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Question 1 A (boring) Lagrangian
We will begin by considering a free non-relativistic particle (no potential) of
mass m moving in three dimensions with no constraints.

a) Pick a sensible coordinate system for this problem and write down the
Lagrangian. [1 point]

Answer: With no constraints and no potential we have three de-
grees of freedom and should choose the ordinary Cartesian coordinates
(x, y, z) and the corresponding (component) velocities (ẋ, ẏ, ż). The
Lagrangian L = K−V will only contain a kinetic term for the particle

L =
1

2
m(ẋ2 + ẏ2 + ż2). (1)

b) Find the canonical, or conjugate, momenta for the coordinates and
compare to the regular (mechanical) momentum. [1 point]

Answer: The canonical or conjugate momenta are given by

px =
∂L

∂ẋ
= mẋ, py =

∂L

∂ẏ
= mẏ, pz =

∂L

∂ż
= mż. (2)

This is identical to the components of the mechanical momentum ~π =
m~v = m(ẋ, ẏ, ż).

c) Find the cyclic coordinates. [0.5 point]

Answer: Cyclic coordinates are coordinates that do not appear in the
Lagrangian. In this case all the position coordinates (x, y, z).

d) What are the conserved quantities / constants of motion in this prob-
lem?1 [0.5 point per quantity, max 3 points]

Answer: Each cyclic coordinate gives its corresponding conjugate mo-
mentum as a conserved quantity, meaning all three components of the
ordinary mechanical momentum is conserved. In addition, since L
has no explicit time dependence the Hamiltonian H is a constant of
motion. With time-independent constraints (in our case none), the
Hamiltonian is the sum of kinetic and potential energy. Thus, in our
case, kinetic energy is a conserved quantity.

The Lagrangian is also unchanged under rotations in space since with
~r′ = R~r, we have ~r′2 = ~rTRTR~r = ~r2. This means that the three
components of angular momentum are also conserved. It is sufficient
here to refer to the lectures or Sec. 2.3.4 in the notes, where the present
case corresponds to the rotationally invariant potential V (r) = 0.

1The different components of a vector counts as separate quantities.
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We will now repeat the above using instead a relativistic description of the
same free particle.

e) Write down a Lagrangian for the corresponding relativistic case that
is invariant under Lorentz transformations and demonstrate that it is
indeed invariant. [1.5 points]

Answer: There are multiple possible answers here. One simple option
(as discussed in the lectures) is:

L =
1

2
mUµUµ, (3)

where Uµ = (γc, γ~v) is the four-velocity. Since we know Lorentz vectors
like Uµ tranform under the Lorentz transformation as

Uµ → U ′µ = Lµ
νU

ν , (4)

we have

L → L′ =
1

2
mU ′µU ′

µ

=
1

2
mLµ

νU
νL ρ

µ Uρ

=
1

2
mLµ

νL
ρ
µ UνUρ

=
1

2
mδ ρ

ν UνUρ =
1

2
mUνUν = L, (5)

where we have used the requirement on the components of L given in
Eq. (4.29) of the lecture notes.

f) Find the conserved quantities / constants of motion for this Lagrangian.
[0.5 point per quantity, max 2 points]

Answer: The cyclic coordinates are xµ since these do not appear in
the Lagrangian. They lead to the conserved conjugate momenta

∂L

∂Uµ
= mUµ = (γmc, γm~v). (6)

We see that the relativistic momentum ~p = γm~v is conserved, as well
as the relativistic energy E = γmc2. There are of course also other
conserved quantities such as angular momentum. (See the next three
questions.)
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g) We will now look at a small Lorentz transformation where the Lorentz
transformation tensor is given as

Lµ
ν = δµν + ωµ

ν . (7)

Here δµν is the Kronecker delta and ωµ
ν is an infinitesimal parameter,

meaning we can disregard higher orders of ω. Show that ωµ
ν must be

antisymmetric, i.e. that ωµ
ν = −ω µ

ν . [1 point]

Answer: The Lorentz tranformation must fulfil

Lµ
νL

ρ
µ = δ ρ

ν , (8)

see for example Eq. (4.29) in the lecture notes. Inserting (7) we get

Lµ
νL

ρ
µ = (δµν + ωµ

ν)(δ
ρ

µ + ω ρ
µ )

= δµνδ
ρ

µ + ωµ
νδ

ρ
µ + δµνω

ρ
µ

= δ ρ
ν + ωρ

ν + ω ρ
ν , (9)

where we have ignored the term quadratic in ω. We must then have
ωρ

ν + ω ρ
ν = 0, or ωρ

ν = −ω ρ
ν .

