
Symmetry and degeneracy1

Symmetry. Let us first define a symmetry. Consider a state at t = 0, |ψ(0)〉,
and apply a unitary transformation T to this state. The result is a new state
|ψ′(0)〉,

|ψ′(0)〉 = T |ψ(0)〉. (1)

We will now consider the time-development of both states |ψ(0)〉 and |ψ′(0)〉.
The time-development of each state is given by applying the operator U =
e−iHt/h̄ which gives

|ψ′(t)〉 = e−iHt/h̄|ψ′(0)〉 and |ψ(t)〉 = e−iHt/h̄|ψ(0)〉. (2)

The transformation T is a symmetry (transformation) if

|ψ′(t)〉 = T |ψ(t)〉 (3)

for all |ψ(0)〉 and times t. Thus it makes no difference whether we study the
time-evolution of the symmetry-transformed state or the original state, they will
always (at any time t) be related by a symmetry transformation. Another way
of stating this is that we will get at the same state if we ’transform first and
wait a while’ or ’wait a while and then transform’. To see what this definition
implies we insert Eqs. (2) and (1) into Eq. (3)

|ψ′(t)〉 = T |ψ(t)〉
e−iHt/h̄T |ψ(0)〉 = Te−iHt/h̄|ψ(0)〉(

e−iHt/h̄T − Te−iHt/h̄
)
|ψ(0)〉 = 0[

e−iHt/h̄, T
]

= 0 (4)

where in the last equality we have used that Eq. (3) must hold for all |ψ(0)〉.
Expanding the exponential function and requiring that the Eq. (4) holds for
any value of t it follows that [H,T ] = 0. Thus the requirement T must fulfill in
order to be a symmetry is

[H,T ] = 0 ⇒ T †HT = H (5)

([H,T ] = HT − TH = 0 ⇒ HT = TH ⇒ T−1HT = H which for for unitary
operators T † = T−1 becomes T †HT = H.

Conserved quantities. The fact that [H,T ] = 0 implies a conserved quantity.
This is easiest to see by considering the Ehrenfest theorem for the time-change
of the expectation value 〈T 〉.

ih̄
d〈T 〉
dt

= 〈[T,H]〉 = 0. (6)

1Adapted from J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley 1993
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This means that 〈T 〉 is a conserved quantity –it does not change in time. An-
other consequence is that eigenstates of T will remain eigenstates of T as time
changes. This can be seen as follows. Let |χ(0)〉 be an eigenstate of T at t = 0
with eigenvalue g,

T |χ(0)〉 = g|χ(0)〉. (7)

The time-evolved state |χ(t)〉 = e−iHt/h̄|χ(0)〉 will also be an eigenstate of T
with the same eigenvalue g because

T |χ(t)〉 = Te−iHt/h̄|χ(0)〉 = e−iHt/h̄T |χ(0)〉 = ge−iHt/h̄|χ(0)〉 = g|χ(t)〉. (8)

Degeneracy. The existence of a symmetry implies also in certain cases the
existence of degeneracies in the energy spectrum. Consider an energy eigen-
function |n〉 so that H|n〉 = En|n〉. Then if T is a symmetry, T |n〉 is also an
energy eigenfunction with the same energy because

H (T |n〉) = TH|n〉 = TEn|n〉 = En (T |n〉) (9)

The state T |n〉 does not need to be equal to the state |n〉. In the case where
T |n〉 6= |n〉 the energy spectrum is degenerate. In fact one can turn this around,
in most cases when there are degeneracies in the energy spectrum they are
consequences of symmetries.

Examples:

Translational symmetry. Let us consider a state represented by a function
ψ(x). Then the action of the translation operator Ta which translates the func-
tion an amount a is

Taψ(x) = ψ(x+ a). (10)

We can express Ta as a collection of differential operators with the help of the
Taylor-expansion

ψ(x+ a) = ψ(x) + a
dψ

dx
+
a2

2!
d2ψ

dx2
+ . . . = ea d

dxψ(x) = eiaP/h̄ψ(x) (11)

where P = (h̄/i)d/dx is the momentum operator. Thus we can write

Ta = eiaP/h̄. (12)

Therefore translations are intimately related to the momentum operator, we say
that translations are generated by the momentum operator. If [P,H] = 0 the
Hamiltonian is translationally symmetric which implies the conservation of mo-
mentum. Similarly the generator of time-translations is the Hamiltonian which
follows from the form e−iHt/h̄ of the time-development or time-translation op-
erator. Thus time-translational invariance implies the conservation of energy.
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Rotational symmetry. Let us consider the case of a rotation Rz(φa) around
the z-axis by a finite amount φa. In analogy with the Taylor-expansion used in
the case of translational symmetry this rotation operator can be written

Rz(φa) = eiφaLz/h̄ (13)

where Lz is the angular momentum component in the z-direction which is rep-
resented by Lz = (h̄/i)d/dφ. Thus Lz generates rotations about the z-axis.
Similarly rotations about the x and y-axis are generated by Lx and Ly. If Rz

is a symmetry of the Hamiltonian, [Rz,H] = 0, it follows that [Lz,H] = 0 and
that one can choose eigenfunctions for H that are simultaneously also eigen-
functions for Lz. Therefore we can label the eigenfunctions by the energy En

and m, the eigenvalues of Lz. If the Hamiltonian is also rotationally symmetric
about the x and y-axis then the action of Rx (or Ry) on a state with a definite
m will yield states with m+1, m and m−1. This is because Lx = (L+ +L−)/2.
Thus it will yield a state different from |En,m〉. Therefore the energy spectrum
is degenerate. This is the reason why energy-levels in rotationally symmetric
systems do not depend on the quantum number m.

