

UiO **Fysisk institutt**Det matematisk-naturvitenskapelige fakultet

Lecture 17

Recap

• Relativistic four-momentum p^{μ} is defined as

$$p^{\mu} = mU^{\mu} = (\gamma mc, \gamma m\vec{v}) = (E/c, \vec{p})$$

where E and p is the relativistic energy and momentum. These reduce to ordinary kinetic energy plus rest energy, and to ordinary momentum in the non-relativistic limit.

• From p^2 we find the energy-momentum relation $E^2 = p^2c^2 + m^2c^4$

which allows massless particles with E = pc.

Today

- Doppler effect for light
- Conservation of relativistic energy and momentum
 - Leads to mass non-conservation.
- Centre-of-mass reference frame
 - Just as in non-relativistic physics the sum of momenta is zero.

Summary

 We can derive the Doppler effect by looking at Lorentz transformations of the four-momentum

$$\mathbf{v}' = \mathbf{y}(1 - \beta \cos \theta)\mathbf{v}$$

 Conservation of relativistic energy and momentum is given by the four-momenta

$$\sum_i p_i^{\mu} = \sum_f p_f^{\mu}$$

 The centre-of-mass reference frame is defined as the RF where

$$\vec{P} = \sum_{i} \vec{p}_{i} = 0$$