
Question 1 Lagrangian mechanics
A particle of mass m moves without friction on a parabola-shaped stiff string
under the effects of gravity. The string rotates about the z-axis with constant
angular velocity ω, and its shape is given by the equation z = ar2, where a
is a constant and r is the distance from the z-axis.

a) Sketch a figure of the system. [2 points]

Answer:

y

z

x

z=ar 2

ω

Figur 1: Mass m moving on a parabola-shaped stiff string with constant
angular velocity ω.

b) How many degrees of freedom does this system have? [4 points]

Answer: The number of degrees of freedom in three dimensions is
d = 3N−M , where N is the number of particles andM in the number
of constraints. In this case there is N = 1 particles, while the string
gives two constraints: one that fixes the z-coordinate, and the constant
angular velocity fixing the angle φ in the plane at any given time as
φ(t) = φ0 + ωt, a time-dependent constraint. Thus d = 3 · 1 − 2 = 1
and there is one degree of freedom.
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c) Find the kinetic energy K of the mass m in terms of r. [5 points]

Answer: The kinetic energy is defined as

K =
1

2
m(ẋ2 + ẏ2 + ż2). (1)

In polar coordinates x = r cosφ and y = r sinφ, and using z = ar2,
this is can be written

K =
1

2
m
[
(ṙ cosφ− rφ̇ sinφ)2 + (ṙ sinφ+ rφ̇ cosφ)2 + (2arṙ)2

]
=

1

2
m
[
(1 + 4a2r2)ṙ2 + ω2r2

]
. (2)

d) Show that the Lagrangian of the system can be written

L =
1

2
m
[
(1 + 4a2r2)ṙ2 + r2(ω2 − 2ga)

]
, (3)

where g is the acceleration due to gravity (in the negative z-direction).
[3 points]

Answer: The Lagrangian is given as L = K − V so

L = K −mgz = 1

2
m
[
(1 + 4a2r2)ṙ2 + ω2r2

]
−mgar2

=
1

2
m
[
(1 + 4a2r2)ṙ2 + (ω2 − 2ga)r2

]
. (4)

e) Is the angular momentum around the z-axis a constant of motion /
conserved quantity? [2 points]

Answer: No. L does not depend on φ, however, φ is not a generalized
coordinate. Another way to see this is that the angular momentum
~̀= m~r × ~v is not constant since the magnitude (but not direction) of
v is constant (constant ω), but r varies with time.

f) Show that the equation of motion for m is

(1 + 4a2r2)r̈ + 4a2rṙ2 − (ω2 − 2ga)r = 0. (5)

[5 points]

Answer: We find the ingredients in Lagrange’s equation

∂L

∂r
=

1

2
m
[
(8a2r)ṙ2 + 2(ω2 − 2ga)r

]
= 4a2mrṙ2 + (ω2 − 2ga)mr,

d

dt

∂L

∂ṙ
=

d

dt

(
m(1 + 4a2r2)ṙ

)
= 8a2mrṙ2 + (1 + 4a2r2)mr̈. (6)
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So

∂L

∂r
− d

dt

∂L

∂ṙ
= 0

4a2mrṙ2 + (ω2 − 2ga)mr − 8a2mrṙ2 − (1 + 4a2r2)mr̈ = 0

(1 + 4a2r2)mr̈ + 4a2mrṙ2 − (ω2 − 2ga)mr = 0

(1 + 4a2r2)r̈ + 4a2rṙ2 − (ω2 − 2ga)r = 0. (7)

g) Show that there is a solution with constant r, and find the angular
velocity ω for this solution. What is the physical interpretation of the
solution? [5 points]

Answer: For ω =
√
2ga, the e.o.m. reduces to

(1 + 4a2r2)r̈ + 4a2rṙ2 = 0. (8)

If r is constant ṙ = 0 and r̈ = 0, which automatically fulfils the e.o.m.
The motion of m will be a circular orbit at height z = ar2, where
the force of gravity is equal and opposite to the force from the string,
caused by the rotation, minus the force needed for the acceleration to
remain in circular motion.

