
 FYS3140. First obligatory set of problems V2011 

 
Problem 1 

Obtain the Laurent series around z=0 for the function 
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that is convergent for: 

a) |z|<1 

b) 1<|z|<2 

c) |z|>2 

Hint: Write ( )f z as a sum of two fractions. 

 

Problem 2 

Use Cauchys integral theorem, Cauchys integral formula, or the integral expression for 

the derivative to determine the value of the following integrals, all around the circle |z|=2: 
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Problem 3 

Use the residue theorem to calculate the following integrals: 
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Problem 4 

Use the residue theorem to show that 
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Problem 5 

Determine the principal value of the integral 
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Problem 6 

Obtain the general solution of the differential equation 

        13'2 =+ xyyx  . 

     

Due Monday February 28th at 14.00. To be turned in at the department 
office. Write your name on your paper, not your candidate number. 