Parity. The parity transformation Π is a space-inversion transformation about
the origin. We define it in terms of its action on the position eigenkets

Π|~r〉 = | − ~r〉 (14)

Performing this transform twice results in the original state

Π2|~r〉 = Π| − ~r〉 = |~r〉 (15)

Thus Π2 = I , the identity operator and therefore Π = Π−1 = Π†. It follows
that the eigenvalues of Π are ±1. Eigenstates of Π are referred to as being of
even(odd) parity if they correspond to an eigenvalue +1(-1). It follows from
Eq. (14) that

〈~r|Π†~rΠ|~r〉 = 〈−~r|~r| − ~r〉 = −〈~r|~r|~r〉 (16)

This should hold for any position eigenket, thus the following relation between
operators must hold

Π†~rΠ = −~r ⇒ ~rΠ = −Π~r (17)

where we have used Π† = Π. A similar relation holds for the momentum oper-
ators

Π†~pΠ = −~p⇒ ~pΠ = −Π~p (18)

One can use these relations to check whether or not [Π,H] = 0. Take the ex-
ample of a free particle Hamiltonian with H = ~p2/2m. Then [Π,H] ∝ [Π, ~p2] =
Π~p2 − ~p2Π = −~pΠ~p+ ~pΠ~p = 0. It follows that H is parity-symmetric and that
Π and H are simultaneously diagonalizable. If the state of a given energy is
unique (not degenerate), it will also be an eigenstate of the parity operator (ei-
ther even or odd). The energy eigenfunctions of a free particle are proportional
to plane waves: ei~k·~r where E = h̄2~k2/2m. These plane wave solutions are not
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a) b) c) d)

Figure 1: a) A state of two particles with their momenta shown as arrows. b) A
time t later the two particles have moved while their momenta are unchanged.
c) a time-reversal transformation is carried out, the momenta reverse their di-
rection, then d) a time t after the reversal of the momenta the particles have
returned to their original positions, as in a), but now with reversed momenta.

parity eigenstates, except the state with ~k = 0 which is a parity even state.
The reason is that there is degeneracy, free particle states with ~k have the same
energy as states with −~k, thus the energy eigenstates are not necessarily parity
eigenstates. However, it is possible to combine these energy eigenstates into
parity eigenstates, cos(~k ·~r) and sin(~k ·~r) which are even respectively odd under
parity.

Time-reversal. The time-reversal transformation is really a reversal of mo-
tion transformation. For the time-reversal transformation we must be careful
about our definition of symmetry as it involves propagation in time. Let us
denote the time-reversal transformation operator by Θ. Then if we have a state
|ψ(0)〉 and evolve it in time we get

|ψ(t)〉 = e−iHt/h̄|ψ(0)〉. (19)

If we apply the time-reversal transformation to this time-evolved state and fur-
ther evolve that state in time the same amount as we did first, we expect to
get back the original state but with reversed motions, that is the time-reversed
original state, see Fig. 1. Thus

e−iHt/h̄Θ|ψ(t)〉 = Θ|ψ(0)〉 (20)

One can think of time-reversal as running a movie in reverse, where the time-
reversal operator is the operation which reverses all directions of motion. This
should hold for all states |ψ(0)〉, thus we find when inserting

e−iHt/h̄Θe−iHt/h̄ = Θ (21)

or
e−iHt/h̄Θ = ΘeiHt/h̄. (22)

Expanding U(t) = 1 − iHt/h̄ + . . . and requiring the equation to hold for all t
we find

−iHΘ = ΘiH. (23)
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If Θ is a linear operator we can move the i on the right in front of ΘH and
cancel the i’s on both sides. However, this would mean that the time-reversed
energy eigenstate Θ|E〉 would be an energy eigenstate with negative energy
−E. This can be seen from HΘ|E〉 = −ΘH|E〉 = −EΘ|E〉. This cannot
make sense as there cannot be a state with energy lower than the ground state.
Therefore we come to the conclusion that Θ cannot be a linear operator. Instead
we are dealing here with an antiunitary operator with the antilinear property
Θi = −iΘ. Using this property we get the condition [H,Θ] = 0 for the system
to be time-reversal symmetric. In some cases with time-reversal symmetry an
energy eigenstate and its time-reversed version are different. This implies a
two-fold degeneracy known as Kramers degeneracy.
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