
Question 1 Swinging Lagrangian mechanics
A mechanical system consists of two pendula with mass m and length l
swinging from fixed points a distance d apart. The pendula are coupled by
an (effectively weightless) spring with spring constant k, and move under
the influence of gravity. The pendula swing in the same plane and the spring
has an unstretched length d0, viz. the length when no spring force is acting.
See illustration in Fig. 1.

We remind you that the potential energy for a spring is given by V =
1
2kx

2, when x is the displacement of the string length.

Figure 1: Two coupled pendula.

a) How many degrees of freedom does this system have? Explicitly give
your choice of generalised coordinates. [3 points]

Answer: The two masses each have a set of 2D-coordinates since the
pendula swing in a plane. There are two constraints from the length
of the pendula. In total this gives d = 2N −M = 2 · 2− 2 = 2 degrees
of freedom. In the following we will use the angles, θ1 and θ2, of the
pendula as generalised coordinates since we are later told these are
small. Other choices are possible, e.g. the horizontal displacement of
the pendula masses.

b) Find the potential energy of the system in terms of the generalised co-
ordinates assuming that the angles θ1 and θ2 are small. We shall keep
to this assumption in the following. Hint: the small angle expansions
of sine and cosine to second order in angles are

sin θ = θ +O(θ3), cos θ = 1− 1

2
θ2 +O(θ4). (1)
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[5 points]

Answer: There are two sources of potential energy: the gravitational
potential for the two masses and the energy stored in the spring. These
are Vgravity = −mgl(cos θ1 + cos θ2) and Vspring = 1

2k(d
′ − d0)

2, where
d′ is the distance between the two pendula masses. When θ1 and θ2
are small we can approximate cos θ ≃ 1− 1

2θ
2, so

Vgravity =
1

2
mgl(θ21 + θ22)− 2mgl. (2)

In the following we are free to ignore the constant contribution to
the potential, 2mgl, which can be removed by a redefinition of the
zero-level. The distance between the pendula masses requires some
trigonometry. Pythagoras gives us

d′2 = (d+ l sin θ2 − l sin θ1))
2 + (−l cos θ2 + l cos θ1)

2

= d2 + 2dl(sin θ2 − sin θ1) + l2
[
(sin θ2 − sin θ1)

2 + (cos θ1 − cos θ2)
2
]

= d2 + 2dl(sin θ2 − sin θ1) + l2(2− 2 sin θ1 sin θ2 − 2 cos θ1 cos θ2)

= d2 + 2dl(sin θ2 − sin θ1) + 2l2(1− cos(θ2 − θ1)) (3)

where the initial two parenthesis contain the horizontal and vertical
distances between the pendula, respectively. Using that for small an-
gles sin θ = θ we get

d′2 ≃ d2 + 2dl(θ2 − θ1) + 2l2(1− 1 +
1

2
(θ2 − θ1)

2)

= d2 + 2dl(θ2 − θ1) + l2(θ2 − θ1)
2

= (d+ l(θ2 − θ1))
2, (4)

so that d′ ≃ d + l(θ2 − θ1). Alternatively, one could insert the small
angle approximation immediately, however, then one would have to
argue that terms with θ4 must be dropped in d′2.
The total potential in the small angle approximation is then

V =
1

2
mgl(θ21 + θ22) +

1

2
k(d− d0 + l(θ2 − θ1))

2. (5)

c) Find the equilibrium position of the pendula. [4 points]

Answer: In terms of generalised coordinates qi the equilibrium is
given by ∂V

∂qi
= 0 for all i. We have

∂V

∂θ1
= mglθ1 − kl(d− d0 + l(θ2 − θ1)) = 0 (6)

∂V

∂θ2
= mglθ2 + kl(d− d0 + l(θ2 − θ1)) = 0 (7)
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Adding the two equations gives mglθ1 + mglθ2 = 0, which means
θ1+ θ2 = 0, telling us that the equilibrium solution is (as expected for
equal masses) symmetric around θ = 0 (vertical position). Inserting
this in the first equation yields mglθ1 − kl(d− d0) = 0 or

