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Tillatte hjelpemidler: Godkjent kalkulator

Øgrim og Lian eller Angell og Lian: Størrelser og enheter i fysikken
Rottmann: Matematisk formelsamling
Formula Collection FYS 3120/4120

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

OPPGAVE 1
To sammenbundne legemer
Et mekanisk system er sammensatt av en liten kloss og en kule forbundet med en snor. Klossen

φr

Figure 1:

kan gli friksjonsløst på et horisontalt bord. Snoren er ført langs bordet gjennom et hull til kula
som bare beveger seg vertikalt, slik det er vist i Fig. 1. Massen til klossen er 2m med m som kulas
masse. Vi regner snora som masseløs og uelastisk og at den hele tiden er strukket. Den har lengde
d. Klossen regner vi som tilstrekkelig liten til at treghetsmomentet om massemiddelpunktet er
neglisjerbart.

a) Benytt polarkoordinatene (r, φ) til klossen på bordet som generaliserte koordinater og vis
at Lagrangefunksjonen til det sammensatte systemet har formen

L =
3

2
mṙ2 + mr2φ̇2 + mg(d − r) (1)
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b) Sett opp Lagranges ligninger. Hva menes med at vinkelkoordinaten er syklisk? Sett opp
uttrykket for den tilhørende bevegelseskonstant l, og benytt det til å redusere bevegelseslignin-
gene til én ligning, i den radielle variabelen r. Hvilken fysisk tolkning har l?

c) Vis v.h.a. den radielle ligningen at det finnes en stabil situasjon hvor klossen går i sirkel-
bane med konstant radius r0. Anta at r avviker litt fra r0, r = r0 + ρ med |ρ| << r0. Vis at
den radielle bevegelsen blir små svingninger om r0, mens klossen sirkulerer i planet. Hva er
frekvensen for de små oscillasjonene om r0?

OPPGAVE 2
Sirkulerende elektron
Et elektron går i sirkelbane i et konstant magnetfelt (vinkelrett på banen) i en syklotron. Radius
i banen er R = 10m og den relativistiske gammafaktoren til elektronet er γ = 100. Massen til
elektronet er me = 9.1 × 10−31kg, elektronladningen er e = −1.6 × 10−19C og lyshastigheten
c = 3.0 · 108m/s.

a) Hvor stor er elektronets fart uttrykt ved lyshastigheten. Finn også vinkelhastigheten ω
og akselerasjonen a til elektronet målt i laboratoriesystemet (dvs. i inertialsystemet hvor syklo-
tronen er i ro).

Benytt i det følgende koordinater hvor sirkelbanen til elektronet ligger i x,y-planet med sen-
trum av sirkelen i origo. Anta at magnetfeltet er rettet langs den positive z-aksen.

b) Sett opp uttrykkene for elektronets 4-vektorkoordinater xµ (µ = 0, 1, 2, 3), som funksjon
av R, ω, γ og egentiden τ . Bestem også 4-hastigheten og 4-akselerasjonen. Hvor stor er egen-
akselerasjonen a0 (akselerasjonen målt i det momentane hvilesystemet) uttrykt ved a?

c) Anta vi studerer bevegelsen i elektronets momentane hvilesystem. Hva er feltstyrken til
magnetfeltet B′ og til det elektriske feltet E′ i dette referansesystemet uttrykt ved magnetfeltet
B og elektronhastigheten v i laboratoriesystemet? (Benytt de generelle uttrykk for Lorentztrans-
formasjon av elektromagnetiske felter.) Sjekk at bevegelsesligningen er oppfylt i det momentane
hvilesystemet når den er oppfylt i labsystemet, ved å benytte de uttrykkene som er funnet for ege-
nakselerasjonen og for de transformerte feltene. (Vær oppmerksom på at på vektorform peker
akselerasjonene a og a0 i de to inertialsystemene i samme retning.)

OPPGAVE 3
Oscillerende strøm
I en sirkelformet strømsløyfe med radius a går det en oscillerende strøm på formen I = I0 cos ωt.
Strømsløyfen ligger i x,y-planet. Vi benytter betegnelsene ex, ey og ez for de kartesiske en-
hetsvektorene i x, y- og z-retningene, for å kunne reservere j for strømtettheten. Strømsløyfen
regnes å være ladningsnøytral.

a) Forklar hvorfor det elektriske dipolmomentet p til strømsløyfen er lik null, og vis at det
magnetiske momentet har tidsavhengigheten m(t) = m0 cos ωt ez, med m0 som en konstant.
Bestem m0 uttrykt ved a og I0.