Question 2 Relativistic mechanics
First we warm up a little by doing the following:

a) Explain what we mean by a Lorentz vector. (Sometimes sloppily just
called a four-vector in the course.) [2 points]

Answer: A Lorentz vector is a four-component vector that transforms
the same way as the time and space coordinate vector xµ = (ct, ~r)
under Lorentz transformations.

b) Explain why pµ ≡ mUµ is a Lorentz vector. Here Uµ ≡ dxµ

dτ , m is the
mass of the particle, and τ is the proper time. [3 points]

Answer: Since the proper time is a Lorentz invariant (does not change
under Lorentz transformations), and xµ by definition is a Lorentz vec-
tor, then Uµ must also be a Lorentz vector. m is also a Lorentz scalar,
so pµ must be a Lorentz vector.

c) Find p2 = pµpµ. [3 points]

Answer: p2 is a Lorentz invariant so it does not change between
reference frames. In the rest frame of the particle pµ = (mc, 0), so
p2 = m2c2.
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We will now use this look at the so-called pair-production reaction where
a photon γ produces an electron–positron pair e+e− in an interaction with
a charged particle N :

γ +N → N + e+ + e−. (9)

d) Assume that the mass of the charged particle N is M and that the
masses of the electron and positron are both m. Find the smallest pho-
ton energy Eγ where the reaction is possible in the laboratory reference
frame where N is at rest. Discuss the physics of this threshold in the
two cases: i) M � m and ii) M/m → 0. Hint: It can be useful to
consider an invariant in two different rest frames for the two sides of
the reaction. [10 points]

Answer: Conservation of (relativistic) energy and momentum requires
pµγ + pµN = p

′µ
N + pµ

e+
+ pµ

e− . Squaring both sides gives

p2γ+p
2
N+2pγpN = p

′2
N+p2e+ +p2e−+2p′Npe+ +2p′Npe−+2pe+pe− , (10)

or in terms of masses

M2c2 + 2pγpN =M2c2 + 2m2c2 + 2p′Npe+ + 2p′Npe− + 2pe+pe− . (11)

Keep in mind that both sides of this equation are Lorentz invariants
and thus independent of rest frames. If we use that pµN = (Mc, 0) in
the laboratory frame, the left hand side isM2c2+2

Eγ

c Mc. If we use the
centre-of-mass rest frame for the right-hand side ~p′N + ~pe+ + ~pe− = 0.
The minimum amount of kinetic energy that fulfils this requirement —
thus giving the minimum photon energy — is if they are all at rest, so

M2c2 + 2m2c2 + 2p′Npe+ + 2p′Npe− + 2pe+pe−

= M2c2 + 2m2c2 + 2Mcmc+ 2Mcmc+ 2m2c2

= M2c2 + 4m2c2 + 4Mmc2. (12)

Putting these results back into (11) gives

Eγ =
2m2c2 + 2Mmc2

M
= 2mc2(1 +

m

M
). (13)

For case i) Eγ ' 2mc2, thus if the charged particle is much more
massive than the electron the pair-productions is allowed as soon as
the energy of the photon is above the rest energy of the electron–
positron pair. For ii) Eγ →∞, so for a very light charged particle (or
in the vacuum!) the prosess is never possible.
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e) The centre-of-mass (CM) system, or reference frame, is defined as the
reference frame where the sum of the incomming (and outgoing) par-
ticle momenta are zero. Find the velocity of the CM system vCM with
respect to the laboratory reference frame as a function of the pho-
ton energy Eγ . Hint: You do not need the answer from the previous
question. [7 points]

Answer: In the CM RF ~p′γ + ~p′N = 0 which means that E′γ = −cp′N .
Here we use the prime to indicate that we are not in the laboratory
frame. The transformation from the laboratory frame is given by

E′γ = γ(Eγ − vCMpγ) = γ
(
1− vCM

c

)
Eγ ,

p′N = γ
(
pN −

vCM
c2

EN

)
= −γvCMM. (14)

Thus
γ
(
1− vCM

c

)
Eγ = cγvCMM, (15)

and
vCM =

Eγc

Eγ +Mc2
. (16)