θ1 =
k(d− d0)

mg + 2kl
. (8)

d) Show that the Lagrangian of the system can be written

L =
1

2
ml2(θ̇21 + θ̇22)−

1

2
mgl(θ21 + θ22)−

1

2
k(d− d0 + l(θ2 − θ1))

2, (9)

where g is the acceleration due to gravity. [3 points]

Answer: The Lagrangian is given as L = K − V , where K is the
kinetic energy and V is the potential energy. The total kinetic energy
of the pendula is

K =
1

2
mv21 +

1

2
mv22 =

1

2
m(ẋ21 + ẏ21 + ẋ22 + ẏ22), (10)

where (xi, yi) are the pendula coordinates. Setting the horizontal as
the x-direction and the vertical as the y-direction we have xi = l sin θi
and yi = −l cos θi. This gives ẋi = lθ̇i cos θi and ẏi = lθ̇i sin θi so

K =
1

2
ml2(θ̇21 + θ̇22), (11)

and the Lagrangian is

L =
1

2
ml2(θ̇21 + θ̇22)−

1

2
mgl(θ21 + θ22)−

1

2
k(d− d0 + l(θ2 − θ1))

2. (12)

e) Find the equations of motion. [4 points]

Answer: The necessary ingredients to Lagrange’s equation are
∂L

∂θ1
= −∂V

∂θ1
= −mglθ1 + kl(d− d0 + l(θ2 − θ1))

∂L

∂θ2
= −∂V

∂θ2
= −mglθ2 − kl(d− d0 + l(θ2 − θ1))

∂L

∂θ̇1
= ml2θ̇1

∂L

∂θ̇2
= ml2θ̇2

d

dt

∂L

∂θ̇1
= ml2θ̈1

d

dt

∂L

∂θ̇2
= ml2θ̈2.
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This gives the (coupled) equations of motion

ml2θ̈1 +mglθ1 − kl(d− d0 + l(θ2 − θ1)) = 0 (13)
ml2θ̈2 +mglθ2 + kl(d− d0 + l(θ2 − θ1)) = 0 (14)

or

ml2θ̈1 +mglθ1 + kl2(θ1 − θ2)− kl(d− d0) = 0 (15)
ml2θ̈2 +mglθ2 + kl2(θ2 − θ1) + kl(d− d0) = 0 (16)

f) If d = d0, show that
θi(t) = Tie

±iωt (17)

are solutions and find the two different allowed magnitudes of the an-
gular frequency ω. Briefly discuss the physical interpretation of these
solutions. [6 points]

Answer: We show this by insertion into the equations of motion. We
have θ̇i = ±iωθi and θ̈i = −ω2θi, which gives

−ml2ω2T1 +mglT1 + kl2(T1 − T2) = 0, (18)
−ml2ω2T2 +mglT2 + kl2(T2 − T1) = 0, (19)

where we have cancelled the exponential in each term. We can simplify
a little writing

g

l
T1 +

k

m
(T1 − T2) = ω2T1, (20)

g

l
T2 +

k

m
(T2 − T1) = ω2T2, (21)

The easiest and cleanest way to solve this set of equation is to formulate
them as a matrix eigenvalue problem MT = ω2IT , where I is the
identity matrix and

T =

[
T1

T2

]
, M =

[g
l +

k
m − k

m

− k
m

g
l +

k
m

]
. (22)

This has a non-trivial solution when

det(M − ω2I) =

∣∣∣∣gl + k
m − ω2 − k

m

− k
m

g
l +

k
m − ω2

∣∣∣∣ = 0, (23)

which gives a second order equation for the eigenvalue ω2:

ω4 − 2

(
g

l
+

k

m

)
ω2 +

(g
l

)2
+ 2

g

l

k

m
= 0, (24)
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with solutions

ω2
1,2 =

(
g

l
+

k

m

)
±

√(
g

l
+

k

m

)2

− 2
g

l

k

m

=
g

l
+

k

m
± k

m
. (25)