Vi minner om de generelle uttrykkene for strålingsfeltet fra en magnetisk dipol,

E(r, t) = − µ0

4πcr
m̈ret × n ; , B(r, t) = −1

c
E(r, t) × n (2)

2



hvor mret = m(t − r/c) og n = r/r. Anta i det følgende at vi studerer feltene langt fra
strømsløyfen (i strålingssonen) hvor uttrykkene (2) er gyldige.

b) Sett opp uttrykket for strålingsfeltene for punkter på x-aksen langt fra kilden, og vis at
de har form av elektromagnetiske bølger som forplanter seg i x-retningen bort fra strømsløyfen.
Hva slags polarisasjon har bølgene?

c) Benytt det generelle uttrykket for Poyntings vektor S til å finne den utstrålte effekt pr.
romvinkelenhet, dP

dΩ
, i x-retningen. Hvor stor er den utstrålte effekt i z-retningen?
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PROBLEM 1
Particle on a constrained surface
A particle moves on a parabolic surface given by the equation z = (λ/2)(x2 + y2) where z is the
Cartesian coordinate in the vertical direction, x and y are orthogonal coordinates in the horizontal
plane and λ is a constant. The particle has mass m and moves without friction on the surface
under influence of gravitation. The gravitational acceleration g acts in the negative z-direction.
The particle’s position is given by the polar coordinates (r, θ) of the projection of the position
vector into the x, y plane.

θ
x

y

z

r

m

g

a) Show that the Lagrangian for this system is

L =
1

2
m[(1 + λ2r2)ṙ2 + r2θ̇2 − gλr2] (1)
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and find Lagrange’s equations for the particle.
b) Use the fact that there is a cyclic coordinate to show that the equations can be reduced to a

single equation in the radial variable r. What is the condition for the particle to move in a circle
with radius r = r0?

c) Assume that the path of the particle deviates little from the circular motion so that r =
r0 + ρ, where ρ is small. Show that under this condition the radial equation can be reduced to a
harmonic oscillator equation for the small variable ρ and determine the corresponding frequency.
Give a qualitative description of the motion of the particle.

PROBLEM 2
Particle decay
Pi-mesons (pions) are unstable elementary particles. We consider here a decay process of a
charged pion π+ into a muon µ+ and a neutrino νµ. The masses of the particles are mπ = 273me

and mµ = 207me, with me = 0.51MeV/c2 as the electron (rest) mass. (The standard energy
unit in particle physics, eV = electron volt is used. The speed of light is as usual represented by
c.) The mass of the neutrino is so small that the particle can be regarded as massless.

π
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ν
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In the figure the decay process is shown both in the rest frame S of the pion, and in the
laboratory frame S̄. In this frame the pion moves with the velocity v = (4/5)c along the x axis.
To distinguish the variables of the two reference frames S and S̄ we mark the variables of the
latter with a ”bar”, so that for example the angle of the neutrino relative to the x axis in S is θ
and the corresponding angle in S̄ is θ̄.

a) We study first the process in the rest frame S. Set up the equations for conservation of
relativistic energy and momentum and use them to determine the energy and (the absolute value
of) the momentum of the muon and of the neutrino in this reference system. (Use MeV as unit
for energy and MeV/c as unit for momentum.)

b) Use the transformation formula for relativistic 4-momenta to determine the energy of the
muon and of the neutrino in the lab frame S̄.

c) In the rest frame S all directions for the neutrino momentum are equally probable. Show
that this means that in the lab frame S̄ the probability is 0.5 for finding the neutrino in a direction
with angle θ̄ < 36.9o.
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PROBLEM 3
Electric dipole radiation
An electron (with charge e and mass m) is moving with constant speed in a circle under the
influence of a constant magnetic field B0. The magnetic field is directed along the z axis while
the motion of the electron takes place in the x, y plane. We assume the motion of the electron to
be non-relativistic.

Since the electron is accelerated it will radiate electromagnetic energy and thereby loose
kinetic energy when no energy is added to the particle.

a) By use of Larmor’s radiation formula, find an expression for the radiated energy per unit
time expressed in terms of the radius r of the electron orbit and the cyclotron frequency ω =
−eB0/m.

b) Show that the radius of the electron orbit is slowly reduced with an exponential form of
the time dependence, r = r0 e−λt, and determine λ.

c) The electromagnetic fields produced by the moving charge are essentially electric dipole
radiation fields. What is the electric dipole moment of the circulating electron? Give the expres-
sions for the radiation fields E(z, t) and B(z, t) on the z axis far from the electron. Show that
they correspond to a propagating wave, with direction away from the electron, and determine the
form of polarization of the wave.

