FYS3140. First obligatory set of problems V2011

Problem 1

Obtain the Laurent series around $\mathrm{z}=0$ for the function
$f(z)=\frac{z}{(z-1)(2-z)}$
that is convergent for:
a) $|z|<1$
b) $\quad 1<|z|<2$
c) $|z|>2$

Hint: Write $f(z)$ as a sum of two fractions.

Problem 2

Use Cauchys integral theorem, Cauchys integral formula, or the integral expression for the derivative to determine the value of the following integrals, all around the circle $|z|=2$:
a) $\oint \frac{\cos z}{z} d z$
b) $\oint \frac{e^{z}}{z-1} d z$
c) $\oint \frac{2 z^{2}+3 z-1}{z-1+i} d z$
d) $\oint \frac{e^{z}}{(z-1)^{2}} d z$
e) $\oint \frac{\sin z}{z^{4}} d z$ (answer: $-\frac{\pi i}{3}$)

Problem 3

Use the residue theorem to calculate the following integrals:
a) $\oint_{C} \frac{d z}{z^{2}+4}, C$: circle $|z-2 i|=1$
b) $\oint_{C} \frac{\cosh \pi z}{z\left(z^{2}+1\right)} d z, \mathrm{C}:$ circle $|z|=2$ (answer: $4 \pi i$)
c) $\oint_{C} z e^{\frac{1}{z}} d z, \mathrm{C}:$ circle $|z|=2$ (answer: $\pi \mathrm{i}$)

Problem 4

Use the residue theorem to show that
$\int_{0}^{2 \pi} \frac{d \theta}{1+\sin ^{2} \theta}=\pi \sqrt{2}$

Problem 5

Determine the principal value of the integral

$$
\int_{-\infty}^{\infty} \frac{\cos \pi x}{1-4 x^{2}} d x
$$

Problem 6

Obtain the general solution of the differential equation

$$
x^{2} y^{\prime}+3 x y=1 .
$$

Due Monday February 28th at $\mathbf{1 4 . 0 0}$. To be turned in at the department office. Write your name on your paper, not your candidate number.

