Problem Set 12

Problem 12.1

A thin straight conducting cable, oriented along the z axis in an inertial reference frame S, carries a constant current I. The cable is charge neutral.

a) Show, by use of Ampere's law, that the current produces a rotating magnetic field $\mathbf{B} = B(r)\mathbf{e}_{\phi}$, where (r, ϕ) are polar coordinates in the x, y plane and \mathbf{e}_{ϕ} is a unit vector in the direction of increasing ϕ . Determine the function B(r).

Consider next the same situation in a reference frame S' that moves with velocity v along the z axis.

- b) Use the fact that charge and current densities transform under Lorentz transformation as components of a current 4-vector to show that in S' the conducting cable will be charged. Determine the charge per unit length, λ' and the current I' in this reference frame.
- c) Use Gauss' and Ampere's laws to determine the electric and magnetic fields, \mathbf{E}' and \mathbf{B}' , as functions of the polar coordinates (r', ϕ') in reference frame S'.
- d) Show that if the fields in S' are derived from the fields in S by use of the relativistic transformation formulas for \mathbf{E} and \mathbf{B} , that gives the same results as found in c).

Problem 12.2

We consider a monochromatic plane wave that propagates in the z direction in a Cartesian coordinate system. For a given position ${\bf r}$ in space the electric field component ${\bf E}$ will describe a time dependent, periodic orbit in the x,y plane. The orbit will depend on the form of polarization of the electromagnetic wave.

The electromagnetic wave can generally be viewed as a superposition of two *linearly polarized* waves that propagate in the same direction, and which are polarized in orthogonal directions. We first choose these directions to be defined by the coordinate axes x and y. The amplitudes and the phases of the two partial waves may be different, and the general form of the electric field is therefore

$$\mathbf{E}(\mathbf{r},t) = a\cos(\mathbf{k}\cdot\mathbf{r} - \omega t + \phi_1)\mathbf{i} + b\cos(\mathbf{k}\cdot\mathbf{r} - \omega t + \phi_2)\mathbf{j}$$
(1)

where in general $a \neq b$ and $\phi_1 \neq \phi_2$.

In the following we consider the case where the two partial waves are 90^{o} out of phase and write this as

$$\mathbf{E}(\mathbf{r},t) = a\cos(\mathbf{k}\cdot\mathbf{r} - \omega t)\mathbf{i} + b\sin(\mathbf{k}\cdot\mathbf{r} - \omega t)\mathbf{j}$$
 (2)

a) Show that the orbit described by the time dependent electric field (2) is an ellipse with symmetry axes along the coordinate axes in the x, y plane. What determines the *eccentricity* of the ellipse?

We consider now a different decomposition of the same wave, in linearly polarized components along the rotated directions

$$\mathbf{e}_1 = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j}), \quad \mathbf{e}_2 = \frac{1}{\sqrt{2}}(\mathbf{i} - \mathbf{j})$$
 (3)

- b) Show that in this new decomposition, the amplitudes of the two linearly polarized components are equal, a'=b', but the relative phase $\Delta\phi=\phi_1'-\phi_2'$ is different from 90^o (or $\pi/2$ in radians). Show that the relative phase $\Delta\phi$ is determined by the ration a/b in the first decomposition.
- c) Assume the amplitude $|\mathbf{E}| = \sqrt{a^2 + b^2}$ to be fixed. Plot the orbit of \mathbf{E} with \mathbf{e}_1 and \mathbf{e}_2 defining the horizontal and vertical axes for a set of different values of the relative phase $\Delta \phi$. Include the cases that correspond to linear and circular polarization and give the values of $\Delta \phi$ for these cases.