Expressions found in the formula collection of the course may be useful for this problem.
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PROBLEM 1
Pendulum attached to a rotating disk
A pendulum is attached to a circular disk of radius R, as illustrated in Fig. 1. The end of the
pendulum rod is fixed at a point P on the circumference of disk. The disk is vertically oriented
and it rotates with a constant angular velocity ω. The pendulum consists of a rigid rod of length
l which we consider as massless and a pendulum bob of mass m. The pendulum oscillates freely
about the point P under the influence of gravity.

Θ

R ωt

P

y

g

m

x

l

a) Show that the Lagrangian for this system, when using as variable the angle θ of the pen-
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dulum rod relative to the vertical direction, has the form

L = m[
1

2
l2θ̇2 + lRω sin(θ − ωt)θ̇ + gl cos θ +

1

2
R2ω2 − gR sin ωt] (1)

b) Formulate Lagrange’s equation for the system and write it as a differential equation for θ.
For ω = 0 the equation reduces to a standard pendulum equation. Assume in the following

ω to be non-vanishing, but sufficiently small so the ω-dependent contribution to the equation of
motion can be viewed as a small periodic perturbation to the pendulum equation. In that case
there are solutions corresponding to small oscillations, |θ| << 1, which are modified by the
perturbation.

c) Show that under assumption that |θ| and ω are sufficiently small the equation of motion
for the pendulum can be approximated by the equation for a driven harmonic oscillator, subject
to a periodic force. Show that it has a solution of the form θ(t) = θo cos ωt and determine the
amplitude θ0 in terms of the parameters of the problem.

Based on this solution can you give a more precise meaning to the phrase ”sufficiently small
ω” as the condition for θo cos ωt to be a good approximation to a solution of the full equation of
motion?

PROBLEM 2
Charged particle in a constant electric field
A particle with charge q and rest mass m moves with relativistic speed through a region 0 <
x < L where a constant electric field E is directed along the y-axis, as indicated in the figure.
The particle enters the field at x = 0 with momentum p0 in the direction orthogonal to the field.
The relativistic energy at this point is denoted E0. (Note that we write the energy as E to avoid
confusion with the electric field strength E.)

L

E

x

y

0

a) Use the equation of motion for a charged particle in an electric field to determine the
time dependent momentum p(t) and relativistic energy E(t) (without the potential energy) of
the particle inside in the electric field. What is the relativistic gamma factor γ(t) expressed as a
function of coordinate time t?

b) Find the velocity components vx(t) and vy(t) and explain the relativistic effect that the
velocity in the x-direction decreases with time even if there is no force acting in this direction.

2



c) Show that the proper time ∆τ spent by the particle on the transit through the region 0 <
x < L is proportional to the length L, ∆τ = αL, and determine α.

d) What is the transit time ∆t through the region when measured in coordinate time?

We remind about the integration formula
∫

dx 1√
1+x2 = arc sinh x + C.

PROBLEM 3
Radiation from a linear antenna

A so-called half-wave center-fed antenna is formed by a thin linear conductor of length a.
It is oriented along the z-axis as shown in the figure. An alternating current is running in the
antenna, of the form

I(z, t) = I0 cos
πz

a
cos ωt , −a/2 < z < a/2 (2)

In the following λ(z, t) denotes the linear charge density of the antenna (charge per unit length).
At time t = 0 the antenna is charge neutral, so that λ(z, 0) = 0.

z

x

y
a/2

-a/2

a) Show that the charge density and current satisfy the relation

∂λ

∂t
+

∂I

∂z
= 0 (3)

and find λ as a function of z and t.

b) Show that the electric dipole moment of the antenna has the form

p(t) = p0 sin ωt k (4)

with k as the unit vector along the z-axis, and determine the constant p0.

c) Use the expressions for electric dipole radiation to determine the electric and magnetic fields
in a point at a large distance r from the antenna on the x-axis. What is the type of polarization
of the radiation from the antenna in this direction?
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PROBLEM 1
Constrained motion
A small body with mass m is constrained to move on straight line, which rotates with constant
angular velocity in a vertical plane, here identified as the xy-plane. The y-axis is pointing in
the vertical direction, as shown in the figure. The point of rotation, which lies on the line, is
chosen as origin. At t = 0 the rotating line coincides with the x-axis. Friction is assumed to be
negligible, and the only applied force acting on the body is the gravitational force mg. In the
following the radial coordinate r is chosen as generalized coordinate, and the body is treated as
pointlike.

