FYS 3120 Classical Mechanics and Electrodynamics
Spring semester 2009

Problem Set 4

Problem 4.1

The figure shows a rod of length b and mass m. One endpoint of the rod is constrained to move along a horisontal line and the other endpoint along a vertical line. The two lines are in the same plane. There is no friction and the acceleration due to gravity is g.

a) Find Lagrange's equations with the angle θ as coordinate.
b) Find the period for small oscillations about the equilibrium position.
c) Find the period for oscillations with amplitude $\pi / 2$.

Problem 4.2

A particle of mass m is attached to the circumference of a rigid circular hoop of radius r. The the hoop rolls on the underside of a horisontal line.

We assume the hoop to be massless and the motion to take place in a vertical plane. Find the Lagrangian, first with ϕ as generalized coordinate. Find the corresponding Lagrange's equation. Show next that the Lagrangian simplifies to that of a one-dimensional harmonic oscillator when s is used as generalized coordinate. What is the period of oscillations. Why is there a maximal allowed amplitude for the oscillations in s, and what happens when the total energy is larger than the energy corresponding to the maximum amplitude?

Problem 4.3

A particle of mass m and charge q is moving in a magnetic field given by the vectorpotential (in polar coordinates)

$$
\begin{equation*}
A_{r}=A_{\theta}=0 \quad A_{\phi}=\frac{k}{r} \tan (\theta / 2), \tag{1}
\end{equation*}
$$

where k is a constant. Throughout this problem we will use polar coordinates (r, θ, ϕ) and assume the motion to be non-relativistic. Assume also that there is no gravitational field.
a) Find the corresponding B-field. Do you have a suggestion in what way such a magnetic field can be approximately realized.
b) Find the Lagrangian and Lagrange's equations for the charged particle.
c) Show that the kinetic energy is a constant of motion.
d) Explain the physical meaning of Lagrange's equation for r.
e) Show that there exists solutions of the form

$$
\begin{equation*}
r=\left(a^{2} t^{2}+b^{2}\right)^{1 / 2} \quad \theta=\theta_{0} \tag{2}
\end{equation*}
$$

where a, b, and θ_{0} are constants.
f) Give a physical interpretation of the constants a and b.
g) Make a sketch that shows the magnetic field and a trajectory of the type we have just found.

