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Question 1 Pendulum with a rotating wheel
A pendulum can rotate freely about a horizontal axis A as shown in Fig. 1.
The pendulum consists of a rigid rod and attached to this is a wheel which
rotates about a point B on the rod. The mass of the wheel is m and the
moment of inertia about B is denoted I. We consider the mass of the
pendulum rod to be negligible. The distance between the points A and B
is b. The gravitational acceleration is g and the angle of the pendulum rod
relative to the vertical direction is denoted ϕ. We assume that the pendulum
is free to perform full rotations about the axis A.

A motor (not included in the figure) affects the rotation of the wheel by
a constant angular acceleration, so that the angular velocity of the wheel
measured relative to a fixed direction is ω = ϕ̇+ αt, where α is the acceler-
ation constant. For simplicity we assume that all other effects of the motor
can be neglected and that friction can be disregarded.

Figure 1: Pendulum with a rotating wheel.

a) Show that the Lagrangian of the system, with ϕ as a coordinate, is

L =
1

2
mb2ϕ̇2 +

1

2
I(ϕ̇+ αt)2 +mgb cosϕ. (1)

[1 point]

Answer: The kinetic energy of the pendulum comes from the pendu-
lum movement and the rotational energy of the wheel, giving

K =
1

2
mv2 +

1

2
Iω2 =

1

2
mb2ϕ̇2 +

1

2
I(ϕ̇+ αt)2, (2)
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since the velocity v is related to the angular velocity of the pendulum
ϕ̇ as v = bϕ̇. The potential energy is the gravitational potential of the
wheel, V = −mgb cosϕ. This gives the Lagrangian

L = K − V =
1

2
mb2ϕ̇2 +

1

2
I(ϕ̇+ αt)2 +mgb cosϕ. (3)

b) Find Lagrange’s equation for ϕ. [2 points]

Answer: Lagrange’s equation is found from

∂L

∂ϕ̇
= mb2ϕ̇+ I(ϕ̇+ αt) = (mb2 + I)ϕ̇+ Iαt,

d

dt

∂L

∂ϕ̇
= (mb2 + I)ϕ̈+ Iα,

∂L

∂ϕ
= −mgb sinϕ. (4)

giving
(mb2 + I)ϕ̈+mgb sinϕ+ Iα = 0. (5)

c) Show that you can rewrite the Lagrangian as

L(ϕ, ϕ̇, t) = L′(ϕ, ϕ̇) +
d

dt
f(ϕ, t), (6)

where
f(ϕ, t) = Iαϕt+

1

6
Iα2t3. (7)

[2 points]

Answer: We have

d

dt
f(ϕ, t) = Iαϕ̇t+ Iαϕ+

1

2
Iα2t2. (8)

giving

L′ = L− d

dt
f(ϕ, t)

=
1

2
mb2ϕ̇2 +

1

2
I(ϕ̇+ αt)2 +mgb cosϕ− Iαϕ̇t− Iαϕ− 1

2
Iα2t2

=
1

2
mb2ϕ̇2 +

1

2
Iϕ̇2 +mgb cosϕ− Iαϕ

=
1

2
(mb2 + I)ϕ̇2 +mgb cosϕ− Iαϕ, (9)

which has no explicit dependence on time as required.
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d) What are the equations of motion for the Lagrangian L′? [1 point]

Answer: The addition or subtraction of a term in the Lagrangian
which is a total derivative w.r.t. time does not change the solutions of
the Lagrangian equation, so the equations of motion are the same.

e) Find the canonical momentum p′ϕ corresponding to the coordinate ϕ
of the Lagrangian L′ and determine the corresponding Hamiltonian
H ′(ϕ, p′ϕ). [2 points]

Answer: The canonical momentum is

p′ϕ =
∂L′

dϕ̇
= (mb2 + I)ϕ̇. (10)

The Hamiltonian is

H ′(ϕ, p′ϕ) = p′ϕϕ̇− L′

= (mb2 + I)ϕ̇ϕ̇− 1

2
(mb2 + I)ϕ̇2 −mgb cosϕ+ Iαϕ

=
1

2
(mb2 + I)ϕ̇2 −mgb cosϕ+ Iαϕ

=
p′2ϕ

2(mb2 + I)
−mgb(cosϕ− I

mgb
αϕ). (11)

f) Explain why H ′ is a constant of motion. [1 point]

Answer: There is no explicit time-dependence in H ′, thus dH ′/dt =
∂H ′/∂t = 0 and H ′ is a constant of motion.

g) Make a two dimensional contour plot of the phase space potential
function H ′(ϕ, p′ϕ), for different values of

λ =
I

mgb
α, (12)

for example for λ = 0, 0.5, 1.0. Make sensible choices for the other
parameters. Give a qualitative description of the different types of
motion that can be read out of the diagrams and comment on how the
situation changes with increasing λ. [3 points]

Answer: We show the phase space for λ = 0, 0.5, 1.0 in Fig. 2. We
observe the following motion:
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λ = 0 There are three types of motion: oscillations about a stable equi-
librium corresponding to circles in phase space, full rotation of
the pendulum in the positive ϕ direction, and full rotation of the
pendulum in the negative direction. There is one stable equilib-
rium at ϕ = 0 and one unstable at ϕ = π.

0 < λ < 1 There are two types of motion: oscillations about the stable equi-
librium and full rotation of the pendulum in the negative direction
(rotation of the pendulum in the positive direction will turn into
rotation in the negative direction).