m

ωt

r

y

x

g

a) Find the Lagrangian for this system, expressed in terms of r, ṙ and t. Derive the corre-
sponding Lagrange’s equation.
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b) Show that the equation has a particular solution of the form r = k sinωt and determine
the constant k. Show that the solution corresponds to circular motion with constant speed, with
the circle centered at the point (x, y) = (0, k/2). What is the speed of the particle and the radius
of the circle?

c) Find the general solution of the equation of motion.

PROBLEM 2
Hyperbolic space-time motion
A straight rod is moving along the x-axis of an inertial reference frame S. The two endpoints
A and B follow hyperbolic space-time trajectories, described the following time dependent x-
coordinates in S,

xA = c
√
t2 + c2/a2 , xB = c

√
t2 + c2/b2 (1)

c is the speed of light, and a and b are positive constants, with b < a.
a) A second inertial frame S ′ moves along the x-axis with velocity v relative to S. The

coordinates of the two reference frames are chosen to coincide at the space-time point x = t = 0.
Show that the motion of A and B, when expressed in terms of the coordinates of S ′, has

precisely the same form as in S,

x′A = c
√
t′2 + c2/a2 , x′B = c

√
t′2 + c2/b2 (2)

(To demonstrate this it may be convenient to rewrite the above relations in terms of the squared
coordinates x2 and t2.)

b) At time t = 0 the frame S is an instantaneous rest frame of both A and B. Show this and
find the distance between A and B measured in S at this moment. The same results are valid for
the reference frame S ′ at time t′ = 0.

Based on this we may conclude that for any point on the space-time trajectory of A, the
instantaneous inertial rest frame ofA is a rest frame also forB. Furthermore the distance between
A and B, when measured in the instantaneous inertial rest frame, is constant. Explain these
conclusions.

c) Use the above results to show that the proper accelerations of the A and B are constants,
and give the values of these.

d) At a given instant t = 0 a light signal with frequency ν0 is sent from A and is subsequently
received at B. What is the velocity of B (measured in S) when the signal is received, and what
is the frequency of the signal, measured at B? (To answer the last question it may be convenient
to use the relation between frequency and four-momentum for a photon sent from A to B.)

PROBLEM 3
Radiation from a current loop
In a circular loop of radius a an oscillating current of the form I = I0 cosωt is running. The
current loop lies in the x, y-plane, with the center of the loop at the origin. The loop is at all
times charge neutral. We assume aω << c.
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a) Show that the magnetic dipole moment has the following time dependence, m(t) =
m0 cosωt ez, with m0 as a constant and ez as a unit vector in the z-direction. Find m0 ex-
pressed in terms of a and I0. Far from the current loop, the fields are dominated by the magnetic
dipole radiation field. Explain why.

b) The magnetic dipole radiation fields have the general form

E(r, t) = − µ0

4πcr
m̈ret × n ; , B(r, t) = −1

c
E(r, t)× n (3)

with mret = m(t − r/c), n = r/r, and r >> a. For the present case give the full expressions
of the fields, as functions of r and t, and written in terms of the orthonormalized vectors {n =
er, eθ, eφ} of the polar coordinate system. Do they form, as expected, waves that propagate in
the radial direction away from the loop? Explain. Characterize the polarization of the waves.

c) Use the general expression for Poynting’s vector S to find the radiated power per unit solid
angle dP

dΩ
, expressed as a function of the polar angle θ (angle relative to the z-axis). Find the total

radiated power, integrated over all directions and averaged over time.
d) A second conducting loop, identical to the first one, is placed at a large distance r from the

first loop, with the center of the loop in the x, y-plane. It is used as a receiver, with the radiation
from the first loop inducing a current in the second loop. Let u be a unit vector orthogonal to the
plane of the second loop. In what direction should u be oriented for the second loop to receive
the maximal signal?

