
Time evolution of states in quantum mechanics1

The time evolution from time t0 to t of a quantum mechanical state is described
by a linear operator Û(t, t0). Thus a ket at time t that started out at t0 being
the ket |α(t0)〉 = |α〉 is

|α(t)〉 = Û(t, t0)|α〉 (1)

The time evolution operator Û(t, t0), which also is known as a propagator,
satisfies three important properties:

1. The time evolution operator should do nothing when t = t0:

limt→t0Û(t, t0) = 1 (2)

2. The propagator should preserve the normalization of state kets. That is,
if |α〉 is normalized at t0 it should also be normalized at later times t. This
leads to the requirement

〈α|α〉 = 〈α(t)|α(t)〉
= 〈α|Û†(t, t0)Û(t, t0)|α〉

which implies Û†(t, t0)Û(t, t0) = 1 or

Û†(t, t0) = Û−1(t, t0). (3)

That is, Û(t, t0) is a unitary operator. A unitary operator preserves the
norm of the states.

3. The propagator should satisfy the composition property

Û(t2, t0) = Û(t2, t1)Û(t1, t0) (4)

which means that in order to evolve a state from t0 to t2 we might as well
first evolve the state from t0 to t1 and then evolve the state so obtained
from t1 to t2.

Explicit form of Û

Let us now consider an infinitesimal time evolution step dt, Û(t0 + dt, t0). For
such a time-evolution the above three properties are satisfied up to order dt by
the operator

Û(t0 + dt, t0) = 1− iΩ̂(t0)dt (5)

where Ω̂(t0) is a Hermitian operator, Ω̂†(t0) = Ω̂(t0).
Let us show that the three above properties are indeed satisfied: Property

1 is obviously fulfilled as the second term in Eq. (5) vanishes when dt → 0.
Property 2 holds up to first order in dt as is clear from

Û†(t0 + dt, t0)Û(t0 + dt, t0) =
(

1 + iΩ̂(t0)dt
)(

1− iΩ̂(t0)dt
)

= 1 +O(dt2). (6)

1Adapted from J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley 1993
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The left hand side of property 3 is

Û(t0 + 2dt, t0) = 1− i2Ω̂(t0)dt (7)

and the right hand side is

Û(t0 + 2dt, t0 + dt)Û(t0 + dt, t0) = (1− iΩ̂(t0 + dt)dt)(1− iΩ̂(t0)dt)
= (1− iΩ̂(t0)dt+O(dt2))(1− iΩ̂(t0)dt)
= 1− 2iΩ̂(t0)dt+O(dt2)

So property 3 holds also to order dt.
Now comes the question of how to identify Ω̂? The answer to this can be

guessed from classical mechanics where the generator of time translations is the
Hamiltonian of the system. Therefore

Ω̂(t) = Ĥ(t)/h̄ (8)

where Ĥ(t) is the Hamiltonian. The h̄ is inserted to get the dimensions right.
Eq. (8) can in fact be taken as one of the fundamental postulates of quantum
mechanics and is, as will be shown below, equivalent to the time-dependent
Schrödinger equation. From Eqs. (8) and (5) it follows that

Û(t+ dt, t) = 1− i Ĥ(t)
h̄

dt (9)

Note that in writing this we have kept the possibility of having a Hamiltonian
that explicitly has a time dependence. That is, the Hamiltonian operator might
itself depend on time. We will not encounter many such Hamiltonians in this
course, however at this stage it is good to be general. Such time-dependent
Hamiltonians are encountered when one considers systems on which there are
external time-varying fields imposed.

Schrödinger equation

From the Eq. (9) it is easy to derive the Schrödinger equation.

Û(t+ dt, t0) = Û(t+ dt, t)Û(t, t0) =

(
1− i Ĥ(t)

h̄
dt

)
Û(t, t0) (10)

Subtracting Û(t, t)Û(t, t0) = Û(t, t0) on both sides one gets

Û(t+ dt, t0)− Û(t, t0) = −i Ĥ(t)
h̄

dtÛ(t, t0) (11)

dividing by dt and multiplying by ih̄ on both sides one gets

ih̄
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0) (12)
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where we have taken the limit dt→ 0. Multiplying both sides by the ket |α〉 we
get

ih̄
d

dt
Û(t, t0)|α〉 = Ĥ(t)Û(t, t0)|α〉 (13)

ih̄
d

dt
|α(t)〉 = Ĥ(t)|α(t)〉 (14)

which is the Schrödinger equation. The Schrödinger equation is a first order
differential equation. Thus the knowledge of |α(t0)〉, determines the state at
any later time uniquely. Therefore the time-evolution of states in quantum
mechanics is deterministic and continuous. In this sense quantum mechanics is
as deterministic as classical mechanics. However, there is also another type of
(instantaneous) ”time”-evolution in quantum mechanics. When a measurement
is made on the system the state vector changes suddenly. This socalled ”collapse
of the wave function” is not deterministic nor continuous. In this note we are
only concerned about the time evolution of states when no measurements are
being made.

