

UiO *** Fysisk institutt**

Det matematisk-naturvitenskapelige fakultet

Lecture 13

Recap

• A body of length L₀ at rest in RF S' moving with velocity v w.r.t. RF S has length L in S given by $L = \frac{1}{\gamma}L_0 \le L_0$

A time interval τ in S' is the interval t in S:

$$t = \gamma \tau \ge \tau$$

This is length contraction and time dilation.

• The proper time is given as

$$\tau_{AB} \equiv \int_{t_A}^{t_B} \sqrt{1 - \frac{v^2(t)}{c^2}} dt$$

/ Are Raklev / 28.02.18 FYS3120 – Classical mechanics and electrodynamics

Today

- Return of the four-vectors
 - We repeat Einstein's summation convention.
 - The metric tensor.
 - Lower indices (finally).
 - The general four-vector. (Not necessarily spacetime x^µ.)
- Lorentz transformations strike again
 - Now properly using four-vectors and the metric.

Summary

• We define the metric tensor g and inverse g⁻¹ as

 $g = g^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$

This is used to raise and lower indices

$$A^{\mu} = g^{\mu\nu}A_{\nu}, \ A_{\mu} = g_{\mu\nu}A^{\nu}$$

• Lorentz transformations are given by

$$A'^{\mu} = L^{\mu}_{\ \nu}A^{\nu}$$
, $A'_{\mu} = L^{\mu}_{\mu}A^{\nu}$, $A'_{\mu} = L^{\nu}_{\mu}A^{\nu}$

where L fulfils $g_{\mu\nu}L^{\mu}{}_{\rho}L^{\nu}{}_{\sigma} = g_{\rho\sigma}$

/ Are Raklev / 28.02.18

FYS3120 – Classical mechanics and electrodynamics