———————————–

ORDLISTE

engelsk norsk

Lagrangian Lagrangefunksjon
angular velocity vinkelhastighet

instantaneous rest frame momentant hvilesystem
proper acceleration egenakselerasjon

current loop strømsløyfe
radiated power utstrålt effekt
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PROBLEM 1
Charged particle motion in a potential
A small body with mass m and charge q is moving in the horizontal plane (x, y-plane), under
influence of a harmonic oscillator potential, V (r) = 1

2
mω2

0r
2 and a constant magnetic field

B = B k, which is directed perpendicular to the plane of the moving particle. The vector
potential corresponding to B can be wrtten as A = −1

2
r×B, with r as the postion vector of the

particle.
a) With the polar coordinates of the plane (r, φ) used as as generalized coordinates, show that

the Lagrangian takes the form

L =
1

2
m(ṙ2 + r2(φ̇2 + ωBφ̇− ω2

0)) (1)

where we have introduced the cyclotron frequency, ωB = qB/m.
b) The polar angle φ is cyclic. Explain what that means and give the expression for the

corresponding conserved quantity, which we lable l. What is the physical interpretation of the
quantity? The form of the Lagrangian implies that there is a second constant of motion. Give the
expression and physical interpretation of this quantity.

c) Establish Lagrange’s equation for the variable r, and use the cyclic property of φ to express
the equation in the variable r alone.

d) Show that the radial equation has solutions which describe circular motion, and give that
radius and angular velocity of the motion as functions of the parameters of the problem. Show
also that it has a solution where the particle performs oscillations about the origin, in a direction
which rotates with with time, and find the oscillation and rotation frequencies. Give a qualitative
description of the more general type of motion described by the equation.
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PROBLEM 2
Protons in LHC
Protons in the accelerator ring LHC are bent into a near circular orbit by a large number of strong
magnets. We consider in this problem the motion of a proton within one of the magnets. A strong
magnetic field B perpendicular to the plan of the ring will bend the orbit with a bending radius
R, as illustrated in the figure. We consider the magnetic field inside the magnet to be constant in
strength.

∆φ

R

L

For the accelerator we have the following information. The proton momentum is p =
7TeV/c (or pc = 7 · 1012 eV), the bending radius of the magnet is R = 2804m, and the strength
of the magnetic field is B = 8.33T. The proton mass is m = 938MeV/c2, and the speed of
light is c = 3.0 · 108 m/s.

a) Show that we have the following relation between the strength of the magnetic field and
the bending radius

eB =
p

R
(2)

b) Find the relativistic gamma factor γ of the proton, and the acceleration a of the particle
within the magnet, both determined in the laboratory frame, where the accelerator ring is at rest.

c) We consider the same situation in the instantaneous rest frame of the proton. What is the
strength and orientation of the magnetic field B′ and the electric field E′ in this reference frame,
and what is the proper acceleration a0 of the proton?

PROBLEM 3
Dipole radiation from an antenna
An antenna is composed of two parts, as shown in the figure. One part is a linear antenna along
the z-axis, with end points z = ±a/2. It caries the current

I1 = I0 sinωt cos
πz

a
(3)

The other part is a circular antenna, which lies in the x, y-plane, and is centered at the origin of
the coordinate system. It has radius 2a and carries the current

I2 = I0 sinωt (4)

The linear charge densitity λ(z, t) of the linear antenna is determined by the continuity equation

2
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a/2

-a/2

2a

for charge

∂λ

∂t
+
∂I1

∂z
= 0 (5)

while the circular one is all the time charge neutral.
We assume that the radiation from the antenna is dominated by electric and magnetic dipole

radation.
a) Show that the time derivative of the electric dipole moment is given by

ṗ =
2

π
aI0 sinωtk (6)

and the magnetic dipole moment is

m = 4πa2I0 sinωtk (7)

As a reminder, the dipole contributions to the electric and magnetic fields, are in the radiation
zone given by

E(r, t) =
µ0

4πr
((p̈× n)× n− 1

c
m̈× n+ ...)ret , B(r, t) = −1

c
E(r, t)× n (8)

with n = r/r.
b) Assume the frequency ω is chosen so that the time average of the power of the electric and

magnetic dipole radiation from the antenna are equal. Find for this case the radiated power per
unit solid angle, dP

dΩ
, expressed as a function of the angle θ between the vector n and the z-axis.

c) What is in this case the polarization of the radiation? If the frequency ω changes so that
the time average of the power of the electric and magnetic dipole radiation are no longer equal,
how would that influence the polarization?

d) Assume that the antenna described above acts as an emitter. A second antenna, with
circular form, like one of the parts of the emitter antenna, is connected to a receiver, which is
placed in the radiation zone. How should the plane of this antenna be oriented to receive the
maximal signal from the emitter?
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PROBLEM 1
Charged particle motion in a potential
A small body with mass m and charge q is moving in the horizontal plane (x, y-plane), under
influence of a harmonic oscillator potential, V (r) = 1