h) Assume that a small Lorentz transformation between two reference
frames changes the path xµ(τ) of a particle according to

δxµ(τ) = x′µ(τ)− xµ(τ) = ωµ
νx

ν(τ). (10)

Show that the corresponding change in the Lagrangian is

δL =

(

∂L

∂xµ
xν +

∂L

∂Uµ
Uν

)

ωµ
ν . (11)

[1 point]

Answer: The change in the four-velocity follows from (10) as

δUµ(τ) = U ′µ(τ)− Uµ(τ) = ωµ
νU

ν(τ), (12)

since Uµ ≡ dxµ

dτ
. By an expansion to first order in δxν the change in

the Lagrangian is then

δL = L′ − L = L(x′µ, U ′µ)− L(xµ, Uµ)

= L(xµ, Uµ) +
∂L

∂xµ
δxµ +

∂L

∂Uµ
δUµ − L(xµ, Uµ)

=

(

∂L

∂xµ
xν +

∂L

∂Uµ
Uν

)

ωµ
ν . (13)

Here we ignore terms of higher order in ωµ
ν .
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i) Use Lagrange’s equation to show that you can also write Eq. (11) as

δL =
1

2
ωνµ

d

dτ

(

xµ
∂L

∂Uν
− xν

∂L

∂Uµ

)

. (14)

[1.5 points]

Answer: We again have that

δL =
∂L

∂xµ
δxµ +

∂L

∂Uµ
δUµ. (15)

This can be rewritten

δL =

(

∂L

∂xµ
−

d

dτ

∂L

∂Uµ

)

δxµ +
d

dτ

(

∂L

∂Uµ
δxµ

)

=
d

dτ

(

∂L

∂Uµ
xν

)

ωµ
ν , (16)

where we have used Lagrange’s equation to eliminate a term. Since
ωµ

ν = −ω µ
ν ,

ωµ
ν =

1

2
(ωµ

ν − ω µ
ν ) , (17)

we can write

δL =
1

2
ωµ

ν

d

dτ

(

∂L

∂Uµ
xν

)

−
1

2
ω µ
ν

d

dτ

(

∂L

∂Uµ
xν

)

=
1

2
ωµ

ν

d

dτ

(

∂L

∂Uµ
xν

)

−
1

2
ω ν
µ

d

dτ

(

∂L

∂Uν
xµ

)

=
1

2
ωµν

d

dτ

(

∂L

∂Uµ
xν −

∂L

∂Uν
xµ

)

=
1

2
ωνµ

d

dτ

(

∂L

∂Uν
xµ −

∂L

∂Uµ
xν

)

, (18)

j) Identify which quantities are conserved because of the invariance under
Lorentz transformations. [1.5 points]

Answer: Since the Lagrangian is Lorentz invariant we must have δL =
0, thus Eq. (14) shows that the antisymmetric tensor

Lµν ≡ xµ
∂L

∂Uν
− xν

∂L

∂Uµ
= xµpν − xνpµ, (19)

is conserved, where we have used that the generalized / canonical /
conjugate momentum is given by pµ = ∂L

∂Uµ
. For a free particle this is

the same as the ordinary four-momentum. We will give full score for
this question if you also point out that Lij are the angular momenta.
There is a further conserved quantity, L0i, which is connected to the
motion of the centre-of-mass, but elucidation of this point was not
required for a full score.
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Question 2 Relativistics
Two particles with mass m and a photon is sent out from a source at the
same time and in the positive x-direction of the rest frame S of the source.
The massive particles are moving with constant velocity v1 and v2 > v1 in
this frame. Draw a Minkowski-diagram of the motion of the source, both
massive particles and the photon in S, and draw the axis of the rest frame
S′ of the slowest particle. Show that the difference in rapidity of the two
massive particles is the same in S and S′.2 [5 points]

Answer: The source is moving along the world-line ct since it is at rest,
the photon is moving at the speed v = c along the line ct = x, and the
two massive particles lie between this, with the slowest particle closest to
the ct-axis. Since the slowest massive particle is at rest in S′ the ct′ world-
line lies in the same direction as the particle is moving in S. The x′-axis
lies symmetric to the ct′ axis w.r.t the light-line ct = x. See Fig. 1 for an
illustration.

Figure 1: Minkowski diagram for emitted particles. The light-lines are shown
in red, the motion of the photon in yellow, the source in blue and the massive
particles in green.