For the frequency ω1 =
√

g
l , inserted back into Eqs. (20) and (21) we

get that T1 = T2 for the solution (eigenvector). The physical solution
is a linear combination of the positive and negative angular frequency
solutions,

θ1(t) =
1

2
T1e

iω1t +
1

2
T1e

−iω1t = T1 cos(ω1t), (26)

θ2(t) =
1

2
T2e

iω1t +
1

2
T2e

−iω1t = T1 cos(ω1t), (27)

so the two pendula swing in phase with angular frequency ω1. For the
frequency ω2 =

√
g
l +

2k
m we get T1 = −T2. Here

θ1(t) =
1

2
T1e

iω2t +
1

2
T1e

−iω2t = T1 cos(ω2t), (28)

θ2(t) =
1

2
T2e

iω2t +
1

2
T2e

−iω2t = −T1 cos(ω2t), (29)

so the pendula swing in opposite directions, exactly out of phase, with
angular frequency ω2.

Question 2 Compton scattering redux
In Compton scattering a photon γ with initial energy Eγ scatters of a
charged particle with mass m at rest. The angle of scattering is θ.

We remind you that the energy of a photon is given in terms of its
frequency ν and wavelength λ as E = hν = hc

λ , where h is Planck’s constant.

a) Draw a sketch of the process and give the equations for the conserva-
tion of relativistic energy and momentum in the collision in terms of
the four-momenta of the particles pµγ and pµm. [3 points]

Answer: The conservation of relativistic energy and momentum can
be expressed in terms of the conservation of the total four-momenta
of the two particles before and after the collision. If we use primes to
denote the momenta after the collision we have

pµγ + pµm = p′
µ
γ + p′

µ
m. (30)

A sketch of the process can be found in Fig. 2.
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Figure 2: Compton scattering of a photon at an angle θ.

b) Show that we can write

pm(pγ − p′γ) = pγp
′
γ , (31)

where papb = pµapbµ means the contraction of the two four-vectors
pa and pb, and where the primes signify the four-momenta after the
scattering. [4 points]

Answer: If we rearrange Eq. (30) such that p′µm = pµγ + pµm − p′µγ , we
can square both sides of this expression such that

p′
2
m = p2γ + p2m + p′

2
γ + 2pm(pγ − p′γ)− 2pγp

′
γ . (32)

Using that p2γ = 0 and p2m = m2c2 we have

m2c2 = m2c2 + 2pm(pγ − p′γ)− 2pγp
′
γ , (33)

which gives pm(pγ − p′γ) = pγp
′
γ .

c) Use the above to derive Compton’s formula

λ′ − λ =
h

mc
(1− cos θ), (34)

where λ is the wavelength of the photon. Nota bene! We will not give
points for other derivations of this expression. [6 points]

Answer: Since Eγ = |p⃗γ |c we have

pγp
′
γ =

Eγ

c

E′
γ

c
− p⃗γ · p⃗′γ =

EγE
′
γ

c2
(1− cos θ). (35)
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The charged particle is initially at rest so pµm = (E/c, 0) = (mc, 0).
This gives

pm(pγ − p′γ) = mc
Eγ

c
−mc

E′
γ

c
= m(Eγ − E′

γ). (36)

Using the result from b) we now have

Eγ − E′
γ =

EγE
′
γ

mc2
(1− cos θ), (37)

or
1

E′
γ

− 1

Eγ
=

1

mc2
(1− cos θ). (38)

The energy of a photon is related to its wavelength through Eγ = hν =
hc
λ , so

λ′

hc
− λ

hc
=

1

mc2
(1− cos θ), (39)

and finally
λ′ − λ =

h

mc
(1− cos θ), (40)

d) What is the energy of the outgoing photon for backward scattering,
θ = π, when the energy of the incoming photon is much larger than
the rest energy of the charged particle? Are you surprised? [3 points]