λ > 1 One type of motion: rotation of the pendulum in the negative
direction with no oscillations possible.

Question 2 Two-body decays
In particle physics we are often interested in two-body decays, where one
heavy particle decays into two other lighter particles, for example the top
quark t can decay into a W -boson and a bottom quark b, a process that we
symbolise as t → bW . Here we would like to study generic two-body decays
of the form B → aA.

a) Below we will use the concept of invariant mass. For two particles a
and b the invariant mass mab is given by

m2
abc

2 = (pa + pb)
2 = (pa + pb)

µ(pa + pb)µ, (13)

where pa and pb are the four-momenta of the particles. Explain why
the invariant mass does not change between reference frames. [1 point]

Answer: The sum of two Lorentz vectors is a Lorentz vector because
the Lorentz transformation acts linearly. The invariant mass is thus
a contraction of a Lorentz vector with itself and is therefore invariant
under changes of reference frame.

b) For the decay B → aA, find the magnitude of the relativistic mo-
mentum of particle a in the rest frame of A expressed in terms of the
masses of the particles (and c). [3 points]

Answer: Conservation of four-momenta gives pµB = pµa + pµA. Con-
tracting this four-vector with itself yields

m2
Bc

2 = m2
ac

2+m2
Ac

2+2pµapAµ = m2
ac

2+m2
Ac

2+2(EaEA/c
2− p⃗ap⃗A),

(14)
which in the rest frame of A gives

m2
Bc

2 = m2
ac

2 +m2
Ac

2 + 2
√
|p⃗a|2 +m2

ac
2mAc. (15)
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This can be solved for pa giving√
|p⃗a|2 +m2

ac
2 =

m2
Bc

2 −m2
Ac

2 −m2
ac

2

2mAc

|p⃗a|2 =
(m2

Bc
2 −m2

Ac
2 −m2

ac
2)2 − 4m2

Am
2
ac

4

4m2
Ac

2
, (16)

or

|p⃗a| =

√
(m2

B −m2
A −m2

a)
2 − 4m2

Am
2
a

2mA
c. (17)

c) In the two sequential two-body decays C → bB and B → aA, using
four-vectors and invariants, find the square of the invariant mass of a
and b, m2

ab, expressed by the particle masses and the angle θ between
a and b in the rest frame of B. To simplify the calculation you may
assume ma = mb = 0. [5 points]

Answer: The invariant mass is given as

m2
abc

2 = (pa + pb)
2 = p2a + p2b + 2papb

= m2
ac

2 +m2
bc

2 + 2(EaEb/c
2 − p⃗ap⃗b)

= 2(|p⃗a||p⃗b| − cos θ|p⃗a||p⃗b|) = 2(1− cos θ)|p⃗a||p⃗b|, (18)

where in the last line we have used that a and b are massless, and
where θ is the angle between the particles. We can here take over the
result in b) giving with an appropriate change in names

|p⃗b| =

√
(m2

C −m2
B −m2

b)
2 − 4m2

Bm
2
b

2mB
c =

m2
C −m2

B

2mB
c, (19)

in the rest frame of B. For the decay of B we have again pµB = pµa+pµA,
but now, as we want to work in the rest frame of B, we square pA since
we are disinterested in its momentum:

p2A = pµApAµ = m2
Ac

2 = (pB − pa)
2 = p2B + p2a − 2pBpa

= m2
Bc

2 − 2(EBEa/c
2 − p⃗B p⃗a)

= m2
Bc

2 − 2mB|p⃗a|c, (20)

where we have used that b is massless and that we are in the rest frame
of B. This is easily solved for |p⃗a| giving the strikingly symmetric

|p⃗a| =
m2

B −m2
A

2mB
c. (21)

Input in the invariant mass we arrive at

m2
ab =

(m2
C −m2

B)(m
2
B −m2

A)

m2
B

1

2
(1− cos θ). (22)
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d) For a chain of four sequential two-body decays, E → dD, D → cC,
C → bB and B → aA, write a code to numerically find the distribution
of invariant masses of all possible combinations of pairs of particles a,
b, c and d. Plot these distributions in the same figure. For masses
you should choose mE = 600 GeV/c2, mD = 500 GeV/c2, mC =
200 GeV/c2, mB = 150 GeV/c2, mA = 100 GeV/c2, md = mc = 0
and mb = ma = 1.8 GeV/c2. You can assume that all the decays are
isotropic, i.e. that the direction of the decay products in the rest frame
of the decaying particle is uniformly distributed on a sphere.1 It may
be wise to use recursive function calls for the decays. No points will
be given for submitted code. [3 points]

Answer: We show the invariant mass distributions in Fig. 3. The
code used to generate this plot can be found in the python script
decay_chain.py.
The philosophy behind the code is the following: we can pick any
frame to do the calculation as we are after invariants. We may as well
choose the reference frame where the initial particle, E, is at rest. We
can then take over the result in b) to find the momenta (and energies)
of the decay products and choose their direction from a uniform (on a
sphere) distribution. The kinematics of the decay products of D can
likewise be found in the rest frame of D, and then boosted back to the
rest frame of E. This way we can continue down the chain until we
know the momenta and energies of all the particles in the decay. To
find the invariant mass distributions all we need to do is to histogram
many such decays.

1Note that there is a very nasty but educational trap here.
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Figure 2: Phase space for λ = 0 (top), λ = 0.5 (middle), and λ = 1 (bottom).
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Figure 3: Invariant mass distributions for all pairs of particles.
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