

Figure 1: The current loop in Problem 11.1

## Problem Set 11

## Problem 11.1

Figure 1 shows a rectangular current loop ABCD. In the loop's rest frame, S, the loop has length a and width b, the current density is j, the area of the cross section is s and the charge density is zero.

a) Show that in the rest frame the loop's electric dipole moment is zero and the magnetic moment is  $\mathbf{m} = I\mathbf{a} \times \mathbf{b}$ , where I = js.

In the following we will observe the loop from the system S' where the loop is moving with velocity  $\mathbf{v}$  to the right  $(\beta = v/c \text{ and } \gamma = 1/\sqrt{1-\beta^2})$ . We will now give a description of the system in S'.

- b) Describe the loop's geometry.
- c) Show that CD and AB have charge  $\pm \frac{aIv}{c^2}$ .
- d) Show that the loop's electrical dipole moment is  $\mathbf{p}' = \frac{1}{c^2}\mathbf{m} \times \mathbf{v}$ .
- e) Find the current density in the different parts of the loop. Show that the current is  $I\gamma$  in the AB and CD and  $I/\gamma$  in BC and DA.
- f) Show that the magnetic moment is  $\mathbf{m'} = (1 \beta^2/2)\mathbf{m}$ .