Answer: The rest energy of the charged particle is E0 = mc2. Insert-
ing θ = π in Eq. (38) gives

1

E′
γ

− 1

Eγ
=

2

E0
. (41)

Since Eγ ≫ E0, 1/E0 ≫ 1/Eγ and so

1

E′
γ

≃ 2

E0
, (42)

or E′
γ ≃ 1

2E0 = 1
2mc2. Personally, I still find it a bit weird that the

outgoing energy is dependent on the mass it hit.

e) Finally, let us look at so-called inverse Compton scattering where in the
laboratory frame the charged particle is highly relativistic and makes
a head-on collision with the photon, and where we assume that the
energy of the photon in the rest frame of the charged particle is much
less than the rest mass. Find the energy of a backscattered (θ = π)
photon as a function of its initial energy in the laboratory frame and
the γ-factor for boosts between the charged particle rest frame and
the laboratory frame. [5 points]
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Answer: Because energy is in the first coordinate of the four-momentum,
or rather E/c, it transforms as the first coordinate of the position four-
vector, ct, so the Lorentz transformation of energy must be

E′

c
= γ

(
E

c
− βp

)
, (43)

or, for a photon with Eγ = cpγ in all reference frames,

E′
γ = γ(1− β)Eγ , (44)

where Eγ is the energy before the boost and E′
γ after. The direction

of the velocity/boost is here in the direction of motion of the photon.
The energy of the photon in the rest frame of the charged particle
is now given by E′

γ = γ(1 + β)Eγ because the boost must be in the
direction of movement of the charged particle for the new reference
frame to “catch up” with the particle. After the scattering in the rest
frame of the particle Eq. (38) gives that the energy is approximately
the same same since E′

γ ≪ E0, but the photon is now travelling in the
opposite direction.
This energy must now be boosted back to the original frame. The
boost is in the opposite direction, but since the photon has also changed
direction, the energy of the scattered photon in the laboratory frame
becomes

E′′
γ ≃ γ(1 + β)E′

γ = γ2(1 + β)2Eγ ≃ 4γ2Eγ , (45)
where we have used that the charged particle is highly relativistic so
that β ≃ 1.

Question 3 Synchrotron radiation
We will begin by looking at a single non-relativistic charged particle in
circular motion. For concreteness, let the particle move in a circle with
radius R around the origin of the (x, y)-plane and with angular velocity ω.

Let us remind you that the electric radiation field far away from a charge
and current distribution can be written as

E⃗rad(r⃗, t) =
µ0

4πr

(
(¨⃗p× n̂)× n̂− 1

c
¨⃗m× n̂

)
ret

(46)

where n̂ = r⃗/r is a unit vector in the direction of the observer.

a) Find the electric dipole moment the particle. [3 points]

Answer: The charge density of a single charged particle is given by
ρ(r⃗, t) = qδ(r⃗ − r⃗(t)), where r⃗(t) is the path of the particle and q is
the charge. The electric dipole moment is then

p⃗ =

∫
r⃗ρ(r⃗, t)dV =

∫
r⃗eδ(r⃗ − r⃗(t))dV = er⃗(t), (47)
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where r⃗(t) forms a circular path around the accelerator ring.

b) Find the magnetic dipole moment of the particle. [3 points]

Answer: The current density of a single charged particle is given by
j⃗(r⃗, t) = qv⃗(t)δ(r⃗− r⃗(t)), where v⃗(t) is the velocity of the proton. The
magnetic dipole moment is then

m⃗ =
1

2

∫
r⃗ × j⃗(r⃗, t)dV =

1

2

∫
r⃗ × ev⃗(t)δ(r⃗ − r⃗(t))dV =

e

2
r⃗(t)× v⃗(t).

