FYS 3120: Classical Mechanics and Electrodynamics

Formula Collection

1 Analytical Mechanics

The Lagrangian
L=1L(q,4,t) , (1)

is a function of the generalized coordinates ¢ = {q; ; i = 1,2, ..., d} of the physical system, and their
time derivatives ¢ = {¢;; i = 1,2,...,d}. The Lagrangian may also have an explicit dependence of
time .

Lagrange’s equations
d oL 0L
dos  og
There is one equation for each generalized coordinate.

i=1,2,..,d 2)

Generalized momentum

i =—, i=1,2,..d. 3
2 96 [ 3)

is also referred to as canonical or conjugate momentum. There is one generalized momentum p; con-
jugate to each generalized coordinate g;.
The Hamiltonian
d
H(p,q) = ¢pi— L )
i=1

is usually considered as a function of the generalized coordinates ¢; and momenta p;.

Hamilton’s equations

qi:ZZ, pi:—gz, i=1,2,..,d 5)
(6)
Standard expressions for L og H
L = K-V
H = K+V (7

with K as kinetic energy and V' as potential energy. There are cases where H is not the total energy.

Charged particle in electromagnetic field (non-relativistic)

1
L=L(r,v) = imv2—6¢+ev-A
1
H=Hrp) = 5-(p—cA)’+eo (®)
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2 Relativity
Space-time coordinates
(29, 21, 22, 23) = (ct, z,y,2) = (ct,T) 9
General Lorentz transformation
' — 2" = [P a¥ + o (10)
Special Lorentz transformation with velocity v in the = direction
2 = (2 - fat)
o't = (2! - g’ (11)
with 3 = v/cand v = 1/4/1 — (2, and 2% og z* are unchanged.

Condition satisfied by Lorentz transformation matrices

g;wLupLVg = Gpo (12)
Invariant line element
As? = A2 — Ar? = G Azt Ax” = Az, Azt (13)
Metric tensor
0, p#v
ng = 1’ M = U =
-1, p=v+#0

Upper and lower index

zr, =guwa’, (a!)=(ct,r), (x,)= (ct, —r)

et =g"ry, gup g™ =9y, (14)



Proper time - time dilatation
1 1
dr = =Vds? = =dt, (15)
¢ gl
dr: proper time interval = time measured in an (instantaneous) rest frame of a moving body (by a
co-moving clock)
ds?: invariant line element of an infinitesimal section of the object’s world line

dt: coordinate time interval = time interval measured in arbitrarily chosen inertial system

Length contraction
1
L="-L (16)
v
Lengths of a moving body measured in the direction of motion.
Ly: length measured in the rest frame of a moving body

L: length measured (at simultaneity) in an arbitrarily chosen inertial frame.

Four velocity

dat
U“:izfy(c,v), U“UFL:c2 17
dr
Four acceleration
dU»  d2gh
P o = —— U, =0 18
A dr dr?’ AU (%)
Proper acceleration ag
Acceleration measured in instantaneous rest frame,
APA, = —ag? (19)

Four momentum

E
Pt =mU" =my(c,v) = (—,p) (20)
c

with m as the (rest) mass of a moving body.

Relativistic energy
E = ’ymc2 2D

~ym is sometimes referred to as the relativistic mass of the moving body.



3 Electrodynamics

Maxwell’s equations

vV.E = P~
€0
10
VxB-—S—E = j
VB =0
V x E + QB =0
ot
Maxwell’s equations in covariant form
0, F* = = 9
14 = HoJ > v — 8:6’/
. . 1
o F" =0, = 56“”’”Fpg
Electromagnetic field tensor
1 iy
F = —By, FY=—ejBy

.. 1
Fko - Bk 5 FZJ = EeijkEk
Four-current density
(7") = (cp,J)

Charge conservation

0
=P, +V-j=0

9,i" =0
wl Tot

Electromagnetic potentials

E:—Vd)—gtA, B=VxA

Four potential
Fr = grAY — 9" AR | (AHF) = (}(ﬁ, A)
C

Lorentz force
Force from the electromagnetic field on a point particle with charge ¢

F =¢(E+v x B)

Potentials from charge and current distributions

in Lorentz gauge, 9, A" = 0:
1 [p,t) )
t) = av
o(r.1) dmeg / lr — 1|

_ o [ 1)

= av’
dr | |r —1/|
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(22)

(23)

(24)

(25)

(26)

27

(28)

(29)

(30)



Retarded time
1
t'=t——|r—7|
c

Electric dipole moment

p= / rp(r)dV
Electric dipole potential (dipole at the origin)
n-p r
= —— s n—-—
4megr? r

Force and torque (about the origin)
F=p-V)E, M=pxE
Magnetic dipole moment

1
m:2/r><j(r)dV

Magnetic dipole potential (dipole at the origin)

A Momxn r
4?2 r

Force and torque (about the origin)
F =V(m-B) (current loop), M=mxB
Lorentz transformation of the electromagnetic field
F'" = LY LY PP

Lorentz invariants

2 2np2 75 v
E’—*B® = —TF,F

E-B = EFWF“”
Special Lorentz transformations
Eh:EH’ E/J_:’Y(EJ_—I—VXB)

B =B, B =7BL-vxE/)

€29

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39

(40)

The fields are decomposed in a parallel component (||), in the direction of transformation velocity v,

and a perpendicular component (), orthogonal to v.

Electromagnetic field energy density

1 1 €0
e 4 2By = O g2, 22
U 2(60 Jruo ) 2( + ¢°B?)
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(41)



Electromagnetic energy current density (Poynting’s vector)
1
S=—ExB
Ho

Monochromatic plane waves, plane polarized

E(r,t) =Egcos(k-r—wt), Ey= Epe;

B(r,t) = Bgcos(k-r —wt); By = Bpes
1 k
Eo-k=Bp-k=0, Bp=-nxEg, =7
c

Monochromatic plane waves, circular polarized
1
E(r,t) = Re (Epexpli(k - r —wt)]) , Eo= Ey—=(e1 £ iez)

-5

B(r,t) = Re(Boexpli(k - r —wt)]) , Bo= Boﬁ(eg Fiep)

Polarization vectors
_ _ _ 2 _ 2 _
ejrk=ey-k=0, e -eg=0, ef=e3=1

Four-wave vector

(k) = (%,k) . w=ck

Radiation fields, in the wave zone (r >> 7', \)

Mo 1 d N / r
B(r,t) = ——— x — tHdV = -
o) =122 & [iwnar . n=t

Electric dipole radiation
Mo M

B(r,t) = 1oy X p(t—r/c),

Radiation from accelerated, charged particle

B(r,t) = ﬁcqr lax nlyer, E(r,t) = cB(r,t) X nye

n=R/R, R(t)=r—r(t)

with r(¢) as the particle’s position vector.

Radiated power, Larmor’s formula

p— Hoq a2
6me

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)