Question 3 Electromagnetism
Assume that we have a monochromatic plane wave of the form

~E(~r, t) = E0 cos(kz − ωt)êx. (17)

a) Find Poynting’s vector ~S for this wave in terms of ~E. [5 points]

Answer: Poynting’s vector is given as

~S =
1

µ0
~E × ~B =

1

µ0
~E ×

(
1

c
n̂× ~E

)
=

1

µ0

1

c
n̂
(
~E · ~E

)
− 1

µ0
~E

(
~E · 1

c
n̂

)
=

1

cµ0
E2êz = cε0E

2êz (18)

where we have used the following expression from Rottmann for the
cross product: ~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b), and that the unit vector
in the direction of propogation is n̂ = ~k/k = êz.

b) What is the physical interpretation of Poynting’s vector? [2 points]

Answer: Poynting’s vector gives the energy current density, meaning
it gives the amount of energy flowing through a unit area perpendicular
to the vector per unit time.
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We will now look at the scattering of such as wave on a free electron of mass
m and charge e. We assume that the electron is initially at rest.

c) Explain why we can ignore the force from the magnetic field as long
as v � c, where v is the velocity of the electron. [4 points]

Answer: The Lorentz force is given as ~F = e( ~E + ~v × ~B). The force
from the magnetic field is

~Fmag = e~v × ~B = e~v ×
(
1

c
n̂× ~E

)
=
v

c
ev̂ × (n̂× ~E), (19)

with magnitude |~Fmag| = eβE0, which is much less than the magnitude
of the force from the electric field |~Fel| = eE0, since β � 1.

d) Find the power P radiated by the electron per unit time. Express your
answer in terms of the classical electron radius

r0 =
e2

4πε0mc2
. (20)

[4 points]

Answer: The power P radiated per unit time for a non-relativistic
charged particle with charge e is given by Larmor’s formula

P (t) =
µ0e

2

6πc
a2, (21)

where a is the acceleration. Here ~F = m~a = e ~E, so that

~a =
e

m
~E, (22)

and

P (t) =
µ0e

4

6πm2c
E2

0 cos
2(ωt) =

8π

3
r20cε0E

2
0 cos

2(ωt), (23)

where we have placed the electron at the origin z = 0.

e) Find the cross section σ of the electron for the electromagnetic scat-
tering, given as σ = P/S, where S = |~S|. Comment on the units of the
cross section. [4 points]

Answer:

σ =
P

S
=

8π
3 r

2
0cε0E

2
0 cos

2(ωt)

cε0E2
0 cos

2(ωt)
=

8π

3
r20, (24)

where we have again placed the electron at the origin. As we see the
cross section indeed has units of area.1

1In fact it is used as a measure of the effective size of a particle in interactions (in this
case electromagnetic interactions), which explains the (classical) electron radius name for
r0.
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Question 4 Ehrenfest’s paradox
Imagine that you observing a rigid disc of radius R rotating with a large
(relativistic) angular velocity ω. We will use the laboratory rest frame as
the reference frame of the problem, with the origin in the centre of the disc.
What will you observe for the diameter and the circumference of the disc,
and their ratio, using special relativity? [5 points]

Answer: The circumference C of the non-rotating disc is C = 2πR
wile the diameter D is D = 2R. The ratio is naturally C/R = π. On the
rotating disc the distance to the edge is perpendicular to the velocity, thus
experiencing no length contraction. The observed diameter is then the same
as at rest, D′ = 2R. An infinitesimal length element along the edge, dC,
is along the direction of velocity, thus is contracted as dC/γ. The gamma
factor is constant along the circumference, thus the observed circumference
is C ′ = 2πR/γ. The ratio of the two is

C ′

R′
=
π

γ
= π

√
1− v2

c2
= π

√
1− (ωR)2

c2
. (25)

The paradox here is that this seemingly contradicts Euclidean geometry by
making π smaller. This problem find its resolution in general relativity, how-
ever, it has lead to many productive discussions, see e.g. Ø. Grøn, Relativistic
description of a rotating disk, Amer. J. Phys. 43 (10): 869–876 (1975).
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