In S′ the velocity of the slowest massive particle is zero since this is the
rest frame. The fastest massive particle has velocity v′2 given by the velocity

2In fact this is always true, rapidity differences are unchanged by boosts no matter

which reference frames you look at. I am sure you can see this from your proof!
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transformation formula

v′2 =
v2 − v1
1− v1v2

c2
. (20)

By dividing by c on both sides this can be rewritten in terms of rapidity χ
with β = v/c = tanhχ,

tanhχ′

2 =
tanhχ2 − tanhχ1

1− tanhχ1 tanhχ2
. (21)

From for example Rottmann we have the following relationship for tanh

tanh(x± y) =
tanhx± tanh y

1± tanhx tanh y
. (22)

This means that tanhχ′

2 = tanh(χ2 − χ1) and thus χ′

2 = χ2 − χ1. Since
χ′

1 = 0 we have achieved the desired result. This holds for all boosts by
substituting v1 for some general boost and finding the same expression for
χ′

1.

Question 3 Finding the shortest way
Using calculus of variations, find the shortest path between two points on
a sphere. We want the answer in terms of a function φ(θ) using spherical
coordinates (r, θ, φ). By the rotational symmetry of the problem you may
assume that the starting point is (r, π2 , 0). To simplify the answer you may
also ignore the special solutions through this point with constant φ = 0 or
θ = π

2 . [5 points]

Answer: We use spherical coordinates (r, θ, φ) with a fixed radius r. In
spherical coordinates the infinitestimal distance between two points is (see
for example Rottmann):

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (23)

For fixed r this gives

ds = r

√

dθ2 + sin2 θdφ2 = r

√

1 + sin2 θ φ̇2 dθ, (24)

where φ̇ = dφ/dθ. The total length between two points A and B is then

SAB =

∫ B

A

dS = r

∫ θB

θA

√

1 + sin2 θ φ̇2 dθ, (25)

where we parameterise the path as a function φ(θ). To minimize the dis-
tance as a function of the choice of path SAB[φ(θ)] through the calculus of
variations we can use the function

L(φ, φ̇) =

√

1 + sin2 θ φ̇2, (26)
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as the function corresponding to the Lagrangian with θ playing the role of
time t and φ as the generalized coordinate. This means we have to solve the
following equation

d

dθ

(

∂L

∂φ̇

)

−
∂L

∂φ
= 0. (27)

Since L is independent on φ this equation can be written

d

dθ

(

∂

∂φ̇

√

1 + sin2 θ φ̇2

)

= 0. (28)

This means that

∂

∂φ̇

√

1 + sin2 θ φ̇2 =
sin2 θ φ̇

√

1 + sin2 θ φ̇2

= C (29)

where C is some constant to be determined. This equation can be solved by
squaring both sides giving

sin4 θ φ̇2

1 + sin2 θ φ̇2
= C2, (30)

or

φ̇ =
C

sin θ
√

sin2 θ − C2
. (31)

Now we want to integrate this expression from the initial point where θ = π
2

and φ = 0 to some final point (θ, φ)

φ(θ)− φ(
π

2
) =

∫ θ

π
2

C

sin η
√

sin2 η − C2
dη, (32)

where we have changed the name of the integration variable since we want
to use θ to parametrise the path.

This integral is challenging. We accept solutions where this have been
evaluated using formulae collections for integrals or tools such as Mathematica
or WolframAlpha. However, we can simplify by using the substitution

u =
C√

1− C2

1

tan η
,

du

dη
=

−C√
1− C2

1

sin2 η
. (33)

This gives

φ(θ) = −
∫ u(θ)

u(π
2
)

du√
1− u2

, (34)

where we have used that

sin2 η =
1

1 + 1
tan2 η

=
1

1 + 1−C2

C2 u2
=

C2

C2 + (1− C2)u2
. (35)
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This simpler integral has inverse sine solutions, see for example Rottmann,
so

φ(θ) = sin−1(u(
π

2
))− sin−1(u(θ)) = − sin−1

(

C√
1−C2

1

tan θ

)

, (36)

using sin−1(u(π2 )) = sin−1(0) = 0. The constant C can be determined from
the initial conditions, i.e. the position of the endpoint. If this is (φf , θf )
then

φf = − sin−1

(

C√
1−C2

1

tan θf

)

− sinφf =
C√

1− C2

1

tan θf

sin2 φf tan
2 θf =

C2

1− C2

C = ±

√

sin2 φf tan2 θf

sin2 φf tan2 θf + 1
, (37)

where the sign of C has to be chosen according to the direction of the motion.
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