

UiO *** Fysisk institutt**

Det matematisk-naturvitenskapelige fakultet

Lecture 19

This week

- **Monday:** A covariant Lagrangian formulation. (Section 8.4)
- Wednesday: Starting Part III. Maxwell's equations. (Sections 9.1-9.5).
- **Problem session:** Problem set 8. More practice on relativistic kinematics.
- **Mid-term:** results should be out some time this week.

Recap

Relativistic four-force K^µ is defined as

$$K^{\mu} = \frac{dp^{\mu}}{d\tau} = \gamma \left(\frac{1}{c} \vec{v} \cdot \vec{F}, \vec{F} \right)$$

where the relativistic force F is

$$\vec{F} = \frac{d\,\vec{p}}{dt}, \quad \vec{p} = \gamma m\,\vec{v}$$

• We can write the Lorentz force (force from electromagnetic field) on covariant form as

 $K^{\mu} = eF^{\mu\nu}U_{\nu}$ $(F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}, A^{\mu} = (\phi/c, \vec{A}))$ where $F^{\mu\nu}$ is the electromagnetic field strength.

Today

- A covariant Lagrangian
 - The Lagrangian in terms of Lorentz vectors only.
 - Lagrange's equation on covariant form.
 - Example with free particle.
 - Example with free particle.
 - Example with free particle.
 - Example with particle in e.m. field.

Mid-term evaluation

- Lectures:
 - More examples in class.
 - Lorentz vectors: challenging; too little time to practice use.
- Problem sessions:
 - More problems, more types of problems.
 - Too short problem sets? (Opinion is divided.)
 - More discussion of concepts in problem classes.
 - General positive attitude to oral test instead of handing in written problem sets.

Summary

• We can write a relativistic action as

$$S = \int_{\tau_1}^{\tau_2} L(x^{\mu}(\tau), U^{\mu}(\tau), \tau) d\tau$$

which is a Lorentz (transformation) invariant scalar using a Lorentz invariant Lagrangian L.

Lagrange's equations are then

$$\frac{d}{d\tau}\frac{\partial L}{\partial U^{\mu}} - \frac{\partial L}{\partial x^{\mu}} = 0$$

where τ is proper time and U^µ is four-velocity.