(48)
Here the magnetic moment is in the direction of angular momentum,
ℓ⃗ = r⃗ × p⃗, perpendicular to the circle.

c) Find expressions for the resulting radiation fields far away from the
source and in same the plane as the circular motion. What is the
polarisation and the wavelength of this radiation? [7 points]

Answer: We have ¨⃗p = qa⃗(t) and since the magnetic moment (just
like the angular momentum) is constant for circular motion — the
directions of r⃗(t) and v⃗(t) change, but not their magnitude, nor the
direction of their cross product — we have ¨⃗m = 0. Thus

E⃗rad(r⃗, t) =
µ0

4πr
((¨⃗p× n̂)× n̂)ret =

µ0q

4πr
(⃗a(tr)× n̂)× n̂, (49)

where tr = t− r/c is the retarded time.
Let us place our coordinate system such that the observer is on the
x-axis. Then n̂ = êx. With the charged particle moving counter-
clockwise we can parametrise the its path as r⃗(t) = R(cosωt êx +
sinωt êy). Then a⃗(t) = −ω2R(cosωt êx + sinωt êy). Input into the
expression for the electric field we get

E⃗rad(r⃗, t) = −ω2R
µ0q

4πr
((cosωtr êx + sinωtr êy)× êx)× êx

= −ω2R
µ0q

4πr
(− sinωtr êz)× êx

=
µ0qω

2R

4πr
sin(ω(t− r/c)) êy. (50)

The magnetic field is given by

B⃗rad(r⃗, t) =
1

c
n̂×E⃗rad =

1

c
êx×E⃗rad =

µ0qω
2R

4πrc
sin(ω(t−r/c)) êz. (51)

Since the fields oscillate on a fixed axis, the radiation is linearly po-
larised. The frequency of the radiation is given by the angular fre-
quency of the charged particle in the ring. This is ω = v/2πR, so the
wavelength is

λ =
c

ν
=

c

2πω
=

c

2πv/2πR
=

R

β
. (52)
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The radiation from a particle undergoing acceleration perpendicular to
its direction of motion, say in a circular accelerator, is called synchrotron ra-
diation. Here we will investigate this radiation for the Large Hadron Collider
(LHC) at CERN. The LHC accelerates protons of mass mp = 938.2MeV/c2
to energies of Ep = 6.5TeV/c around a ring of radius R = 2804m.1

d) What is the instantaneous inertial rest frame and why is Larmor’s
formula, as given in the formulae collection, valid there? [3 points]

Answer: The instantaneous inertial rest frame of a particle is the
reference frame where the particle is at rest. If the particle changes
velocity then this frame changes, so the frame moves with the parti-
cle’s world line. Larmor’s formula for the power radiated by a non-
relativistic charged particle is valid in this frame since the particle is
at rest, thus definitely non-relativistic. The particle is still accelerated
in this frame since the acceleration in this frame, called the proper
acceleration, can be non-zero.

e) Show that the relativistic form of Larmor’s formula is

P =
µ0q

2

6πc

[
γ4a2 + γ6

(v⃗ · a⃗)2

c2

]
. (53)

Hint: You may assume that the radiated power from an accelerated
charge is a Lorentz invariant quantity. This is proven in the lecture
notes. [5 points]

Answer: The non-relativistic form of Larmor’s formula is

P =
µ0q

2

6πc
a2. (54)

Since this must apply in the instantaneous inertial rest frame where the
acceleration is the proper acceleration, a = a0, and since we know that
the square of the proper acceleration is a Lorentz invariant because the
contraction of the four-acceleration with itself yields AµAµ = −a20, we
need to find an expression for a20.
Since Uµ = γ(c, v⃗) we have that

Aµ =
dUµ

dτ
=

d

dτ
γ(c, v⃗)

=
dt

dτ

d

dt
γ(c, v⃗) = γ

d

dt
γ(c, v⃗)

= γ
dγ

dt
(c, v⃗) + γ2(0, a⃗), (55)

