# **UNIVERSITETET I OSLO**

## Det matematisk-naturvitenskapelige fakultet

Make sure that your copy of this examination paper is complete before you begin.

#### **PROBLEM 1**

#### Pendulum attached to a rotating disk

A pendulum is attached to a circular disk of radius R, as illustrated in Fig. 1. The end of the pendulum rod is fixed at a point P on the circumference of disk. The disk is vertically oriented and it rotates with a constant angular velocity  $\omega$ . The pendulum consists of a rigid rod of length l which we consider as massless and a pendulum bob of mass m. The pendulum oscillates freely about the point P under the influence of gravity.



a) Show that the Lagrangian for this system, when using as variable the angle  $\theta$  of the pen-

dulum rod relative to the vertical direction, has the form

$$L = m\left[\frac{1}{2}l^2\dot{\theta}^2 + lR\omega\sin(\theta - \omega t)\dot{\theta} + gl\cos\theta + \frac{1}{2}R^2\omega^2 - gR\sin\omega t\right]$$
(1)

b) Formulate Lagrange's equation for the system and write it as a differential equation for  $\theta$ .

For  $\omega = 0$  the equation reduces to a standard pendulum equation. Assume in the following  $\omega$  to be non-vanishing, but sufficiently small so the  $\omega$ -dependent contribution to the equation of motion can be viewed as a small periodic perturbation to the pendulum equation. In that case there are solutions corresponding to small oscillations,  $|\theta| << 1$ , which are modified by the perturbation.

c) Show that under assumption that  $|\theta|$  and  $\omega$  are sufficiently small the equation of motion for the pendulum can be approximated by the equation for a *driven* harmonic oscillator, subject to a periodic force. Show that it has a solution of the form  $\theta(t) = \theta_o \cos \omega t$  and determine the amplitude  $\theta_0$  in terms of the parameters of the problem.

Based on this solution can you give a more precise meaning to the phrase "sufficiently small  $\omega$ " as the condition for  $\theta_o \cos \omega t$  to be a good approximation to a solution of the full equation of motion?

#### **PROBLEM 2**

#### Charged particle in a constant electric field

A particle with charge q and rest mass m moves with relativistic speed through a region 0 < x < L where a constant electric field **E** is directed along the y-axis, as indicated in the figure. The particle enters the field at x = 0 with momentum  $\mathbf{p}_0$  in the direction orthogonal to the field. The relativistic energy at this point is denoted  $\mathcal{E}_0$ . (Note that we write the energy as  $\mathcal{E}$  to avoid confusion with the electric field strength E.)



a) Use the equation of motion for a charged particle in an electric field to determine the time dependent momentum  $\mathbf{p}(t)$  and relativistic energy  $\mathcal{E}(t)$  (without the potential energy) of the particle inside in the electric field. What is the relativistic gamma factor  $\gamma(t)$  expressed as a function of coordinate time t?

b) Find the velocity components  $v_x(t)$  and  $v_y(t)$  and explain the relativistic effect that the velocity in the x-direction decreases with time even if there is no force acting in this direction.

c) Show that the proper time  $\Delta \tau$  spent by the particle on the transit through the region 0 < x < L is proportional to the length  $L, \Delta \tau = \alpha L$ , and determine  $\alpha$ .

d) What is the transit time  $\Delta t$  through the region when measured in coordinate time?

We remind about the integration formula  $\int dx \frac{1}{\sqrt{1+x^2}} = \arcsin x + C$ .

### PROBLEM 3 Radiation from a linear antenna

A so-called *half-wave center-fed* antenna is formed by a thin linear conductor of length *a*. It is oriented along the z-axis as shown in the figure. An alternating current is running in the antenna, of the form

$$I(z,t) = I_0 \cos \frac{\pi z}{a} \cos \omega t , \quad -a/2 < z < a/2$$
 (2)

In the following  $\lambda(z, t)$  denotes the linear charge density of the antenna (charge per unit length). At time t = 0 the antenna is charge neutral, so that  $\lambda(z, 0) = 0$ .



a) Show that the charge density and current satisfy the relation

$$\frac{\partial \lambda}{\partial t} + \frac{\partial I}{\partial z} = 0 \tag{3}$$

and find  $\lambda$  as a function of z and t.

b) Show that the electric dipole moment of the antenna has the form

$$\mathbf{p}(t) = p_0 \sin \omega t \, \mathbf{k} \tag{4}$$

with k as the unit vector along the z-axis, and determine the constant  $p_0$ .

c) Use the expressions for electric dipole radiation to determine the electric and magnetic fields in a point at a large distance r from the antenna on the x-axis. What is the type of polarization of the radiation from the antenna in this direction?