FYS3140. First obligatory set of problems V2011

Problem 1
Obtain the Laurent series around z=0 for the function
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that is convergent for:
a) |zl<1
b) 1<z|<2
c) [z>2
Hint: Write f(z)as a sum of two fractions.

Problem 2
Use Cauchys integral theorem, Cauchys integral formula, or the integral expression for
the derivative to determine the value of the following integrals, all around the circle |z|=2:
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Problem 3
Use the residue theorem to calculate the following integrals:
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C) Cj}ze;dz , C: circle |z]=2 (answer: 7i)
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Problem 4
Use the residue theorem to show that
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Problem S
Determine the principal value of the integral
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Problem 6
Obtain the general solution of the differential equation

Xy +3xy =1 .

Due Monday February 28th at 14.00. To be turned in at the department
office. Write your name on your paper, not your candidate number.