2
mω2

0r
2 and a constant magnetic field

B = B k, which is directed perpendicular to the plane of the moving particle. The vector
potential corresponding to B can be wrtten as A = −1

2
r×B, with r as the postion vector of the

particle.
a) With the polar coordinates of the plane (r, φ) used as as generalized coordinates, show that

the Lagrangian takes the form

L =
1

2
m(ṙ2 + r2(φ̇2 + ωBφ̇− ω2

0)) (1)

where we have introduced the cyclotron frequency, ωB = qB/m.
b) The polar angle φ is cyclic. Explain what that means and give the expression for the

corresponding conserved quantity, which we lable l. What is the physical interpretation of the
quantity? The form of the Lagrangian implies that there is a second constant of motion. Give the
expression and physical interpretation of this quantity.

c) Establish Lagrange’s equation for the variable r, and use the cyclic property of φ to express
the equation in the variable r alone.

d) Show that the radial equation has solutions which describe circular motion, and give that
radius and angular velocity of the motion as functions of the parameters of the problem. Show
also that it has a solution where the particle performs oscillations about the origin, in a direction
which rotates with with time, and find the oscillation and rotation frequencies. Give a qualitative
description of the more general type of motion described by the equation.

1



PROBLEM 2
Protons in LHC
Protons in the accelerator ring LHC are bent into a near circular orbit by a large number of strong
magnets. We consider in this problem the motion of a proton within one of the magnets. A strong
magnetic field B perpendicular to the plan of the ring will bend the orbit with a bending radius
R, as illustrated in the figure. We consider the magnetic field inside the magnet to be constant in
strength.

∆φ

R

L

For the accelerator we have the following information. The proton momentum is p =
7TeV/c (or pc = 7 · 1012 eV), the bending radius of the magnet is R = 2804m, and the strength
of the magnetic field is B = 8.33T. The proton mass is m = 938MeV/c2, and the speed of
light is c = 3.0 · 108 m/s.

a) Show that we have the following relation between the strength of the magnetic field and
the bending radius

eB =
p

R
(2)

b) Find the relativistic gamma factor γ of the proton, and the acceleration a of the particle
within the magnet, both determined in the laboratory frame, where the accelerator ring is at rest.

c) We consider the same situation in the instantaneous rest frame of the proton. What is the
strength and orientation of the magnetic field B′ and the electric field E′ in this reference frame,
and what is the proper acceleration a0 of the proton?

PROBLEM 3
Dipole radiation from an antenna
An antenna is composed of two parts, as shown in the figure. One part is a linear antenna along
the z-axis, with end points z = ±a/2. It caries the current

I1 = I0 sinωt cos
πz

a
(3)

The other part is a circular antenna, which lies in the x, y-plane, and is centered at the origin of
the coordinate system. It has radius 2a and carries the current

I2 = I0 sinωt (4)

The linear charge densitity λ(z, t) of the linear antenna is determined by the continuity equation
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x

y

z

I
1

I
2

a/2

-a/2

2a

for charge

∂λ

∂t
+
∂I1

∂z
= 0 (5)

while the circular one is all the time charge neutral.
We assume that the radiation from the antenna is dominated by electric and magnetic dipole

radation.
a) Show that the time derivative of the electric dipole moment is given by

ṗ =
2

π
aI0 sinωtk (6)

and the magnetic dipole moment is

m = 4πa2I0 sinωtk (7)

As a reminder, the dipole contributions to the electric and magnetic fields, are in the radiation
zone given by

E(r, t) =
µ0

4πr
((p̈× n)× n− 1

c
m̈× n+ ...)ret , B(r, t) = −1

c
E(r, t)× n (8)

with n = r/r.
b) Assume the frequency ω is chosen so that the time average of the power of the electric and

magnetic dipole radiation from the antenna are equal. Find for this case the radiated power per
unit solid angle, dP

dΩ
, expressed as a function of the angle θ between the vector n and the z-axis.

c) What is in this case the polarization of the radiation? If the frequency ω changes so that
the time average of the power of the electric and magnetic dipole radiation are no longer equal,
how would that influence the polarization?

d) Assume that the antenna described above acts as an emitter. A second antenna, with
circular form, like one of the parts of the emitter antenna, is connected to a receiver, which is
placed in the radiation zone. How should the plane of this antenna be oriented to receive the
maximal signal from the emitter?
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