Time-independent Hamiltonians

Let us now look at the case where the Hamiltonian is not explicitly time depen-
dent. That is, the Hamiltonian operator is not altered when the time parameter
t is changed. In this case one can obtain the full expression for Û

Û(t, t0) = e−i
Ĥ
h̄ (t−t0) (15)

where the exponential of the operator on the right hand side is to be understood
as its power series expansion ex̂ = 1 + X̂ + 1

2!X̂X̂ + · · ·. It is easily checked
by differentiation with respect to t that this expression for Û satisfies eq. (12).
With this expression for Û it is unnecessary to use the Scrödinger equation to
obtain the time dependence. Instead one can just multiply the states with the
operator Û in Eq.(15) to obtain the time-dependent result. The result of this
multiplication is particularly simple to write down if one expands the initial
state in terms of the eigenstates of the Hamiltonian; the energy eigenstates:

Let |n〉 be the energy eigenstates and expand the initial state at t0 = 0 in
terms of these

|α〉 =
∑
n

αn|n〉 (16)

then the state at time t is

|α(t)〉 = Û(t, 0)|α〉

=
∑
n

αne
−i Ĥ

h̄ t|n〉

=
∑
n

αne
−iEn

h̄ t|n〉
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where we have used the series expansion of the exponential to get to the last
line:

e−iĤt/h̄|n〉 =
(

1 + (−it/h̄)Ĥ +
(−it/h̄)2

2!
ĤĤ + . . .

)
|n〉

=
(

1− i(t/h̄)En +
(−it/h̄)2

2!
E2
n + . . .

)
|n〉

= e−iEnt/h̄|n〉

Thus
|α(t)〉 =

∑
n

αne
−iEn

h̄ t|n〉 (17)

Example: Mixed Harmonic oscillator state

Consider the superposition of two harmonic oscillator energy eigenstates

|β〉 =
1√
2
|0〉+

1√
2
|2〉 (18)

where |0〉 is the energy eigenket with E0 = h̄ω/2 and |2〉 is the energy eigenket
with energy E2 = 5h̄ω/2. The harmonic oscillator Hamiltonian is not explicitly
dependent on time so we can use eq.(17). The time dependence of this state
becomes then

|β(t)〉 =
1√
2
e−iωt/2|0〉+

1√
2
e−i5ωt/2|2〉

= e−iωt/2
(

1√
2
|0〉+ e−i2ωt

1√
2
|2〉
)

Stationary states

The time dependence of the expectation value of an operator is given by

〈α(t)|Ô|α(t)〉 = 〈α|Û†(t, t0)ÔÛ(t, t0)|α〉 (19)

For some states the expectation value is independent of time:

〈α(t)|Ô|α(t)〉 = 〈α|Ô|α〉. (20)

Such states are called stationary states if the expectation values of all oper-
ators Ô, all operators that do not explicitly depend on time, are constant in
time.

It is clear that when the state is such that the action of Û is simply to change
the state by a global phase

Û(t, t0)|α〉 = eiφ(t,t0)|α〉 (21)
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then the expectation values for all operators will be time-independent and the
state is a stationary state. This is because

〈α|Û†(t, t0)ÔÛ(t, t0)|α〉 = e−iφ(t,t0)eiφ(t,t0)〈α|Ô|α〉 = 〈α|Ô|α〉 (22)

Note that although the state is stationary the state is still time-dependent as
its phase changes with time. Note also that the energy eigenstates are such
stationary states because the only effect of the time evolution operator is to
multiply the state by a time-dependent phase

Û(t, 0)|n〉 = e−iEn/h̄t|n〉 (23)

Example of a non-stationary state

Consider again the mixed harmonic oscillator state |β〉 of the previous example
and evaluate the expectation value of the position operator squared X̂2.

〈β(t)|X̂2|β(t)〉 = eiωt/2
(

1√
2
〈0|+ e2iωt

√
2
〈2|
)
X̂2e−iωt/2

(
1√
2
|0〉+

e−2iωt

√
2
|2〉
)

=
1
2
〈0|X̂2|0〉+

1
2
〈2|X̂2|2〉+

ei2ωt

2
〈2|X̂2|0〉+

e−2iωt

2
〈0|X̂2|2〉

So this state is not stationary. Note that it is the mixed matrix elements 〈2|X̂2|0〉
and 〈0|X̂2|2〉 which cause the time-dependence. If we had considered expecta-
tion values of operators where these matrix elements vanish, the expectation
values would not depend on time. The state β(t)〉 is not stationary because we
can find a (time-independent) operator (here X̂2) which expectation value does
depend on time.

Schrödinger and Heisenberg pictures

The discussion above centered on the time evolution of ket states, while there is
no time evolution of the operators. This is called the Schrödinger picture. It is
however also possible to take another view in which the kets are stationary while
the operators evolve in time. This is called the Heisenberg picture. That these
pictures are equivalent when calculating matrix elements of operators (which
is all one does to calculate outcomes of measurement etc.) follows from the
associative equality

Schrödinger picture︷ ︸︸ ︷
〈α(t)|Ô|β(t)〉 ≡

(
〈α|Û†(t, t0)

)
Ô
(
Û(t, t0)|β〉

)
= 〈α|

(
Û†(t, t0)ÔÛ(t, t0)

)
|β〉 ≡ 〈α|Ô(t)|β〉︸ ︷︷ ︸

Heisenberg picture

(24)

where the time evolution of an operator in the Heisenberg picture is defined as

Ô(t, t0) = Û†(t, t0)ÔÛ(t, t0) (25)
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Heisenberg equation of motion

Using Eqs. (9) and (25) one can derive an equation analogous to the Schrödinger
equation for how an operator in the Heisenberg picture evolves in time. Taking
the infinitesimal evolution

Ô(dt+ t, t) =
(

1 + idtĤ(t)/h̄
)
Ô(t)

(
1− idtĤ(t)/h̄

)
= Ô(t) +

i

h̄

(
Ĥ(t)Ô(t)− Ô(t)Ĥ(t)

)
dt+O(dt2) (26)

Moving Ô(t) to the left hand side and dividing by dt and taking the limit dt→ 0
one gets

d

dt
Ô(t) =

i

h̄

[
Ĥ(t), Ô(t)

]
(27)

which is known as the Heisenberg equation of motion which plays the same role
in the Heisenberg picture as the Schrödinger equation plays in the Schrödinger
picture.

6


