UNIVERSITETET I OSLO
 Det matematisk-naturvitenskapelige fakultet

Exam in: FYS 3120 Classical Mechanics and Electrodynamics
Day of exam: Tuesday June 2, 2009
Exam hours: 3 hours, beginning at 14:30
This examination paper consists of 3 pages
Permitted materials: Calculator
Øgrim og Lian or Angell og Lian: Størrelser og enheter i fysikken
Rottmann: Matematisk formelsamling
Formula Collection FYS 3120
Language: The solutions may be written in Norwegian or English depending on your own preference.
Make sure that your copy of this examination paper is complete before you begin.

PROBLEM 1

Pendulum attached to a rotating disk

A pendulum is attached to a circular disk of radius R, as illustrated in Fig. 1. The end of the pendulum rod is fixed at a point P on the circumference of disk. The disk is vertically oriented and it rotates with a constant angular velocity ω. The pendulum consists of a rigid rod of length l which we consider as massless and a pendulum bob of mass m. The pendulum oscillates freely about the point P under the influence of gravity.

a) Show that the Lagrangian for this system, when using as variable the angle θ of the pen-
dulum rod relative to the vertical direction, has the form

$$
\begin{equation*}
L=m\left[\frac{1}{2} l^{2} \dot{\theta}^{2}+l R \omega \sin (\theta-\omega t) \dot{\theta}+g l \cos \theta+\frac{1}{2} R^{2} \omega^{2}-g R \sin \omega t\right] \tag{1}
\end{equation*}
$$

b) Formulate Lagrange's equation for the system and write it as a differential equation for θ.

For $\omega=0$ the equation reduces to a standard pendulum equation. Assume in the following ω to be non-vanishing, but sufficiently small so the ω-dependent contribution to the equation of motion can be viewed as a small periodic perturbation to the pendulum equation. In that case there are solutions corresponding to small oscillations, $|\theta| \ll 1$, which are modified by the perturbation.
c) Show that under assumption that $|\theta|$ and ω are sufficiently small the equation of motion for the pendulum can be approximated by the equation for a driven harmonic oscillator, subject to a periodic force. Show that it has a solution of the form $\theta(t)=\theta_{o} \cos \omega t$ and determine the amplitude θ_{0} in terms of the parameters of the problem.

Based on this solution can you give a more precise meaning to the phrase "sufficiently small ω " as the condition for $\theta_{o} \cos \omega t$ to be a good approximation to a solution of the full equation of motion?

PROBLEM 2

Charged particle in a constant electric field

A particle with charge q and rest mass m moves with relativistic speed through a region $0<$ $x<L$ where a constant electric field \mathbf{E} is directed along the y-axis, as indicated in the figure. The particle enters the field at $x=0$ with momentum \mathbf{p}_{0} in the direction orthogonal to the field. The relativistic energy at this point is denoted \mathcal{E}_{0}. (Note that we write the energy as \mathcal{E} to avoid confusion with the electric field strength E.)

a) Use the equation of motion for a charged particle in an electric field to determine the time dependent momentum $\mathbf{p}(t)$ and relativistic energy $\mathcal{E}(t)$ (without the potential energy) of the particle inside in the electric field. What is the relativistic gamma factor $\gamma(t)$ expressed as a function of coordinate time t ?
b) Find the velocity components $v_{x}(t)$ and $v_{y}(t)$ and explain the relativistic effect that the velocity in the x -direction decreases with time even if there is no force acting in this direction.
c) Show that the proper time $\Delta \tau$ spent by the particle on the transit through the region $0<$ $x<L$ is proportional to the length $L, \Delta \tau=\alpha L$, and determine α.
d) What is the transit time Δt through the region when measured in coordinate time?

We remind about the integration formula $\int d x \frac{1}{\sqrt{1+x^{2}}}=\operatorname{arcsinh} x+C$.

PROBLEM 3

Radiation from a linear antenna

A so-called half-wave center-fed antenna is formed by a thin linear conductor of length a. It is oriented along the z -axis as shown in the figure. An alternating current is running in the antenna, of the form

$$
\begin{equation*}
I(z, t)=I_{0} \cos \frac{\pi z}{a} \cos \omega t, \quad-a / 2<z<a / 2 \tag{2}
\end{equation*}
$$

In the following $\lambda(z, t)$ denotes the linear charge density of the antenna (charge per unit length). At time $t=0$ the antenna is charge neutral, so that $\lambda(z, 0)=0$.

a) Show that the charge density and current satisfy the relation

$$
\begin{equation*}
\frac{\partial \lambda}{\partial t}+\frac{\partial I}{\partial z}=0 \tag{3}
\end{equation*}
$$

and find λ as a function of z and t.
b) Show that the electric dipole moment of the antenna has the form

$$
\begin{equation*}
\mathbf{p}(t)=p_{0} \sin \omega t \mathbf{k} \tag{4}
\end{equation*}
$$

with \mathbf{k} as the unit vector along the z-axis, and determine the constant p_{0}.
c) Use the expressions for electric dipole radiation to determine the electric and magnetic fields in a point at a large distance r from the antenna on the x-axis. What is the type of polarization of the radiation from the antenna in this direction?