11 TeV = 1012 eV.
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using dt = γdτ . We need the time derivative of the γ

dγ

dt
=

d

dt

(
1− v2

c2

)−1/2

= −1

2

(
1− v2

c2

)−3/2(
− 1

c2

)
d

dt
v2

= γ3
v⃗ · a⃗
c2

, (56)

since d
dtv

2 = d
dt v⃗ · v⃗ = 2v⃗ · d

dt v⃗ = 2v⃗ · a⃗. Then

Aµ = γ4
v⃗ · a⃗
c2

(c, v⃗) + γ2(0, a⃗) = (γ4
v⃗ · a⃗
c

, γ4
v⃗ · a⃗
c2

v⃗ + γ2a⃗), (57)

and

AµAµ = γ4
v⃗ · a⃗
c

γ4
v⃗ · a⃗
c

−
(
γ4

v⃗ · a⃗
c2

v⃗ + γ2a⃗

)2

= γ8
(v⃗ · a⃗)2

c2
− γ8

(v⃗ · a⃗)2

c4
v⃗ · v⃗ − 2γ6

v⃗ · a⃗
c2

v⃗ · a⃗− γ4a⃗ · a⃗

= γ8
(v⃗ · a⃗)2

c2
(1− β2)− 2γ6

(v⃗ · a⃗)2

c2
− γ4a2

= −γ6
(v⃗ · a⃗)2

c2
− γ4a2, (58)

where we have used that γ2 = 1/(1− β2). Thus

P =
µ0q

2

6πc
a20 =

µ0q
2

6πc

(
γ6

(v⃗ · a⃗)2

c2
+ γ4a2

)
. (59)

f) Show that the radiated power in a circular accelerator such as the LHC
can be expressed as

P ≃ cq2

6πϵ0

γ4

R2
. (60)

and find the radiation energy loss for a proton at the LHC. For ref-
erence ϵ0 = 8.85 · 10−12 C2/Nm2 and the charge of a proton is q =
1.60 · 10−19 C. What happens if we instead try to use an electron with
mass me = 0.511MeV/c2? [5 points]

Answer: Using Eq. (53) we have in the lab frame that v⃗ · a⃗ = 0 and
thus

P =
µ0q

2

6πc
(γ4a2) =

µ0q
2

6πc
γ4

(
v2

R

)2

≃ cq2

6πϵ0

γ4

R2
(61)
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since the particles must be highly relativistic and where we have used
c2 = 1/ϵ0µ0. For a proton in the LHC the γ-factor is

γ =
Ep

mpc2
=

6.5TeV
938.2MeV

≃ 6930, (62)

giving an energy loss of

P =
(3.0 · 108 m/s) · (1.60 · 10−19 C)2

6π · 8.85 · 10−12 C2/Nm2

69304

(2804m)2
= 1.35 · 10−11 J/s.

(63)
This may seem small, but given that the LHC circulates 2808 bunches
of 1.2 · 1011 protons per bunch in two counter circulating beams, the
total energy loss is 2 · 2808 · 1.2 · 1011 · 1.35 · 10−11 J/s = 9100 J/s, or
just above 9k watt.
The lighter electron has a much larger gamma factor γe = (mp/me)γp =
1.2 · 107. Since the power goes as γ4 this results in an energy loss of
around 150 watt per electron. This would be completely unfeasible to
run with any significant number of electrons.

g) Explain why the fields you found in sub-question c) are not compatible
with Eq. (53). What would be needed to find the radiation fields from
the LHC? [3 points]

Answer: The problem with the fields in sub-question c) is that we
have assume that the particle moves non-relativistically. We can find
the energy flux with Poynting’s vector which is given as S⃗ = 1

µ0
E⃗ ×

B⃗. This flux does not have any of the necessary γ-factors for the
integral over a surface around the LHC to yield the relativistic Larmor
formula. In calculating the electric (and magnetic) dipole moments we
have performed integrals over the source coordinates, these would be
different in the lab frame of the observer. In order to find the fields in
the relativistic case we should start from the general expression of the
Lienard-Wiechert potentials.
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