have moved while their momenta are unchanged.
c¢) a time-reversal transformation is carried out, the momenta reverse their di-
rection, then d) a time t after the reversal of the momenta the particles have
returned to their original positions, as in a), but now with reversed momenta.

parity eigenstates, except the state with k = 0 which is a parity even state.
The reason is that there is degeneracy, free particle states with k have the same
energy as states with —E, thus the energy eigenstates are not necessarily parity
eigenstates. However, it is possible to combine these energy eigenstates into
parity eigenstates, COS(E -7) and sin(lg -7) which are even respectively odd under
parity.

Time-reversal. The time-reversal transformation is really a reversal of mo-
tion transformation. For the time-reversal transformation we must be careful
about our definition of symmetry as it involves propagation in time. Let us
denote the time-reversal transformation operator by ©. Then if we have a state
[1(0)) and evolve it in time we get

[W(t)) = e H/Map(0)). (19)

If we apply the time-reversal transformation to this time-evolved state and fur-
ther evolve that state in time the same amount as we did first, we expect to
get back the original state but with reversed motions, that is the time-reversed
original state, see Fig. 1. Thus

e YROI(t)) = Oy(0)) (20)

One can think of time-reversal as running a movie in reverse, where the time-
reversal operator is the operation which reverses all directions of motion. This
should hold for all states |¢)(0)), thus we find when inserting

€7th/h®67th/h =0 (21)
or
e—’th/h@ — (_)e’th/h. (22)

Expanding U(t) = 1 — iHt/h + ... and requiring the equation to hold for all ¢
we find
—iHO = QiH. (23)



If © is a linear operator we can move the ¢ on the right in front of ©H and
cancel the i’s on both sides. However, this would mean that the time-reversed
energy eigenstate O|F) would be an energy eigenstate with negative energy
—E. This can be seen from HO|E) = —©OH|E) = —EO|E). This cannot
make sense as there cannot be a state with energy lower than the ground state.
Therefore we come to the conclusion that © cannot be a linear operator. Instead
we are dealing here with an antiunitary operator with the antilinear property
©i = —iO. Using this property we get the condition [H,©] = 0 for the system
to be time-reversal symmetric. In some cases with time-reversal symmetry an
energy eigenstate and its time-reversed version are different. This implies a
two-fold degeneracy known as Kramers degeneracy.



